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Summary. — In this paper we study the Dirichlet problem for a class of second order linear
elliptic partial differential equations with discontinuous coefficients in unbounded domains of
R”. We obtain some existence and uniqueness results.

Teoremi di esistenza ed unicita per il problema di Dirichlet
in aperti non limitati

Riassunto. — In questo lavoro si studia il problema di Dirichlet per una classe di equazioni
differenziali lineari ellittiche del secondo ordine a coefficienti discontinui in aperti non limitati
di R”. Si ottengono alcuni teoremi di esistenza ed unicita.

INTRODUCTION

We consider in an open subset Q of R”, » =2, the uniformly elliptic linear differ-
ential operator

n n
(1) Lu=- > @5th, + D> a;t,, + au
ij=1 i=1

with real coefficients.
Suitable regularity hypotheses and behaviour to the infinity of the coefficients 4;
({=1,...,n) and a (see n. 3) are given, while

2) 4;=a;€L*(Q), i5=1,...,n.

We are concerned with the problem
3) weWQAW'Q), Lu=f, fel2@).
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It is well known that, if # > 2, condition (2) doesn’t assure uniqueness for problem
(3), whatever hypotheses on other data (see e.g. O. A. Ladyzhenskaja - N. N. Ural’tse-
va[8], D. Gilbarg - N. S. Trudinger [6]).

In some recent papets (see e.g. [10], [13], [14]) M. Troisi and one of the Authors
studied problem (3) in an open unbounded and sufficiently regular Q, with additional
hypotheses on the 4;. Some a priori bounds and existence and uniqueness results, ex-
tending to unbounded domains of R” some classical results for the bounded domains
(see eg.[8], C. Miranda[9], M. Chicco[2],[3],[4], [5]), are given.

In particular in[10] hypotheses like those of C. Miranda [9] on the 4; are given,
namely

ax]EWloc( ): l';]‘= 1)---,”:
where s>2 if n=2 and s=#n if n>2, together with the condition to the
infinity

liﬂim ”(ax}')x;,"L’(DnB(x,l)) e 0, i,j)b = 1) ey,

|« —

where B(x,1) = {y e R*| |y — x| < 1}. In[13], less restrictive regularity hypotheses on
the a; are imposed, but together with the condition to the infinity

a;(x) = ag.

|x|—) +o

In[14] the following case has been dealt with:

=q; + af, ~-—4ﬂ€L°°(Q)ﬁW1°c( ), di=4}eC@)
and
bl +eo 1@l @npe iy =0, lim ()= ap
or
|x| = +e0 4 (o) = a’}q’

where C(Q) is the space of uniformly continuous bounded functions on Q.

Successively (see [15]) the same Authors studied problem (3) in more general hy-
potheses on the 4;, and extended an a priori bound that in the previous papers is basic
for some existence and uniqueness results.

In these hypotheses, like is pointed out by the Authors in[15], is not possible,
with the methods of [10], [13], [14], to deduce from the a priori bound the theorems
of existence and uniqueness.

In this paper we consider problem (3) in the hypotheses of [15], and in addition
we suppose that 3Q is bounded. In such hypotheses we prove that problem (3) is
uniquely solvable.

To obtain this result we use the a priori bound established in [15] and a new a pri-
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ori bound proved in this paper for the solutions of the problem

weW?@Q,)nW'Q,), Lu=f, fel2(Q).

Here Q, = {x € Q| |x| <7} and the constant of the bound doesn’t depend on 7 € [r,, +
+ o[, where 7, is a sufficiently large, fixed value.

1. - SOME PRELIMINARY FACTS

We set
B(x,»={yeR"||y—=x|<r}, B,=B(0,r),

1/2

” 2 L . 1/2
P =(z) , x,,=(§: .
i= j=

Let E be an open subset of R”, n=2. .

We denote by W™ (E), 7 € N, the usual Sobolev space W2 (E) and by W” (E) the
closure of M(E) in W™ (E).

Moreover we set W°(E) for L? (E).

If E is unbounded, for any p € [1, + %[ M?(E) denotes the space of all functions
feLl . (E) such that

(1.1) | f lbwrey = sug |f|p,EnB(x,1) <+w,

normed by (1.1), and M{(E) denotes the subspace of M?(E) of all functions # such
that

(1.2) im | fl,5npen =0.

|x|— + o0

For some properties of the spaces M?(E) and M§ (E) we refer to[10],[11].
Let 5, ¢ be two real numbers such that

(1.3) s>2if n=2, s=nif n>2,
(1.4) t=2 it 2<n<4, ¢>2if n=4, t=n/2if n>4.

