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Wiener Estimates at Boundary Points
for Parabolic Degenerate Equations (**)

Summary, — We give regularity conditions and estimates of continuity modulus and energy
decay for solutions of degenerate parabolic equations.

Stime di Wiener al bordo per equazioni paraboliche degeneri

Riassunto. — Si danno condizioni di regolarita e stime del modulo di continuita e del deca-
dimento dell’energia in un punto di bordo per soluzioni di equazioni paraboliche degeneri.

1. - INTRODUCTION

In the following paper we are concerned with the behaviour at the boundary of a
weak solution of a second order degenerate parabolic equation in an open set
Q C RN+ 1

The Wiener condition for the regularity of a boundary point in the elliptic case is
well known [11], and in[7,13] estimates of the rate of convergence are also obtai-
ned by the so called «Wiener integral». The results in [12] have been extended to el-
liptic degenerate case with a weight in the A, Muckenhoupt’s class in[1] and estima-
tes analogous to those in[13] have been proved in[3].

The Wiener condition in the parabolic case has been obtained by Evans, Garie-
py[4], for the heat equation and by Garofalo, Lanconelli[9], Fabes, Garofalo,
Lanconelli [5], for equations with smooth coefficients; moreover Lanconelli has pro-
ved a Wiener type condition (sufficient for the regularity of a boundary point) for li-
near equations with bounded measurable coefficients[10]. In the preciding papers
the «thermal» capacity and the Perron-Wiener solution are considered.

Wiener type sufficient conditions have been proved in linear or nonlinear case by
Gariepy, Ziemer[7, 14], using the «thermal» or the I-capacity and the weak solu-
tion, which is supposed to have the time derivative in L?(Q). Moreover in [2] Biroli,
Mosco have extended the result to general weak solutions using the I'-capacity; in this
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paper estimates of the modulus of continuity at a boundary point are also
obtained.

The purpose of the paper is to deal with the weak solution of a degenerate parabo-
lic problem; we will prove a sufficient Wiener type condition and an estimate of the
modulus of continuity at a boundary regular point by the Wiener integral using a sui-
table generalization of the I'-capacity.

Remark 1: We consider here the linear case only for sake of simplicity, but the
result can be extended, under natural assumptions to the nonlinear case with quadra-
tic growth in the spatial gradient.

2. - NoraTions

Let Q ¢ RVN*! be a bounded open set with boundary 8Q. We let (x;, ..., xy) denote
a point in RN and the gradient of a function v will be denoted by D, v.

In the following w will be a weight defined in R", which belongs to the Mucke-
nhoupt’s class A, . ,/y (we refer to [6] for the definition); with this assumption we ob-
tain that there exists 0> 0 such that w is in the class 4, , 27N

Let Z(Q; w) be the space {# €D’ (Q); u=divg, g/we L?(Q)} endowed with the
norm |« =u=ind£g lellz2 g -

Let H*'(Q,w) be the space {#€L?(Q;w);D,ueL?(Q;w)} endowed with the

norm
l|2¢]| o =[flu[zwdxdt+lexulzwdxdtJl/z
Q Q

and W' (Q;w) = {# e H*' (Q;w), D,u € Z(Q; w)}.
We use also functions from the space from the space V2 (Q;w) which is given by

V2(Q;w)={ue H* (Q;w), ”ZI”LZ(Q[) eL”(R)},
where Q. = Q n {t=r}, endowed with the norm

1/2 1/2

[|¢]] 2 =esssup( flu]z dx +(I|Dxu|2wdxdt) >

t
Q Q

We denote
B(r, %) = {x; |x — %o | <7} .
We define
2.1) by (7) =( f wN/de)z/”;
B

(r3%0)



since w is in Ay, ,/y we obtain

e Al
[ wdx

B(r;%0)

22) hlr)=

and taking into account that [ wdx=CRN*?~°N (this is a consequence of
B(r; %)
weA;2/N-.) we have b, (r)= CREY:
Finally we denote

Qr;20) = Q(r; %0, 1) = {(x, s [x = x| <7, [t —ty| <hy, (")}
Let z € 9Q we say that
(2.3) u(zy) <d weakly (x€ W' (Q;w))

if V&= d there exists 7>0 and a sequence {#, } of Lipschitz continuous functions
such that ,, — z in W' (Q n Q(r;2); w) and supp (n(#,, — £)*) ¢ O N Q(z; 2 ) whene-
ver n€ Cg (Q(752)).

