

Rendiconti Accademia Nazionale delle Scienze detta dei XL Memorie di Matematica 109° (1991), Vol. XV, fasc. 8, pagg. 137-150

PATRIZIA DI GIRONIMO - MARIA TRANSIRICO (*)

Existence and Uniqueness Results for the Dirichlet Problem in Unbounded Domains (**) (***)

Summary. — In this paper we study the Dirichlet problem for a class of second order linear elliptic partial differential equations with discontinuous coefficients in unbounded domains of R^n . We obtain some existence and uniqueness results.

Teoremi di esistenza ed unicità per il problema di Dirichlet in aperti non limitati

Riassunto. — In questo lavoro si studia il problema di Dirichlet per una classe di equazioni differenziali lineari ellittiche del secondo ordine a coefficienti discontinui in aperti non limitati di R". Si ottengono alcuni teoremi di esistenza ed unicità.

INTRODUCTION

We consider in an open subset Ω of R^n , $n \ge 2$, the uniformly elliptic linear differential operator

(1)
$$Lu = -\sum_{i,j=1}^{n} a_{ij} u_{x_i x_j} + \sum_{i=1}^{n} a_i u_{x_i} + au$$

with real coefficients.

Suitable regularity hypotheses and behaviour to the infinity of the coefficients a_i (i = 1, ..., n) and a (see n. 3) are given, while

(2)
$$a_{ij} = a_{ji} \in L^{\infty}(\Omega), \quad i, j = 1, ..., n.$$

We are concerned with the problem

(3)
$$u \in W^2(\Omega) \cap \overset{\circ}{W}^1(\Omega), \quad Lu = f, \quad f \in L^2(\Omega).$$

- (*) Indirizzo degli Autori: Istituto di Matematica, Facoltà di Scienze, Università di Salerno, 84100 Salerno.
 - (**) Lavoro eseguito nell'ambito del G.N.A.F.A. del C.N.R.
 - (***) Memoria presentata il 20 marzo 1991 da Mario Troisi, socio dell'Accademia.

It is well known that, if n > 2, condition (2) doesn't assure uniqueness for problem (3), whatever hypotheses on other data (see *e.g.* O. A. Ladyzhenskaja - N. N. Ural'tseva [8], D. Gilbarg - N. S. Trudinger [6]).

In some recent papers (see e.g. [10], [13], [14]) M. Troisi and one of the Authors studied problem (3) in an open unbounded and sufficiently regular Ω , with additional hypotheses on the a_{ij} . Some a priori bounds and existence and uniqueness results, extending to unbounded domains of R^n some classical results for the bounded domains (see e.g. [8], C. Miranda [9], M. Chicco [2], [3], [4], [5]), are given.

In particular in [10] hypotheses like those of C. Miranda [9] on the a_{ij} are given, namely

$$a_{ii} \in W_{loc}^{1,s}(\overline{\Omega}), \quad i,j=1,...,n,$$

where s>2 if n=2 and s=n if n>2, together with the condition to the infinity

$$\lim_{|x| \to +\infty} \|(a_{ij})_{x_b}\|_{L^1(\Omega \cap B(x,1))} = 0, \quad i,j,b = 1,...,n,$$

where $B(x, 1) = \{y \in R^n \mid |y - x| < 1\}$. In [13], less restrictive regularity hypotheses on the a_{ij} are imposed, but together with the condition to the infinity

$$\lim_{|x|\to+\infty} a_{ij}(x) = a_{ij}^0.$$

In [14] the following case has been dealt with:

$$a_{ij}=a'_{ij}+a''_{ij}, \qquad a'_{ij}=a'_{ji}\in L^{\infty}(\Omega)\cap W^{1,s}_{\mathrm{loc}}(\overline{\Omega})\,, \qquad a''_{ij}=a''_{ji}\in C(\overline{\Omega})$$

and

$$\lim_{|x| \to +\infty} \|(a'_{ij})_{x_b}\|_{L^1(\Omega \cap B(x,1))} = 0, \quad \lim_{|x| \to +\infty} a''_{ij}(x) = a''^0_{ij}$$

or

$$\lim_{|x|\to+\infty} a_{ij}(x) = a_{ij}^0,$$

where $C(\overline{\Omega})$ is the space of uniformly continuous bounded functions on Ω .

Successively (see [15]) the same Authors studied problem (3) in more general hypotheses on the a_{ij} , and extended an a priori bound that in the previous papers is basic for some existence and uniqueness results.

In these hypotheses, like is pointed out by the Authors in [15], is not possible, with the methods of [10], [13], [14], to deduce from the a priori bound the theorems of existence and uniqueness.

In this paper we consider problem (3) in the hypotheses of [15], and in addition we suppose that $\partial\Omega$ is bounded. In such hypotheses we prove that problem (3) is uniquely solvable.