If AcE is an open subset, € N and v € R, , we write Ej (v, A) for the class of the
k X k square matrices ((e;)) such that

(15) € =¢€; € i (A) n Wlé,c:(z) > i:j= 17 -"’k:
k
(1.6) 2 EE=VE?  ae in A, VEeR:
ir=1
Moreover, we denote by G(A) the class of all functions ge L™ (A4) such that
ess, inf g>0.

We consider in E the second order linear differential operator L defined by (1)
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and write
(1.7) Lyu=— .Zla,ju,‘i,,i.
We say that L, is of Chicco type in E (see[3]-[5] and [13]-[15]) if

(18) a,]'=a/',‘GL°° (E), Z,]= | ESen o A

and there exist veR,, a matrix ((¢;)) €E,(v,E) and a function ge G(E) such
that

(1.9) esssup 2 (e;— ga;)? <V2.

E £7=1

2. - PRELIMINARY LEMMAS

Lemma 2.1: Let r, €R, . For each re[r,+x[ there exists a continuous linear
operator

g:: W*(B,)— W*(R")

such that
@1 g4 =1,
22) Iz #llw®ny <cllallwrs,, #£=0,1,2,

where ce R, is independent of r and u.
Proor: It is well known that there exists g,, satisfying these properties (see R. A.

Adams[1]).
We note that, given 7€ [r,,+%[ and # € W?(B,) the function

o(y) =u(r11y) e W2(B,)

and hence g, v e W?(R").

Write w, (x) = (g, v)(r—;x), for every x € R”, then we define
q: ue W*(B,)—>qu=w, € W*(R").
If x € B,, we have
w,(x)= v(r—:x) = u{x)

and then (2.1) is proved.
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Moreover, we have that

@3) ol =( f ((‘1'1”)<r_rl"))2 dx)l/z P
.
= (J L (@007 dy)"z sc( | ﬁ,,dey)” "= dul,
1 n

n
Lo

with ce R, independent of 7 and #, then (2.2) for £#=0 is obtained.
On the other hand we get

2.4) [(,) |2, r» < (77 |l 5, + |#|2,8,) ,

(25) ,(wr )xx |2,R” = C(r—z luIZ,B, + r_l |ux IZ,B, + |uxx |2,B,) )

with ce R, independent of 7 and #.
From (2.3), (2.4) and (2.5) the bound (2.2) for £=1, 2 easily follows.

Lemma 2.2: Let ¢y, r, € R,. Then there exists a constant c€ R, such that

(2.6) fufdec(sfufxdx+ % fuzdx)
B,

B' B’

Veel0,¢,1, Vrelr,+o[ and Vue W?(B,).

Proor: We fix ¢€10,¢;], 7€ [r, +®[, e W?(B,) and put

Since » € W2 (B,), for any ¢, 6]0, %] we obtain
1

2.7) fvgdysc(Bl)(eofujydy+ slo ffdy),

B, B B,

where ¢(B;) € R, is independent of ¢, and v (see e.g. [1], pag. 75).

(2.6) follows now from (2.7) when y= % and & = <.

1’2

Now we assume:

iy) let Q be an unbounded open subset of R”, #=2, of class C? with bounded
boundary.
Put

Q,=QnB, VreR,.
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Choose 7, € R, such that
o0QcB,
and let ¢ be a function in @(R”) such that
¢

r~a =1, supp¢cB,.

Lemma 2.3: For any re[r,+o[ there exists a continuous linear operator

P W2 (Q,)—> W (Q)

such that
(2'8) p’”,ﬂ, =u,
(2.9) I #llw @) < cll#llwra,), #=0,1,2,

where c€ R, is independent of r and u.

Proor: Let r€[r,,+[ and #e W?(Q,).
Define
{gbu in Q, {(l—gb)u in Q,
v= w=

= U =0+ (q,w)g,
0 in0\Q, 0 B \g, 2 @

where ¢, is the operator in Lemma 2.1.
From (2.1) and (2.2) we easily obtain (2.8) and (2.9), and the result follows.

Lemma 2.4: For any e € R, there exists a constant c(c) € R, such that

@10)  [idese[2de+olo) [adx  Vreln,+ol and Vue W?(@,).