The definition of
(2.4) u(zy) = d weakly

is analogue and #(z) = d if both (2.3) and (2.4) hold.
Let now {4;}, ,7=1,2,...,N, be symmetric and such that

N
e w(x) < <21azj(x: £) & < AlEf w(x)
ij=

a.e. in Q, VEe RN and denote by P the parabolic operator

N
P=D, - _ZID,,,,(a,.,D,,],) :
1=

We denote again by 4, the extension of the 4; to R¥*! by é,w(x) and by P the parabo-
lic operator relative to the extension.

In the following G will be the Green function of the operator P in RN*1 with sin-
gularity at z= (9,s). In[10] an upper and a lower bound for G* (analogous to the one
relative to the nondegenerate case) are proved, we have

1 1 (bx(lx—y|) )1/(zv—1>]
& SO <G*(x,5) <
cl([b;l(s—t)]" [b;l(s—;)]n)e"p[ ARy (%,

i vy s BECEIR
CZ([b;l(s—t)J" T Nl DA

where ¢;,6,v,u are positive constants, which depends only on N, A, A, w, and
1+N/2=2p=v>1/2 and w is assumed to be in R, (see [10] for the definition).
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We define the regularized Green function G? as the average of G* on Q(p; 2); we
obsetve that G is a weak solution in RN*! of the equation

XQG; 2)

1Qp; )|

where xg,;, is the characteristic function of the cylinder Q(p;z) (we refer to the next
section for the definition of weak solution). From the results in [10] we have that G?
converges to G? in G (RV*! = {z}) n Wk,c (RN*! — {2}; w).

For an arbitrary set E such that cl(E) ¢ Q(r;z) we define the Iy, capacity by

Pu=

Tg.» (E) = inf{ esssup f |uf? dx + f |D, u|? wdx dt
" B Q)

where the infimum is taken over all functions of V?(Q(r; 2), w) with supp (%) ¢ Q(r; 2)
and E ¢ int {z; #(z) = 1}.

A function v € V?(Q(r(1 — 8);2); w), 8> 0, is 'y, y-quasi continuous (Z.e. for every
€>0 there is an open set V¢ Q(#(1 —8);z) such that # is continuous on Q(#(1 —
—8);2) — Vand I'g,. ) (V) <) and if »,, — u in V?(Q(r(1 — &);2); w) we have #,, —
T'y(;5-quasi uniformly (the proof are analogous to the one given in[14] in the case
w=1 and Q(r;z) =RN*1).

Remark 1: Let ue W'(Q N Q(7;2); w), 2 € 3Q, and suppose #(z) < 0 weakly on
90 N Q(r;); we indicate by » the prolungate of ™ by 0 to Q(r; ). Let D,u = divg,
g/w e L?(Q); by approximation by smooth functions we have easily

1 "
j | eD.ot) dede= L1080 o — L6 B

¢ B(r;zg)

for almost all ¢/, " € (b — by, (1), 4 — b, (1), t' <t", ¢ € D(B(r;x,)) (for the imbedding
of W!(Q;w) into L?(Q) see the Poincaré’s inequality in section 4).

3. - Resurts

If e V?(Q;w) and

N
(3.1) f[—uD,¢+ D2 a,,-Dx’_quiqb] dxdt=0
0 5/=1

for all ¢ € G5 (Q) we say that u is a weak solution of the problem Px=0 in Q.
We observe that from (3.1) we have D,x € Z(Q; w), then » € W (Q; w) and we can
write

N
(3.1 (D,u,¢) + > ja,}-D,‘j_qui¢dxdt=0
=1
Q
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v¢ € HY' (Q) (HP' (Q) = closure of G, (Q) in H*'(Q)) where (, ) is the duality bet-
ween HY'(Q) and its dual.
In the following for z, € 9Q we indicate

AO (P) =FQ(2p;zo) (QC N QB & (P:ZO)) >

where

Qa(P)ZO)= (B(%;xo)x(to—(l_o)bx(P)’tO—ZObx(P))) 0<b< %’

and

5(6) = 44 (p) )

I‘Q(Zp;zo) (Q(P;ZO)) .
A point z, € 3Q is a Wiener point iff
1

(3.2) ja,(p)%e—>+°° for r— +

r

and for some 6.