To obtain this result we use the a priori bound established in [15] and a new a pri-

ori bound proved in this paper for the solutions of the problem

$$u \in W^2(\Omega_r) \cap \overset{\circ}{W}^1(\Omega_r), \quad Lu = f, \quad f \in L^2(\Omega).$$

Here $\Omega_r = \{x \in \Omega | |x| < r\}$ and the constant of the bound doesn't depend on $r \in [r_0, + + \infty[$, where r_0 is a sufficiently large, fixed value.

1. - Some preliminary facts

We set

$$B(x,r) = \{ y \in \mathbb{R}^n \mid |y - x| < r \} , \qquad B_r = B(0,r) ,$$
$$|u|_{p,E} = ||u||_{L^p(E)} , \qquad u_x = \left(\sum_{i=1}^n u_{x_i}^2 \right)^{1/2} , \qquad u_{xx} = \left(\sum_{i,j=1}^n u_{x_i x_j}^2 \right)^{1/2} .$$

Let E be an open subset of \mathbb{R}^n , $n \ge 2$.

We denote by $W^m(E)$, $m \in \mathbb{N}$, the usual Sobolev space $W^{m,2}(E)$ and by $W^m(E)$ the closure of $\mathcal{O}(E)$ in $W^m(E)$.

Moreover we set $W^0(E)$ for $L^2(E)$.

If E is unbounded, for any $p \in [1, +\infty[$ $M^p(E)$ denotes the space of all functions $f \in L^p_{loc}(\overline{E})$ such that

(1.1)
$$||f||_{M^{p}(E)} = \sup_{x \in E} |f|_{p, E \cap B(x, 1)} < +\infty,$$

normed by (1.1), and $M_0^p(E)$ denotes the subspace of $M^p(E)$ of all functions f such that

(1.2)
$$\lim_{|x| \to +\infty} |f|_{p,E \cap B(x,1)} = 0.$$

For some properties of the spaces $M^p(E)$ and $M_0^p(E)$ we refer to [10], [11]. Let s, t be two real numbers such that

(1.3)
$$s > 2 \text{ if } n = 2, \quad s = n \text{ if } n > 2,$$

(1.4)
$$t=2 \text{ if } 2 \le n < 4, \quad t>2 \text{ if } n=4, \quad t=n/2 \text{ if } n>4.$$

If $A \in E$ is an open subset, $k \in N$ and $v \in R_+$, we write $E_k(v, A)$ for the class of the $k \times k$ square matrices $((e_{ij}))$ such that

$$(1.5) e_{ij} = e_{ji} \in L^{\infty}(A) \cap W_{\text{loc}}^{1,s}(\overline{A}), i, j = 1, ..., k,$$

(1.6)
$$\sum_{i,j=1}^{k} e_{ij} \xi_i \xi_j \ge \nu |\xi|^2 \quad \text{a.e. in } A, \quad \forall \xi \in \mathbb{R}^k.$$

Moreover, we denote by G(A) the class of all functions $g \in L^{\infty}(A)$ such that ess inf g > 0.

We consider in E the second order linear differential operator L defined by (1)

and write

(1.7)
$$L_0 u = -\sum_{i,j=1}^n a_{ij} u_{x_i x_j}.$$

We say that L_0 is of Chicco type in E (see [3]-[5] and [13]-[15]) if

(1.8)
$$a_{ij} = a_{ii} \in L^{\infty}(E), \quad i, j = 1, ..., n,$$

and there exist $v \in R_+$, a matrix $((e_{ij})) \in E_n(v, E)$ and a function $g \in G(E)$ such that

(1.9)
$$\operatorname{ess \, sup}_{E} \sum_{i,j=1}^{n} (e_{ij} - ga_{ij})^{2} < v^{2}.$$

2. - Preliminary Lemmas

Lemma 2.1: Let $r_1 \in R_+$. For each $r \in [r_1, +\infty[$ there exists a continuous linear operator

$$q_r: W^2(B_r) \rightarrow W^2(R^n)$$

such that

$$(2.1) q_r u_{|B_r} = u,$$

(2.2)
$$||q_r u||_{W^k(\mathbb{R}^n)} \leq c ||u||_{W^k(\mathbb{B}_r)}, \quad k = 0, 1, 2,$$

where $c \in R_+$ is independent of r and u.

PROOF: It is well known that there exists q_{r_1} satisfying these properties (see R. A. Adams [1]).

We note that, given $r \in [r_1, +\infty[$ and $u \in W^2(B_r)$ the function

$$v(y) = u\left(\frac{r}{r_1}y\right) \in W^2(B_{r_1})$$

and hence $q_{r_1}v \in W^2(\mathbb{R}^n)$.

Write $w_r(x) = (q_{r_1}v)\left(\frac{r_1}{r}x\right)$, for every $x \in \mathbb{R}^n$, then we define

$$q_r$$
: $u \in W^2(B_r) \rightarrow q_r u = w_r \in W^2(R^n)$.

If $x \in B_r$, we have

$$w_r(x) = v\left(\frac{r_1}{r}x\right) = u(x)$$

and then (2.1) is proved.