Q, Q, Q,

Proor: Let re[r,+>[ and e W?(Q,).
If w is the map defined in the proof of Lemma 2.3, we have

2.11) fugdxsz( f(¢u)§dx+f((1—¢)u)§dx)=z( f(¢u)§dx+fw3dx).
Q, Q, Q B,

Q, n

It is well known that

2.12) i <e [ s2ds+ () [w2ax,

D’l D’l D'l

with ¢ (¢;) € R, independent of .
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Moreover, from Lemma 2.2 it follows that

(2.13) wadxs sszfxdx+q(ez)fw2dx,
B, B, B,

with ¢, (¢;) € R, independent of 7 and #.
From (2.11), (2.12) and (2.13) we obtain easily (2.10), as required.

3. - AN A PRIORI BOUND

We consider in Q the second order linear differential operators L and L, defined
respectively by (1) and (1.7).
Now we assume the following:

i) Ly is of Chicco type in Q; moreover
(3.1) aeM;Q), i=1,..,n,
(3.2) a=a'+d", adeMiQ), aeM(E@Q);

iz) there exist p,po,n €Ry, ((2;)) €E,(1,Q\B,), ((a)) €E;(19,2\B,),
n € G(Q) such that '

(3.3) (@5)5,, 2, EM§(@QN\B,) 47,b=1,...,n,
(3.4) plesssup X (a;— na;)? +polesssup (a—na")? <1.
O\B, #=1 oa\Z,

We note that the last condition is equivalent to condition i;) defined in n. 3
of [15], where two examples of operators for which it holds are quoted (see examples
4 and 5 of[15]).

Next example contains the two quoted examples of [15].

Exampre 3.1: If we suppose:

2 4EE=a|f?  ae in Q, VE€R”,
ij=1

sg=bi+c;, by=b;el”Q), (b)), eM;(Q),
lim g=q, dg=¢, ae€GQ),

then, cleatly, i;) holds with

4
‘u=?) p'0=essasup a"; aljzblj+cl_(])) a=f, ’7=1
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and 7, € R, such that

D aEE=uld?  ae in Q\B,, VE&R”,

L/=1

n
esssup 2 () — ¢;)* <u?(essinf a"/u,)?.
O\E,o =1 Q

Remark 3.1: From Example 3.1 we deduce that i,) and i3) are satisfied by the hy-
potheses, mentioned in the introduction, contained in the papers[10, 13, 14].
Let 8 denote a mapping Q— R, such that

(3.5) BeM'(Q) and e M§(Q) 3'B,<p3,
(3.6) BB el (@).

Let , e R, such that
(3.7) n > ", oQc B’l N
where 7, is the number defined in hypothesis i3).

Lemma 3.1: If1)), i) and i3) hold, then there exist a constant c € R, and a bounded
open set Qy CQ such that:

(3.8) lllwe @,y < c|Lu+ 297" Buly o + )50, na,)
VA0, Vrelrn,+o[ and Vue W2(@Q,) n W' (@Q,).

Proor: Assume firstly that L =Ly + 4", and fix 7 €lry,r [ and ¢ € ®(R”) such
that 3Q c B, ¢|B,6 =1 and supp ¢ cB,,.

We first prove (3.8) for ¢u.

Since the operator n87'L, is of Chicco type in ©, , from [4] we obtain

(3.9 ¢l w20,y = l¢ullw2a,) < clr)(| (987" (Lo + a")) ¢u + Apuly o, + |$ul20, ) <
<c'(n)(|(Lo +a") gu+ dn~' Bgulyo + |¢ulaa,) =
=¢'(n)(|(Lo +a") u+ An~" Bpul 0 + |¢#l2,0,n0,) »

where ¢(r,),¢' () € R, are independent of A,  and #.
We prove now (_3.8) for v=(1—¢)u.
Write E, =Q,\Q,,, and consider in E, the operator

”n
Av=— 3 V%,
=1

Note that suppvcﬁ,\.(),(;. Then, from well-known results (see[8], pag. 152,
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162), using methods similar to those in [15] to establish (36), (37) and (38), it follows
that

(3.10) yzfvfxdxsf(/lv)zdx+elfvfxdx+c(sl)f % (a,-j)ivf,
E, E: E, g Y1

where c(e;) € R, is independent of 7 and v.
On the other hand we have:

6.1 [(ARde< [(Av+ @+ 280 dx—

E, E,
—(1 —sz)j(a+lﬁ)21)2dx+c(ez)‘,’('z (a,}-),z, +a? +82)vfdx,
E, E, ar=1

where c(s,) € R, is independent of A, 7 and v (see (41)-(43) of[15]).
Since

essEinf(a+Aﬁ)>y0 Vi=0,
from (3.10) and (3.11) we obtain that

(3.12) (2 — &) jvz dx + (43 —¢5) jvzdx<

$I(A1J+(a+Aﬁ)v)2dx+c(el,e3)J’(§: (az)2 +a§+az>v3a’x,
E, 57=1

E,

where c(e;,¢3) € R, is independent of A, 7 and v.
Put

n 1/2
g= (2 (a,};)i +d? +82) '

57=1
Since ge M} (Q\F,o), from Theorem 3.2 of [7] and from Lemma 2.3 we get

(3.13) jgzuzdx< [ ¢pordes
D\D

<ei[poldstoe) [ (oPdesedslyig) +de) [ (0P,
Q QNQ(ey) 2n0(ey)

where the constants ¢, c(e4) € R, and the bounded open set Q(e4) € 2 are independent
of r and v.
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From (3.12), (3.13) and Lemma 2.4, we have that for any ¢’ €]0,u[ and for any
" €10,u0[ the following holds:

(3.14) (F" - 5,)2 |vxx |§,E, T (:U'O 7 5")2 |v|§,E, =
= |A1.) + (“ + Aﬁ) vl%,E, it c(el ) E")lprvlg,a N ")
where the constant c(¢’,¢") € R, and the bounded open set Q(¢’, ") c Q are indepen-

dent of A, 7 and .
With the same proof of [15] to deduce (33) from (45), from (3.14) we have

(3.15) Ve 2,0, + |V],0, < & (|(Lo + @) v + 2™ ol o, + |2, v]2,0000) 5
where the constant ¢; € R, and the bounded open set Q* c Q are independent of 2, r
and v.

Now we choose o €]r;, +[ such that Q* cQ,.

From Lemma 2.3 we have

(316) Iprv|2,bnﬂ, sC|1)|2,0,r'\0,,-

(3.8) for v follows now from (3.15), (3.16) and Lemma 2.4.
Then we have

317 |ulwe) <l¢sllwr@, + (1= @) #llw@) <
<c(|Lo(¢n) + " ¢u + An~' Bpuly 0, + |$t3,0,na, +
+HLo (1= @) ) +a"(1 = @) u+ an ' B(1 = §) g0, + |(1 = §) ttl5,0,na,) <
<o (Lou+a"u+ 0" Bulyg, + |uly0,na, + |4 o, +#l2,0,) s

with ¢, € R, independent of A, 7 and .
On the other hand, from Lemma 2.4 it follows:

(3.18) fufdx$efufxdx+de)fuzdx.

92, Q, Q,

From (3.17) and (3.18) we deduce (3.8) for L=L,+ 4".
In the general case for L we have then:

n
(3.19) ””“Wz(ﬂ,) s C(lL” + Aﬂ_lﬁulz,o, + |”|2,a,rm0 + ‘ '21 au,+a' u
i=

2,0,) i

On the other hand, since 4, e M§(Q), i=1,...,#, and 2’ € M} (Q), from Theorem
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3.2 in[7] and from Lemma 2.3 we get

n

(3.20)

z,a,sesnl’r””vﬁ(n)"'c(ss) j (p,u)dx<

QnaQ(es)

4t +a'u
1

i=

<escllullwra,) + cles) f (p,u)dx,
0N Q(es)

where the constant c(es) € R, and the bounded open set £(es ) ¢ Q are independent of
r and #.
From (3.19) and (3.20) we deduce that:

(3.21) l#llwz,) <6 (L + xg~* Bulyq + |4l2,0,n0, + | b #l2,0n0%)

where the constant ¢; € R, and the bounded open set @** c Q are independent of 2, 7
and .
Now we choose 7 €]r,, +®[ such that Q** cQ,; then

(3.22) |2, #l2.0n0, < c4ltl2,0,na.

where ¢, € R, is independent of 7 and .
The result follows from (3.21) and (3.22).

4, - EXISTENCE RESULTS

Let G be a bounded open subset of class C*> of R”, n=2.

We consider in G the second order linear differential operators L and L, defined
in (1) and (1.7) respectively.

We consider the problem

4.1) 4eW?(G) AWUG), Lu=f, fel?(G).

Lemma 4.1: If Ly is of Chicco type in G, 4;€L*(G) (i=1,...,n), aeL(G)

and

(4.2) essGinfa>0,

then the problem (4.1) is uniquely solvable. Moreover, if f€ L™ (G), then the solution
u e L” (G) and satisfies

(43) |4l 6 < (ess inf (¢2) " |gf oG,
where g is the function defined as in the hypothesis of Chicco type.