Remark 2: The estimate I'— cap Q(r;x) =" can be easily proved.
Q(2r;x)

1
Denote wy(r) = exp [— [ (p)%} ; a point zy € 3Q is a logarithmic Wiener point
iff r

a€(0,1), for some 6.

Remark 3: If we denote by 6, a value of 6 for which (3.2) or (3.3) hold, then these
relations hold again for 6 € (0,6,) being &, (r) =8, (r), if 6, <6,.

Tueorem 1: Let u be a weak solution of the problem Pu=0 in Q with u(zy) =d
weakly, zy € 3Q. Suppose now g<u<f, g(z) =d=Ffz), where g and f are continuous
on QR;2) N8Q and denote by ¥y(r), ¥, (r) the modulus of continuity of f, g.

We bave for 6 €(0,6,), 0, suitable,

osc < Kawy (1™ + Ty(wy()*), Va,Be(0,1)

Qrn)nQ

where K=K\, A,N,w) and wy(r)* <6R.
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An easy consequence of the result in Theorem 1 is the following corollary:

CoroLrary 1: Let the assumptions of Theorem 1 hold; if zy is a Wiener point, then
u is continuous at zy. Moreover if zy is a logarithmic Wiener point and f, g are Hélder con-
tinuous, then u is Holder continuous at z,.

In the nondegenerate case the results in Theorem 1 have been proved in [2]; mo-
reover the elliptic version of the boundary estimates in Theorem 1 have been proved
in[1].

We use in the proof a method derived from the one used in [2]; an essential tool
is a Poincaré’s inequality for subsolutions of our problem which seems to be
new.

Finally we observe hat the results given here can be also proved (under natural as-
sumptions) in the nonlinear case with quadratic growth in the spatial gradient.

4. - A PoOINCARE’S INEQUALITY

At first we will prove a Poincaré’s type inequality involving only the spatial gra-
dient for subsolution on RN X R, of a degenerate parabolic problem with weight .

Let v be a non negative subsolution of our problem in the cylinder Q(r; z,) (Pv=0
in D' (Q(r; 2))) with Dv in L? (Q(r; 29)). Denote by v, (¢) the weighted average of v(., £)
defined by

[ vy dx
B(r;z)

[ xdx’

B(r;2)

) v, (f) =

where x,(x)=x<¥) with ¥ € C5° (B(1;0)), x=1 on B(-;—r;O) and |D,y| <4.

The following spatial Poincaré’s inequalities can be easily proved (in the weighted
case one can use the same methods as in [6]; see S. CuanmLo, R. L. WHEEDEN, Am.
J. Math., 107 (1985), 1191-1226 for (4.1))

4.1) f lg — g |Pdx < Cr f ID, g|* wdx,
B(r; %) B(r;%0)

(4.2) f lg— g Pwdx<CP f D, gl*wdx .

! B(r; %) B(r; o)

Lemma 1: We have

4.3) @@= <S [ Dolwddy @29
rQ(r;xo)
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Proor: Using x, as test function, we have

(v,(t)—v,(:))&% f |D, v||D; x, | wdx dy < rNC;1 wdxdy<

Q(r;z) Q(r;z)

= C[ N+2 w(B(r; %0)) by, (7) J- |D, v|* wdx dn}l/z
Q(r;29)

The result follows. ¢
Suppose that the following inequality holds for v:

(4.4) ||| (1) = B 320050 — 1 6) = B 212 3o | <

3
<S [ [ (Do +IpkR) wdxdv+—f | lo-prpywdedy =0

¢ Blr; %) t B(r;x)

where £ is a non negative function in L? (B(r; %)) N Hg (B(r; %0 ); w). Choosing k(x) =
=(x,?) and k(x) = v(s,x) we obtain

(4.5) | (@(®) — v(5)) 2 22 B0 o) <

s% j f (|Dx”lz+|DxU(-,S)|Z+|va(.,t)2)wdxd7;+

¢ B(r; xo)

+£:2—€f f |(v = 0,®)" x, Pwdxdy+ Csels — £) r 2 w(B(r; %)) | (v, (£) —,0)].