Moreover, we have that

$$(2.3) |w_{r}|_{2,R^{n}} = \left(\int_{\mathbb{R}^{n}} \left((q_{r_{1}} v) \left(\frac{r_{1}}{r} x \right) \right)^{2} dx \right)^{1/2} =$$

$$= \left(\int_{\mathbb{R}^{n}} \frac{r^{n}}{r_{1}^{n}} \left((q_{r_{1}} v)(y))^{2} dy \right)^{1/2} \le c \left(\int_{\mathbb{B}_{r_{1}}} \frac{r^{n}}{r_{1}^{n}} v^{2} dy \right)^{1/2} = c|u|_{2,B_{r}},$$

with $c \in R_+$ independent of r and u, then (2.2) for k = 0 is obtained. On the other hand we get

$$|(w_r)_x|_{2,R^n} \le c(r^{-1}|u|_{2,B_r} + |u_x|_{2,B_r}),$$

$$(2.5) |(w_r)_{xx}|_{2,R^n} \leq c(r^{-2}|u|_{2,B_r} + r^{-1}|u_x|_{2,B_r} + |u_{xx}|_{2,B_r}),$$

with $c \in R_+$ independent of r and u.

From (2.3), (2.4) and (2.5) the bound (2.2) for k = 1, 2 easily follows.

LEMMA 2.2: Let ε_1 , $r_1 \in R_+$. Then there exists a constant $c \in R_+$ such that

(2.6)
$$\int_{B_r} u_x^2 dx \le c \left(\varepsilon \int_{B_r} u_{xx}^2 dx + \frac{1}{\varepsilon} \int_{B_r} u^2 dx \right)$$

 $\forall \varepsilon \in]0, \varepsilon_1], \forall r \in [r_1, +\infty[\text{ and } \forall u \in W^2(B_r).$

PROOF: We fix $\varepsilon \in]0, \varepsilon_1]$, $r \in [r_1, +\infty[$, $u \in W^2(B_r)$ and put

$$v(y) = u(ry).$$

Since $v \in W^2(B_1)$, for any $\varepsilon_0 \in \left[0, \frac{\varepsilon_1}{r_1^2}\right]$ we obtain

(2.7)
$$\int\limits_{B_1} v_y^2 \, dy \le c(B_1) \left(\varepsilon_0 \int\limits_{B_1} v_{yy}^2 \, dy + \frac{1}{\varepsilon_0} \int\limits_{B_1} v^2 \, dy \right),$$

where $c(B_1) \in R_+$ is independent of ε_0 and ν (see e.g. [1], pag. 75).

(2.6) follows now from (2.7) when $y = \frac{x}{r}$ and $\varepsilon_0 = \frac{\varepsilon}{r^2}$.

Now we assume:

i₁) let Ω be an unbounded open subset of R^n , $n \ge 2$, of class C^2 with bounded boundary.

Put

$$\Omega_r = \Omega \cap B_r \quad \forall r \in R_+.$$

Choose $r_1 \in R_+$ such that

$$\partial \Omega \subset B_{r_1}$$

and let ψ be a function in $\mathcal{O}(R^n)$ such that

$$\psi|_{R''\setminus\Omega}=1$$
, supp $\psi\in B_{r_1}$.

LEMMA 2.3: For any $r \in [r_1, +\infty[$ there exists a continuous linear operator

$$p_r: W^2(\Omega_r) \to W^2(\Omega)$$

such that

$$(2.8) p_r u|_{\Omega_r} = u,$$

(2.9)
$$||p_r u||_{W^k(\Omega)} \le c ||u||_{W^k(\Omega_r)}, \quad k = 0, 1, 2,$$

where $c \in R_+$ is independent of r and u.

PROOF: Let $r \in [r_1, +\infty[$ and $u \in W^2(\Omega_r)$. Define

$$v = \begin{cases} \psi u & \text{in } \Omega_r \\ 0 & \text{in } \Omega \setminus \Omega_r, \end{cases} \qquad w = \begin{cases} (1 - \psi) u & \text{in } \Omega_r \\ 0 & \text{in } B_r \setminus \Omega_r, \end{cases} \qquad p_r u = v + (q_r w)_{|\Omega},$$

where q_r is the operator in Lemma 2.1.

From (2.1) and (2.2) we easily obtain (2.8) and (2.9), and the result follows.

Lemma 2.4: For any $\varepsilon \in R_+$ there exists a constant $c(\varepsilon) \in R_+$ such that

$$(2.10) \qquad \int\limits_{\Omega_{r}} u_{x}^{2} \, dx \leq \varepsilon \int\limits_{\Omega_{r}} u_{xx}^{2} \, dx + c(\varepsilon) \int\limits_{\Omega_{r}} u^{2} \, dx \qquad \forall r \in [r_{1}, +\infty[\ and \ \forall u \in W^{2}(\Omega_{r}) \, .$$

Proof: Let $r \in [r_1, +\infty[$ and $u \in W^2(\Omega_r)$.