Proor: The existence and uniqueness result for the problem (4.1) follows from a
theorem of M. Chicco (see [5]). The last statement is proved, as in the proof of the
theorem of [5], noting that, if f€ L” (G), the solution # is the weak limit in W2(G) of a
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sequence (# ).y of functions such that:
(45) e |, < (ess inf (€9)7'gfle,c  VEEN.
Concerning problem (3), we prove

Turorem 4.1: If 1)) iy) and i5) hold, then (3) is an index problem with index
zero.
If moreover we suppose that

(4.6) ess})infa>0,
then problem (3) is uniquely solvable.

Proor: We suppose that i;), i), i5) and (4.6) hold.

Fix a strictly increasing sequence (; )4  y of positive real numbers, with 7, satisfying
(3.7). '

Suppose firstly that fe L? (Q) N L™ (Q) and consider, for every k€ N the prob-
lem

(4.7) ueW@,)nW'@Q,), Lu=f.

From Lemmas 3.1 and 4.1 it follows that the solution ., k€ N, of problem (4.7)
belongs to L®(Q,,) and satisfies

(4.8) ”u/e”WZ(o,,,) s C(lf,z,o,,e + | |2,ﬂ,,¢n.00) :
(4.9) A |t |0, 0, < (esgmf(ga))"l |&f |=,a,,
rh

where the constant ce R, and the bounded open set Qo cQ are independent of 4.
From (4.8) and (4.9) we get

410)  Nullwea,) <cll £z, + (mis (@, A Qy))"2 (ess inf (g2)) ™" |gf |w,,,) <

<c(| fl,0 + (mis Q)Y (essinf (¢2)) ' [gf|m0) VEeN.

Write w, =p, u,, k€N, where P, is the operator defined in Lemma 2.3.
From Lemma 2.3 and from (4.10) it follows that w, € W? (@Q), ke N, and there

exists a constant ¢, € R, such that

(4.11) ”ZIJk”WZ(Q)sCO VkEN.

From (4.11) we deduce the existence of a subsequence of (1 ),y weakly conver-
gent in W2 (Q) to a function # € W2 (Q) n W (). Since # is solution of (4.7) for every
k € N, with standard considerations we prove that  is solution of problem (3) with
feL2(Q)nL>(@Q).

From Theorem 3 of[15] and well-known results, it follows that the range R(L) of
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the operator

L e W2(Q) AW Q) Lue [2(Q)

is a closed subspace of L?(Q). Moreover, from above result we have that
L2@)NnL* Q) cRL).
On the other hand, L?(Q2) n L™ (Q) is dense in L?(Q); then we have:

(4.12) R(Ly=L*Q).

Suppose now that i;), i,), i3) hold, but (4.6) doesn’t hold.
Consider a function 8: 2— R, of class M§(Q) and satisfying (3.5) and (3.6).

For example

B: xeQ— t€R,.

e el
(1+ [’
We note now that hypothesis i;) implies:

by =essinf 4">0.
ONB,

Fix {e ®(R”) such that 0s<¢<1, Zlgm =1, supp{cB,, and put:
b=th+(1=0d".
Clearly we have
ess{)infb?bo, a—b=da +¢da" —by) e M;(Q),
p? ess sup 3 (a5 — naz)* +pg?ess sup (x — nb)* < 1.
ONB,, =1 N

We consider the operator

Ay ueW? (.Q)m\?Vl @~ 2 giu, + 2 qu,+ G+ Bluel?(Q).
1 i=1

=
From above results we have:
(4.13) R@A,) = I72(Q) Vi=o0.

On the other hand, with the same proof of [10] to deduce Corollary 4.2 from The-
orem 4.4, from Theorem 3 of [15] it follows that there exists Ay € R, such that

(4.14) N(A,)={0} Vaz=a,,

where N(4,) is the kernel of the operator A, .
From (4.13) and (4.14) it follows that for every A=, A, is a bijective
operatot.
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Since the operator:
ueW?Q)—(a—b— " 'Buecl?(@Q)
is compact (see Lemma 3.4 of[10]) and:
Lu=Au+(@a—b—2p"'fu,

we deduce, from well-known results, that (3) is an index problem with index
zero.

If also (4.6) holds, from above and from (4.12) we obtain that (3) is uniquely
solvable.
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