¢ B(r; %)

Let now

SE (to + (1 + %)bxo(r), ty+ (1+06) bxo(r)) =

and

te (to (RSP (1 - -%)h,,o (r)) =],

and denote by () the average of v,(y) in the first (second) interval; from (4.5), the
Lemma 1 and the spatial Poincaré’s inequality we have

v, (&) — v, (5)* < C;, f (|ID,v? + |D,o(.,5)* + |D, (., H?) wdx dy
s Qs (r;20)
where Q, (; 2) = B(r; %) x(tg — (1 +6) by (r), & + (1 + 6) b, (r)) onin £ on [y and in s on



I° we obtain

(4.6) p—oP<Gr N J ID,vPwdxdy. @
Qs (r,20)

Lemma 2: Let v the the average in time on
(tO TR (1 + 6) bxo (r)7 th— (1 -+ gb"o (r)>)

of v,(t) and let (4.4) hold; we have

4.7) sup ” (v(2) = 1_))+ Xr”iz Bl %)) =
(89 = by (r), b + by ()

=0

f |D, v wdx dn .
0s(r,2)

Proor: We apply (4.2) with £=1v,(7) to the cylinder Q,/z (r,%) and we obtain

(4.8) (&) = 2, (@) %2200y < C f D, v wdx dn +
0, (r32)
@

+;2- f |(v—2,()* Pwdxdy+

&
Bbxo (r) f | —1,(=)* |2 dx dy
Gt Qyy2 (r;20)
for ¢ in (i = by (r), o+ by, () and = in (i = (1+6) b, (), 1= (1+(0/2) by, ().

From Lemma 1 we have

f |D, v|? w dx dy
Qs 20)

(4.9) (,() = 5, ()" <

(s

then

(4.10) ”(1)(t) -o)* Xr”iz Blrix) S C f |va|2 wdxdn +
0, (r20)

1 1
+C f |v(t)—-v,(t)|2(;w+ oh, () )dxdn.
Qs (73 20)

We apply the spatial Poincaré’s inequality to the second term in the right hand si-
de and we obtain the result. ¢



From (4.10) we obtain easily

Lemma 2': Let the assumptions of Lemma 2 hold; we have

(4.11) sup (@)~ 5)* [raojaen <C | IDsolwddy.
(t0 = by (7), 20 + b (7) A

By the same methods of Lemma 2 we obtain also

Lemma 2": We have

(4.12) sup (@) —2)” %22 B0y <C f D, v]*wdxdy.
(b = by (1), 80 + b (7)) Orn)
rio

From Lemma 2’ and Lemma 2" we have by standard methods

ok ST
FQ(f;:o) (N,

< I |D, v|* wdx dn
0y (r;20)

where N, = {(x,#) € Q(r/2;2);v(x,£) =0} then

Prorosition 1: Let (4.2) hold; we have

f s b Sbalt f ID, o wdx d
(4.13) |1)' X an<s W LvjTwaxan.

Q(r/2;20) Qs (r;20)

From (4.7)(4.8) we have also easily

|vr(t)—5|2$% f D, vl wdx dn
0, (r;2)

using the preciding methods we obtain also a weighted version of (4.13.):

Prorosition 2: Let (4.2) hold; we have

- C7N+2 2
(4.14) P wdxdy<s —— |D, v|* wdx dn.
FQ(r;Zo) (Nr)
Q(r/2;20) Os(r;20)

5. - A CaccioppoLr’s INEQUALITY

Let z € 9Q and

k< (>)I=u(z)) weakly,
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then there is Ry >0 depending on 4, such that

(u—k) (u—k)*T)=0 weakly in Q(Ry;2)N3Q.

PROPOSITION 3: Let u be a weak solution of the problem Pu= 0 in Q; the following
estimate holds
t
I J' D, (u— k)* ? Gowdxdt+ sup l(u—R)=? <

1/2 p.
ty — b, (R) B(6Y/2R; %) e R

<C exp [-G(6)] sup |[w—R*F+
QR;z)

T —26h,4 (R)
+G; (O)R“‘N”’ f f |(u — k)* Pwdxdt +
—(1-6)hy(R) BR/2;%)
T —26b,4(R)
+ ik, I f |(u— k)* 2 dxdr

R?h, (R
i )r—u—e)bxo(m B(R/2;%)

where C,(8), C5(0)— +% as §—0, 6€(0,6y) with Oy suitable.