If w is the map defined in the proof of Lemma 2.3, we have

$$(2.11) \qquad \int_{\Omega_{r}} u_{x}^{2} dx \leq 2 \left(\int_{\Omega_{r}} (\psi u)_{x}^{2} dx + \int_{\Omega_{r}} ((1 - \psi) u)_{x}^{2} dx \right) = 2 \left(\int_{\Omega_{r}} (\psi u)_{x}^{2} dx + \int_{B_{r}} w_{x}^{2} dx \right).$$

It is well known that

(2.12)
$$\int_{\Omega_{n}} (\psi u)_{x}^{2} \leqslant \varepsilon_{1} \int_{\Omega_{n}} u_{xx}^{2} dx + c_{1}(\varepsilon_{1}) \int_{\Omega_{n}} u^{2} dx,$$

with $c_1(\varepsilon_1) \in R_+$ independent of u.

Moreover, from Lemma 2.2 it follows that

(2.13)
$$\int_{B_r} w_x^2 dx \le \varepsilon_2 \int_{B_r} w_{xx}^2 dx + c_2(\varepsilon_2) \int_{B_r} w^2 dx,$$

with $c_2(\varepsilon_2) \in R_+$ independent of r and u.

From (2.11), (2.12) and (2.13) we obtain easily (2.10), as required.

3. - An a priori bound

We consider in Ω the second order linear differential operators L and L_0 defined respectively by (1) and (1.7).

Now we assume the following:

 i_2) L_0 is of Chicco type in Ω ; moreover

(3.1)
$$a_i \in M_0^s(\Omega), \quad i = 1, ..., n,$$

(3.2)
$$a = a' + a'', \quad a' \in M_0^t(\Omega), \quad a'' \in M^t(\Omega);$$

i₃) there exist $\mu, \mu_0, r_0 \in R_+$, $((\alpha_{ij})) \in E_n(\mu, \Omega \setminus \overline{B}_{r_0})$, $((\alpha)) \in E_1(\mu_0, \Omega \setminus \overline{B}_{r_0})$, $\eta \in G(\Omega)$ such that

(3.3)
$$(\alpha_{ij})_{x_b}, \alpha_{x_b} \in M_0^s(\Omega \setminus \overline{B}_{r_0}) \quad i, j, h = 1, ..., n,$$

(3.4)
$$\mu^{-2} \operatorname{ess sup}_{\alpha \setminus \overline{B}_{\eta_0}} \sum_{i,j=1}^{n} (\alpha_{ij} - \eta a_{ij})^2 + \mu_0^{-2} \operatorname{ess sup}_{\alpha \setminus \overline{B}_{\eta_0}} (\alpha - \eta a'')^2 < 1.$$

We note that the last condition is equivalent to condition i₃) defined in n. 3 of [15], where two examples of operators for which it holds are quoted (see examples 4 and 5 of [15]).

Next example contains the two quoted examples of [15].

Example 3.1: If we suppose:

$$\sum_{i,j=1}^{n} a_{ij} \, \xi_{i} \, \xi_{j} \geqslant a_{0} \, |\xi|^{2} \quad \text{a.e. in } \Omega, \ \forall \xi \in \mathbb{R}^{n},$$

$$a_{ij} = b_{ij} + c_{ij}, \quad b_{ij} = b_{ji} \in L^{\infty}(\Omega), \quad (b_{ij})_{x_{b}} \in M_{0}^{s}(\Omega),$$

$$\lim_{|x| \to +\infty} c_{ij}(x) = c_{ij}^{0}, \quad c_{ij}^{0} = c_{ji}^{0}, \quad a'' \in G(\Omega),$$

then, clearly, i3) holds with

$$\mu = \frac{a_0}{2}, \quad \mu_0 = \text{ess sup } a'', \quad \alpha_{ij} = b_{ij} + c_{ij}^0, \quad \alpha = \mu_0, \quad \eta = 1$$

and $r_0 \in R_+$ such that

$$\sum_{i,j=1}^{n} \alpha_{ij} \xi_{i} \xi_{j} \geqslant \mu |\xi|^{2} \quad \text{a.e. in } \Omega \setminus \overline{B}_{r_{0}}, \ \forall \xi \in \mathbb{R}^{n},$$

$$\operatorname{ess sup}_{\Omega \setminus \overline{B}_{m}} \sum_{i,j=1}^{n} (c_{ij}^{0} - c_{ij})^{2} < \mu^{2} \left(\operatorname{ess inf} a^{n} / \mu_{0} \right)^{2}.$$

REMARK 3.1: From Example 3.1 we deduce that i2) and i3) are satisfied by the hypotheses, mentioned in the introduction, contained in the papers [10, 13, 14].

Let β denote a mapping $\Omega \rightarrow R_+$ such that

$$(3.5) \beta \in M^t(\Omega) \text{ and } \exists \delta \in M_0^s(\Omega) \quad \ni' \beta_x \leq \beta \delta,$$

$$\beta, \beta^{-1} \in L^{\infty}_{loc}(\overline{\Omega}).$$

Let $r_1 \in R_+$ such that

$$(3.7) r_1 > r_0, \partial \Omega \subset B_{r_1},$$

where r_0 is the number defined in hypothesis i_3).

LEMMA 3.1: If i_1 , i_2) and i_3) hold, then there exist a constant $c \in R_+$ and a bounded open set $\Omega_0 \subset \Omega$ such that:

(3.8)
$$||u||_{W^{2}(\Omega_{r})} \leq c(|Lu + \lambda \eta^{-1} \beta u|_{2,\Omega_{r}} + |u|_{2,\Omega_{r} \cap \Omega_{0}})$$

$$\forall \lambda \geq 0$$
, $\forall r \in [r_1, +\infty[$ and $\forall u \in W^2(\Omega_r) \cap \overset{\circ}{W}^1(\Omega_r)$.

PROOF: Assume firstly that $L = L_0 + a''$, and fix $r_0' \in]r_0, r_1[$ and $\phi \in \mathcal{O}(\mathbb{R}^n)$ such that $\partial \Omega \subset B_{r_0'}$, $\phi|_{B_{r_0'}} = 1$ and supp $\phi \subset B_{r_1}$. We first prove (3.8) for ϕu .

Since the operator $\eta \beta^{-1} L_0$ is of Chicco type in Ω_{r_1} , from [4] we obtain

where $c(r_1), c'(r_1) \in R_+$ are independent of λ , r and u.

We prove now (3.8) for $v = (1 - \phi) u$.

Write $E_r = \Omega_r \setminus \Omega_{r_0}$, and consider in E_r the operator

$$Av = -\sum_{i,j=1}^{n} \alpha_{ij} v_{x_i x_j}.$$

Note that supp $v \in \Omega_r \setminus \Omega_{r_0}$. Then, from well-known results (see [8], pag. 152,

162), using methods similar to those in [15] to establish (36), (37) and (38), it follows that

(3.10)
$$\mu^{2} \int_{E_{r}} v_{xx}^{2} dx \leq \int_{E_{r}} (Av)^{2} dx + \varepsilon_{1} \int_{E_{r}} v_{xx}^{2} dx + c(\varepsilon_{1}) \int_{E_{r}} \int_{i,j=1}^{n} (\alpha_{ij})_{x}^{2} v_{x}^{2},$$

where $c(\varepsilon_1) \in R_+$ is independent of r and v.

On the other hand we have:

$$(3.11) \qquad \int\limits_{E_r} (Av)^2 dx \leq \int\limits_{E_r} (Av + (\alpha + \lambda \beta)v)^2 dx -$$

$$-(1-\varepsilon_2)\int\limits_{E_x}(\alpha+\lambda\beta)^2v^2\,dx+c(\varepsilon_2)\int\limits_{E_x}\left(\sum\limits_{i,j=1}^n(\alpha_{ij})_x^2+\alpha_x^2+\delta^2\right)v_x^2\,dx\,,$$

where $c(\varepsilon_2) \in R_+$ is independent of λ , r and v (see (41)-(43) of [15]). Since

$$\operatorname{ess\,inf}_{E_r}(\alpha+\lambda\beta) \geqslant \mu_0 \quad \forall \lambda \geqslant 0,$$

from (3.10) and (3.11) we obtain that

(3.12)
$$(\mu^2 - \varepsilon_1) \int_{E_r} v_{xx}^2 dx + (\mu_0^2 - \varepsilon_3) \int_{E_r} v^2 dx \le$$

$$\leq \int\limits_{E_r} (Av + (\alpha + \lambda\beta) v)^2 dx + c(\varepsilon_1, \varepsilon_3) \int\limits_{E_r} \left(\sum_{i,j=1}^n (\alpha_{ij})_x^2 + \alpha_x^2 + \delta^2 \right) v_x^2 dx ,$$

where $c(\varepsilon_1, \varepsilon_3) \in R_+$ is independent of λ , r and v.

Put

$$g = \left(\sum_{i,j=1}^{n} (\alpha_{ij})_{x}^{2} + \alpha_{x}^{2} + \delta^{2}\right)^{1/2}.$$

Since $g \in M_0^s(\Omega \setminus \overline{B}_{r_0})$, from Theorem 3.2 of [7] and from Lemma 2.3 we get

$$(3.13) \qquad \int\limits_{E_r} g^2 \, v_x^2 \, dx \leqslant \int\limits_{\Omega \setminus \overline{\Omega}_{r_0}} g^2 \, (p_r v)_x^2 \, dx \leqslant$$

$$\leq \varepsilon_4 \int\limits_{\Omega} (p_r v)_{xx}^2 \, dx + c(\varepsilon_4) \int\limits_{\Omega \cap \Omega(\varepsilon_4)} (p_r v)^2 \, dx \leq \varepsilon_4 \, c \|v\|_{W^2(\Omega_r)} + c(\varepsilon_4) \int\limits_{\Omega \cap \Omega(\varepsilon_4)} (p_r v)^2 \, dx \,,$$

where the constants $c, c(\varepsilon_4) \in R_+$ and the bounded open set $\Omega(\varepsilon_4) \subset \Omega$ are independent of r and v.