Proor: We prove the result for (# —4)~; the case (u— k)* is analogous.
Consider as test function

¢=@w—k"G7Z7 7=@x%)HeQnQR;z)

R<

R< 1;() , where n=rn(x) is such that
ne€C”(RN),

n=1 for xeB(E ),
8’

i R.

n=0 forx¢B(4 ),

0<n<1 for xeB

P
-h|'}U
Xl
S ERARE

16
i
|Dx’7| R )
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and 7= z(¢) is such that
€ C*(RV),
v=1 for t=%-36h,(R),
t=0 for t<¥—(1-20)h,(R),

0sct<1 for #—36h, (R)<t<i—(1—-26)h,(R),

|D, 7| < R

By standard methods we obtain

(5.1) f |D, (u— k)~ |2G512n2wdxdt+ 1‘2 f |(u— k)~ [Pdxdt<

(052)
Q(R;3) ]QP |Q(ﬁ;5)
T+ .
<C f f D, (u— &) P |Dn* Giwdx dt +
F—(1-200hy(R) BR/43)
;+p2 A
+ | | lw=#rF 2 olDarl D Gl ddt +
F—(1-20)hy(R) BR/4;3)
7 ~36h, (R)
@ J' J’ |(u— k)~ [?|D,7| Gidxdt.

F—(1-20)h4(R) BR/4;%)

Passing now to the limit as p— 0 and taking into account that G:— G in
Cioc R¥*1 — {Z}) n WL (RN*! — {z}; w); we have for almost all

5.2) j f (u—k) PGwdxdt+|u—Fk) R

7 =36b,(R) B(R/8;%)

0
<GR? f f = b) P Giwdnde +
F—(1-20)hy(R) BR/4;7) - BR/8;3)
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ks
7 —30h (R)
G I | lw-prpciacas
Y ® |(u— k)~ |? G*dx dt

F—(1-20hy(R) BR/43)

7
+ j [ 16— b PenlDl DG wdede.
F—(1-20)h,(R) B(R/4;%)
Consider now the last term in the right and side; we have:

| | tw-prpeninain.Giludsa<

F=(1-20)h4(R) B(R/4;%)

<eRMN? f f |(u— k)~ P92 (G*)~*/? | DG P wdx dt +

F—=(1-26)h(R) B(R/4;X)—B(R/8;%)

+ 4 paj2-2)

€

SRR

j | — k) P (G P Pwdxd:, e>0
F—(1-260)h4(R) B(R/4;%) —B(R/8;%)

From (5.2) and the Proposition in the Appendix we have

(5.3) j f ID, (u— k)~ ? Gwdxdt+ -k PR =<

7 —30b4(R) B(R/8;%)

£
<C,R™ f f [(u— k)~ P{G* + RN (G)V2 +

F—(1-20)h,(R) B(R/4;% —B(R/16;%)

+e IRN2(GE)P/2 + RN}y wdx dt +

7 —36b,,(R)

& f f - b P(G -N/2 ((72)1/2
TR (4= £ [2(GF + eR™NI2 (GH)Y/2) dx de <
T—(1-200hy(R) BR/43)

< Cyexp [—C; (6)] sup [(w—R) >+
(7, 7 =30h,, (R) XB(R/4; )
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7 —36h,,(R)
+C8 (0)R~(N+2) J‘ f l(u_k)_ |2wdxdt+
F—(1-260)h4(R) B(R/4;%)
7 =36,y (R)
Cs (6
Gt f f (= )~ [Pdds.

RNp_ (R
o )i—u—zo)b,,,(m BR/4;%)

where G, (6), g (6)— + as 6— 0.
Fixe now 6 € (0, 6y) with 6, suitable; taking the supremum for z € Q(Gl/ 2R;z), we
obtain the result. ¢

6. - Tue WIENER ESTIMATE

It is easy to prove that (# — k)* are subsolution and verify (4.2); then we can apply
the Poincaré’s inequalities of section 4 and we obtain

7 =26b,4 (R)
(6.1) f f |(#— k)~ Pwdxdt<
F—(1-0)hy(R) BR/2F)
F=6h, (R)
CRN+2 f f T
< 2,®) ] D, (u— k)" Pwdxdt,
F—hy(R) B(R;%)
F—26b,4(R)
(6.2) f J’ |(u— k)~ [Pdxdt<
F~(1-0)hy(R) BR/25)
F =, (R)
_ R, (R) f f D, (u— k)~ [Pwdxde
e R ), (u— wdx
44(R)
F—hy(®) BR;)

where C depends on 6.
From the Caccioppoli’s inequality, taking into account (6.1) (6.2) and the estima-
tes on the Green function we obtain

to

(6.3) f f D, (u— k)P Gowdxdt+ sup |(u—R)*P =<

/20,
to= b R) B(GY2R;x,) Q(6"*R; )