From (3.12), (3.13) and Lemma 2.4, we have that for any $\varepsilon' \in]0, \mu[$ and for any $\varepsilon'' \in]0, \mu_0[$ the following holds:

$$(3.14) \qquad (\mu - \varepsilon')^2 |v_{xx}|_{2,E_r}^2 + (\mu_0 - \varepsilon'')^2 |v|_{2,E_r}^2 \le$$

$$\leq |Av + (\alpha + \lambda \beta) v|_{2, E_r}^2 + c(\varepsilon', \varepsilon'') |p_r v|_{2, \Omega \cap \Omega(\varepsilon', \varepsilon'')}^2,$$

where the constant $c(\varepsilon', \varepsilon'') \in R_+$ and the bounded open set $\Omega(\varepsilon', \varepsilon'') \subset \Omega$ are independent of λ , r and v.

With the same proof of [15] to deduce (33) from (45), from (3.14) we have

$$(3.15) |v_{xx}|_{2,\Omega_r} + |v|_{2,\Omega_r} \le c_1 (|(L_0 + a'')v + \lambda \eta^{-1} \beta v|_{2,\Omega_r} + |p_r v|_{2,\Omega_r \cap \Omega^*}),$$

where the constant $c_1 \in R_+$ and the bounded open set $\Omega^* \subset \Omega$ are independent of λ , r and v.

Now we choose $\sigma \in]r_1, +\infty[$ such that $\Omega^* \subset \Omega_{\sigma}$.

From Lemma 2.3 we have

$$|p_r v|_{2,\Omega \cap \Omega_s} \leq c|v|_{2,\Omega_r \cap \Omega_s}.$$

(3.8) for v follows now from (3.15), (3.16) and Lemma 2.4. Then we have

with $c_2 \in R_+$ independent of λ , r and u.

On the other hand, from Lemma 2.4 it follows:

(3.18)
$$\int_{\Omega_1} u_x^2 dx \le \varepsilon \int_{\Omega_r} u_{xx}^2 dx + c(\varepsilon) \int_{\Omega_1} u^2 dx.$$

From (3.17) and (3.18) we deduce (3.8) for $L = L_0 + a''$. In the general case for L we have then:

$$(3.19) ||u||_{W^{2}(\Omega_{r})} \leq c \left(|Lu + \lambda \eta^{-1} \beta u|_{2,\Omega_{r}} + |u|_{2,\Omega_{r} \cap \Omega_{0}} + \left| \sum_{i=1}^{n} a_{i} u_{x_{i}} + a' u \right|_{2,\Omega_{r}} \right).$$

On the other hand, since $a_i \in M_0^s(\Omega)$, i = 1, ..., n, and $a' \in M_0^t(\Omega)$, from Theorem

3.2 in [7] and from Lemma 2.3 we get

$$(3.20) \qquad \left| \sum_{i=1}^{n} a_{i} u_{x_{i}} + a' u \right|_{2,\Omega_{r}} \leqslant \varepsilon_{5} \|p_{r} u\|_{W^{2}(\Omega)} + c(\varepsilon_{5}) \int_{\Omega \cap \Omega(\varepsilon_{5})} (p_{r} u)^{2} dx \leqslant$$

$$\leq \varepsilon_5 c \|u\|_{W^2(\Omega_r)} + c(\varepsilon_5) \int_{\Omega \cap \Omega(\varepsilon_5)} (p_r u)^2 dx,$$

where the constant $c(\varepsilon_5) \in R_+$ and the bounded open set $\Omega(\varepsilon_5) \subset \Omega$ are independent of r and u.

From (3.19) and (3.20) we deduce that:

$$||u||_{W^{2}(\Omega_{r})} \leq c_{3}(|Lu+\lambda\eta^{-1}\beta u|_{2,\Omega_{r}}+|u|_{2,\Omega_{r}\cap\Omega_{0}}+|p_{r}u|_{2,\Omega\cap\Omega^{**}}),$$

where the constant $c_3 \in R_+$ and the bounded open set $\Omega^{**} \subset \Omega$ are independent of λ , r and u.

Now we choose $\tau \in]r_1, +\infty[$ such that $\Omega^{**} \subset \Omega_{\tau};$ then

$$|p_r u|_{2,\Omega \cap \Omega_r} \leq c_4 |u|_{2,\Omega_r \cap \Omega_r},$$

where $c_4 \in R_+$ is independent of r and u.

The result follows from (3.21) and (3.22).

4. - Existence results

Let G be a bounded open subset of class C^2 of \mathbb{R}^n , $n \ge 2$.

We consider in G the second order linear differential operators L and L_0 defined in (1) and (1.7) respectively.

We consider the problem

$$(4.1) u \in W^2(G) \cap \overset{\circ}{W}^1(G), Lu = f, f \in L^2(G).$$

LEMMA 4.1: If L_0 is of Chicco type in G, $a_i \in L^s(G)$ (i = 1, ..., n), $a \in L^t(G)$ and

$$(4.2) \qquad \qquad \text{ess inf } a > 0 \,,$$

then the problem (4.1) is uniquely solvable. Moreover, if $f \in L^{\infty}(G)$, then the solution $u \in L^{\infty}(G)$ and satisfies

$$|u|_{\infty,G} \leq (\operatorname{ess\,inf}_{G}(ga))^{-1}|gf|_{\infty,G},$$

where g is the function defined as in the hypothesis of Chicco type.

PROOF: The existence and uniqueness result for the problem (4.1) follows from a theorem of M. Chicco (see [5]). The last statement is proved, as in the proof of the theorem of [5], noting that, if $f \in L^{\infty}(G)$, the solution u is the weak limit in $W^2(G)$ of a

sequence $(u_k)_{k \in N}$ of functions such that:

$$(4.5) |u_k|_{\infty,G} \leq (\operatorname{ess\,inf}_G(ga))^{-1} |gf|_{\infty,G} \forall k \in N.$$

Concerning problem (3), we prove

Theorem 4.1: If i_1) i_2) and i_3) hold, then (3) is an index problem with index zero.

If moreover we suppose that

$$(4.6) ess inf $a > 0$,$$

then problem (3) is uniquely solvable.

PROOF: We suppose that i_1 , i_2 , i_3) and (4.6) hold.

Fix a strictly increasing sequence $(r_k)_{k \in N}$ of positive real numbers, with r_1 satisfying (3.7).

Suppose firstly that $f \in L^2(\Omega) \cap L^\infty(\Omega)$ and consider, for every $k \in N$ the problem

$$(4.7) u \in W^2(\Omega_{r_k}) \cap \overset{\circ}{W}^1(\Omega_{r_k}), Lu = f.$$

From Lemmas 3.1 and 4.1 it follows that the solution u_k , $k \in \mathbb{N}$, of problem (4.7) belongs to $L^{\infty}(\Omega_n)$ and satisfies

$$||u_k||_{W^2(\Omega_{r_k})} \le c(|f|_{2,\Omega_{r_k}} + |u_k|_{2,\Omega_{r_k} \cap \Omega_0}),$$

$$|u_k|_{\infty,\Omega_{r_k}} \leq (\operatorname{ess inf}(ga))^{-1} |gf|_{\infty,\Omega_{r_k}},$$

where the constant $c \in R_+$ and the bounded open set $\Omega_0 \subset \Omega$ are independent of k. From (4.8) and (4.9) we get

$$\begin{aligned} (4.10) \qquad & \|u_k\|_{W^2(\Omega_{r_k})} \leq c(|f|_{2,\Omega_{r_k}} + (\min(\Omega_{r_k} \cap \Omega_0))^{1/2} (\operatorname{ess\,inf}(ga))^{-1} |gf|_{\infty,\Omega_{r_k}}) \leq \\ & \leq c(|f|_{2,\Omega} + (\min\Omega_0)^{1/2} (\operatorname{ess\,inf}(ga))^{-1} |gf|_{\infty,\Omega}) \qquad \forall k \in \mathbb{N} \,. \end{aligned}$$

Write $w_k = p_{r_k} u_k$, $k \in N$, where p_{r_k} is the operator defined in Lemma 2.3. From Lemma 2.3 and from (4.10) it follows that $w_k \in W^2(\Omega)$, $k \in N$, and there exists a constant $c_0 \in R_+$ such that

$$\|w_k\|_{\mathbb{W}^2(\Omega)} \leq c_0 \quad \forall k \in \mathbb{N}.$$

From (4.11) we deduce the existence of a subsequence of $(w_k)_{k \in \mathbb{N}}$ weakly convergent in $W^2(\Omega)$ to a function $u \in W^2(\Omega) \cap W^1(\Omega)$. Since u_k is solution of (4.7) for every $k \in \mathbb{N}$, with standard considerations we prove that u is solution of problem (3) with $f \in L^2(\Omega) \cap L^\infty(\Omega)$.

From Theorem 3 of [15] and well-known results, it follows that the range R(L) of

the operator

$$L: u \in W^2(\Omega) \cap \overset{\circ}{W}^1(\Omega) \to Lu \in L^2(\Omega)$$

is a closed subspace of $L^2(\Omega)$. Moreover, from above result we have that $L^2(\Omega) \cap L^{\infty}(\Omega) \subset R(L)$.

On the other hand, $L^2(\Omega) \cap L^{\infty}(\Omega)$ is dense in $L^2(\Omega)$; then we have:

$$(4.12) R(L) = L^2(\Omega).$$

Suppose now that i_1), i_2), i_3) hold, but (4.6) doesn't hold. Consider a function $\beta: \Omega \to R_+$ of class $M_0^t(\Omega)$ and satisfying (3.5) and (3.6). For example

$$\beta: x \in \Omega \to \frac{1}{(1+|x|)^{\tau}}, \quad \tau \in R_+.$$

We note now that hypothesis i₃) implies:

$$b_0 = \operatorname*{ess\ inf}_{\Omega \setminus \overline{B}_m} a'' > 0.$$

Fix $\zeta \in \mathcal{O}(R^n)$ such that $0 \le \zeta \le 1$, $\zeta|_{B_m} = 1$, supp $\zeta \in B_{2r_0}$ and put:

$$b = \zeta b_0 + (1 - \zeta) a''.$$

Clearly we have

ess inf
$$b \ge b_0$$
, $a - b = a' + \zeta(a'' - b_0) \in M_0^t(\Omega)$,

$$\mu^{-2} \operatorname{ess \, sup}_{\Omega \setminus \overline{B}_{2m}} \sum_{i,j=1}^{n} (\alpha_{ij} - \eta a_{ij})^{2} + \mu_{0}^{-2} \operatorname{ess \, sup}_{\Omega \setminus \overline{B}_{2m}} (\alpha - \eta b)^{2} < 1.$$