<Cexp [-G(0)] sup |(w— k) +
OR; z)

ty— 65 (R)

N e,
e G (6) % (R) D, (4 — kB)* P G*wdx dt
29— b (R) B(6Y2R; x,)

where G, (6) > +, C;(6)— 0 as 6— 0.
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Denote

o
o*(r) = f f D, (u— k)* > Gowdxdt + sup |(u—k)*|?;

to— by (1) B(r; %) Qi)

choosing 6 suitable and using the hole filling trick (see [2] for explicit computations)
we obtain

(6.4) &* (0/2R) < 1 &* (R).

T 1+ G 0)&®R)

From (6.4.) and the integration lemma in [13], we obtain

R
6.5) &* (r) <K exp [—p [a@ %} &* (R)

with K and B positive suitable constants, R<6"2R,. ¢

7. - Proor oF THEOREM 1

Choose in (6.5) R =wy(7)*, « €(0,1). We observe that

wy (7)*

.0 j%@%aﬂ@%—f%@%z

’ anlor
= —lg (w5 (r) +1g (5 (1)*) = Ig (wp (r)* 7).
From (6.5) and (7.1) we obtain
(7.2) |t(z) — u(z9)* > < Keog (1)1 ™9 + Wp(eog (r)* ) + W (0 ()*)
S ereize O ard

¥(s)= sup |f(2)—f)l;
Qls;20) N 8Q

we have so proved the result of Theorem 1.
The result in Corollary 1 is an easy consequence of (7.2). @
APPENDIX

Let v be a bounded positive subsolution relative to a weighted parabolic operator
P as defined in 1 in Q(R;?2) and let be w be a function in Cg’ (B(R; X)) such that w = ay



a2 Ssieg
where 7 is as in 5 and @ € (7’ (B(R;2))

AL AR R R.
w=0 mB(16,x) and for x¢B(2 ),

and 7 be as in 5.

Prorosition: The following relation holds

I f 22 0? (GHY2dx dt +
F~by(R) BR;D) o Fobg(R) BR:D

3 i @
2.2 2 7\-3/2 Z |2 1
f f o 2 (G DG Prodrdi <

)
+C,R™? j f 2% (G) V2 wdxdt +
F—by(R) BR/4;% ~B(R/16;%)

+C, RN/ J' f 2 GDvPwdxde +
F-bo®) BRD
-8
+C4R(N/2+2) f [ TzﬂZdedt"l'”(G;)l/z w21)2||L1(B(R’,—<))(f —é‘) .

£ -hy(R) B(R/4;%) —B(R/16;%)

Proor: From the definition of regularized Green function we have easily, for
p<R/16,

I
f <—D,G§ 2 D, (4;D,,G}), m2#(cf)-1/2v2>dt=o

F—hy(R) ot

Being #? also a subsolution; we have

2 f f (GE)V? z'rszrdxdt—” GHV2 || gw 3y (F —8) +
F=hy(R) B(R;%) :

~‘uMz

—

f (GE)P??4?D, GID, Gidxdt +
—b (R) B(R;%)

N =

1




S

F-¢
N
SN, f f a,-j(Gf)_l/zTzvzwD,“,Gnglma’xdt+
/=1

F—by®) BR;)

-8

N

+4 2 f f a,}-(GE)“l/zrzva)Dx.,wal_vdxdtB0
L —by(R) BR; )

then

é &

B 7
f fwzrzvz(Gf)“3/2|DG§|2wdxdtSbC;lR) f fwzrzvz(Gz)l/zdxdt+

F—hy(R) BR;%) 7 —hq(R) B(R;%)

F-8
+GR™? f f ?0? (G wdxdt +

F—hy(R) B(R/4;%) —B(R/16;%)

t—¢
+C,RN/2 f f o? ? G |Dof wdx dt +
T ~hy(R) BR;%)
7—-¢
+C,RN/2+2) f f ?rwdxdt.

7 —hy(R) B(R/4;%) —B(R/16;%)

Passing to the limits as p and 8 go to 0 we obtain the result. ¢
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