We consider the operator

$$A_{\lambda}\colon u\in W^{2}\left(\Omega\right)\cap\overset{\circ}{W}^{1}\left(\Omega\right)\to -\sum_{i,j=1}^{n}a_{ij}u_{x_{i}x_{j}}+\sum_{i=1}^{n}a_{i}u_{x_{i}}+\left(b+\lambda\eta^{-1}\beta\right)u\in L^{2}\left(\Omega\right).$$

From above results we have:

(4.13)
$$R(A_{\lambda}) = L^{2}(\Omega) \quad \forall \lambda \ge 0.$$

On the other hand, with the same proof of [10] to deduce Corollary 4.2 from Theorem 4.4, from Theorem 3 of [15] it follows that there exists $\lambda_0 \in R_+$ such that

$$(4.14) N(A_{\lambda}) = \{0\} \forall \lambda \ge \lambda_0,$$

where $N(A_{\lambda})$ is the kernel of the operator A_{λ} .

From (4.13) and (4.14) it follows that for every $\lambda \ge \lambda_0$ A_{λ} is a bijective operator.

Since the operator:

$$u \in W^2(\Omega) \rightarrow (a - b - \lambda \eta^{-1}\beta) \ u \in L^2(\Omega)$$

is compact (see Lemma 3.4 of [10]) and:

$$Lu = A_{\lambda} u + (a - b - \lambda \eta^{-1} \beta) u,$$

we deduce, from well-known results, that (3) is an index problem with index zero.

If also (4.6) holds, from above and from (4.12) we obtain that (3) is uniquely solvable.

REFERENCES

- [1] R. A. Adams, Sobolev Spaces, Academic Press, 1971.
- [2] M. Chicco, Equazioni ellittiche del secondo ordine di tipo Cordes con termini di ordine inferiore, Ann. Mat. Pura Appl., (4) 85 (1970), 347-356.
- [3] M. Chicco, Dirichlet problem for a class of linear second order elliptic partial differential equations with discontinuous coefficients, Ann. Mat. Pura Appl., (4) 92 (1972), 13-23.
- [4] M. Chicco, Terzo problema al contorno per una classe di equazioni ellittiche del secondo ordine a coefficienti discontinui, Ann. Mat. Pura Appl., (4) 112 (1977), 241-259.
- [5] M. Chicco, Osservazione sulla risolubilità del problema di Dirichlet per una classe di equazioni ellittiche a coefficienti discontinui, Rend. Sem. Mat. Univ. Padova, 66 (1982), 137-141.
- [6] D. GILBARG N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Second Edition, Springer, Berlin, 1983.
- [7] A. V. GLUSHAK M. TRANSIRICO M. TROISI, Teoremi di immersione ed equazioni ellittiche in aperti non limitati, Rend. Mat., S. VII, (4) 9 (1989), 113-130.
- [8] O. A. LADYZHENSKAJA N. N. URAL'TSEVA, Equations aux derivées partielles de type elliptique, Dunod, Paris, 1966.
- [9] C. MIRANDA, Sulle equazioni ellittiche di tipo non variazionale a coefficienti discontinui, Ann. Mat. Pura Appl., (4) 63 (1963), 353-386.
- [10] M. Transirico M. Troisi, Equazioni ellittiche del secondo ordine di tipo non variazionale in aperti non limitati, Ann. Mat. Pura Appl., (4) 152 (1988), 209-226.
- [11] M. Transirico M. Troisi, Sul problema di Dirichlet per le equazioni ellittiche a coefficienti discontinui, Note Mat., 7 (1987), 271-309.
- [12] M. Transirico M. Troisi, Equazioni ellittiche del secondo ordine di tipo Cordes in aperti non limitati di R", Boll. Un. Mat. Ital., (7) 3-B (1989), 169-184.
- [13] M. Transirico M. Troisi, Su una classe di equazioni ellittiche del secondo ordine in aperti non limitati, Rend. Mat., S. VII, (4) 8 (1988), 1-17.
- [14] M. Transirico M. Troisi, Ulteriori contributi allo studio delle equazioni ellittiche del secondo ordine in aperti non limitati, Boll. Un. Mat. Ital., (7) 4-B (1990), 679-691.
- [15] M. Transirico M. Troisi, Limitazioni a priori per una classe di operatori differenziali lineari ellittici del secondo ordine, in corso di stampa su Boll. Un. Mat. Ital.