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1. - THE PIVSICAL AND THE MATHEMATICAL MODELS

Starting from the classical model corzesponding to the cquation of D'Alebert,
many models have, in the pase, been proposed for the study of the transversal motion of
an elastic string (see, for istance [11,(2), 31, [4]).

Jf the string is stretched in fts rest position on the ¥ axis berween the poinis x = 0
snd x = L, and if its unstrctched length s 4, a basic assumption that has abways been
made is that L must be = 4.

‘Purposc of this note i to study the cas L < . Preciscly, we shall assume that the
string is homogeneous and fixed at the points:x = 0 and x = . of the + axis and that no
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tension is exercised unril, during its motion, the length of the siring is < A; moreover,
the external force fx, 1) & normal to the x axis and exercised in the (xy) plane, the mo-
tion occurs on the (v} plane and is treversal.
We shall study the Cauchy-Dirichlet problem: denoting by (x,/) the clongation of
the point x at the tme ¢ and seiting
¥ 0) =5x)  wlx 0 =F'lx), O, n=pL=0,

we shall prove an existence theorem of the solution in a suitable functionsl class.

Precitely, § 1 will be devated 1o the construction of a finiic dimensional <approxi-
matew model and the deduction of the <limive equation, which we shall sssume 2s gov-
eming the motion of the string, I the subscquent § , using an existence and wnique-
ness thearem for the solutions of the «approximates modcls, we shall prove that these
solutions converge 1o 4 solution of the problem we are considering.

Taking s a basis the classical procedure foliowed in (5] and (6], we obtain the
mathematical model of the prablem substituting the string by a sistem of  rigid cle-
ments, every clement is constituted by a small rod of length L/, with telescopic
springs, every spring is clastic and reacts when the length of the clement is > A /1.
“These elements are connccicd by hinges at the poims p/* (iL/n, 5(*'), sliding orthogo-
nally to the x axs. Moseover we shall suppose that the extermal force fix, ¢} is concen-
wated ou the hi

We introduce the following notaions, where w e N, i= =2, —1,..,n+ 1,
w2

B =Lin, melN;
osxsL};
At ={xti= 121" sx s (i 4 1 /2080 );
Apt={x: B sx s+ 1EY};
Q={ixtkxed 1el0,T1};
| had L VAT SUTPRRS ST 254 1
fi=fes—fit
obviously, for the sake of simplicity we shall write 4, instead of A}, AP, .
when no confusion will be possible.
Owing to the nature of the problem, many functions are defined only 0n 4 or on ;
we shall extend them, if necessary, as follows

LD A-x ity = —ficsh flL =50 ==fixn), ixneUarx(0,T]

We obtain the system of ordinary differential equations ussocisted to the discrete
model a5 6],
L accardance with the physical propertics of the model, we suppose that there is
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ceactian of the speings only if the elements have length >/ /, und that the reaction
encreases linearly; then the tensivn T of the generic clement s connected o its
lengsh £ by the relationship

r*‘-wm(;)-lf"‘:".‘i"- £=afn,

t=dA/ln,
We suppose that the elements have eimilar properties, because the string is homo-
gencous, then we can calculate K™ when § s the length of the system (or the siring)
-ndcfumm of every clement. Tn this casc, indicating by

=) A,
L s

the connection between the tension of the sring and its length, we have T'= 7'/, and
sially,
v =), k(5 - A)=kig-a,
K*"=Kfn,

Eg-afm, t>afn.
0, g=Afn,

where K is obviously a constant of the problem.
Indicating by

v

w2 fin= ﬁ jn;,n&

' the extemal force scting at the point P{*! (i, 3/, writing kinetic and potential en-
gy of the system (E; and E, respectively}
E=5 dyy,
W Bt
g=% [ vowe-sE [rommd,
= el ™%

‘using Hamilton's principle, we obtain the following system of 5 — 1 otdinary differen-
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tial equarions on s — 1 unknowns ¥,(t),

a3 Jf—%e(%mr.)—f;{rlzﬂ. f=1,8085

where we have. sei

L{\,‘Hrﬁ- d} —& e =VasLr-a,
L VT'*“:

0. lal < ViaLr -1,

and, for the sake of simpliciry, K MiL=1
We add w0 (1.3} the initial conditions

la) =

14y ;.(u)=%‘[;ex.um=5,. ;uol-{;dl'y‘:r.n)&-i."

and, isking in uccount thet the ends are fised, the sboundacys conditions
5 i) =00 =0,
Equatioas (1.3)-(1.5) represent o discrete model of the problem; passing formally

1o the limit with  —» 0, we then obtain the corresponding continuogs model, represent-
ed by a partial differential equation, with inital and boundary conditions

Fylw ) _ Apldix /) !
(1.6 T E AL =fx,00=0
an Fi5, 0) =), 3w, 00 =Fle),
w8 A0 =yiL.rr=0

In what follows when no doubi will be possible, we shall set x(#) = {ylx, )i s 4},
indicating by «"» the derivative with respect w ¢, and by «Dx the derivative with respect
0 x, moreover we shall write L*, H’, ... insicad of L(4), H(4).

Instead of (1.6)-(1.8) we consider the following equivalent vasiational equation

a3 [ {0tk et te = (plyted), Dutedlys = (o) wtells e +

+ 0", wleys = (3°10), wiD))s =10,
(1100 yix, 0) = Flx),
and we shall say thar yix. 1) is @ solution of the problem above considered if
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B () e L3(0, T; HY) NH (0, T3 L7);
i) (19) bolds we, i (9, T), and Wa(e) e L*(0, T; HY) N HA(0, T L7
i) (110} holds ae. in d.
The physical moaning of (1:3)41.5) would suggest s to sssume the poligonal line
the poinis P/ i1) i the problem, at the time r. Un-
fortunately we eet o6 many difficies when we 1y 10 obtain a solion of (19)
(1.10) letting u — = i mtknh‘bnvfll..’lll!}-
himhdmfll!HlJlmmwm when w— ¢, to allow
sich a procedure, because (13) is not linear.
Mmmm(l,“'”-ﬂhhuﬂﬂﬂgwm

L ;,——;[—xr]+-tb)~;-.,—mr>:n. P2 -,
(142 %) =20 =0, 2= =zith  meld=—z_.0),
(L) t0=% (0
(Let's observe that (1.4)-(1.2) give

fa==hi fer=—haids
In (1.13) we shall suppose #(b) — 0 for b — 0, in oeder to obtain (1.9) for the con-
tinuous: medel.

hxi*lrm! shall introduce, for every lmnnﬂzilL‘ldl.‘Ilﬂﬂyuf
w }Mhm’ﬂc(ﬂ"l“l‘ﬂmnﬂmlﬁuﬂy
on

Finally we shall recall some properties which hold for the functions and the n-uples
associated 1 them.
 In §3 we consider the continuous problem (19). Firdy, using -ples connected with
dats, we construct a sequence of discrete problems

2 =5+ [aindr,
o

14 uj(r}-';,'i-J’[%w(d".ﬂ!l)fdéiﬁn At} =4t
i

i=1, .0

l¢=z.-0‘ o™ "t K™ Then
mmkﬂw:]“}[]dj] Illr.n"ld 0, T we consider the sequence of the poligonal
lines connecting the points P{7() = {b*', 2" (#)}; suppasing the data are regular
M‘EMMRHMW @ subsequence of poligonal Lines weakly
comvergent 1o a solution of (19).
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The uniqueness of the solution of (1.9) s a difficule problem, bectuse the Function
iex) s s sictly monotonss this problem s il opn.

Finall in §4 we recall some classial resules an problem (1.14), which have been
sitlized i the preceding sections,

2, - CONNECTION BETWEEN FUNCTIONS AND #.PLES

Let [ L*(4), extended by (11); then, W, (1.3) define » + 3 numbers
zn fi= %‘jﬂxlﬂ, R T S s B
which sartfy the following conditions

=S =y feer=hacis fasz=

2.3 =8, OYa=0, ¥ =4, &Y 0,

Tn what follws we shal indicate by 8 the class of n-ples satisfying the promeriiciey
conditions. (22), (2.3).

Moteover the lermema holds:
Linsta 2,45 Lot fi H'; thew iboe ccists & comtant €, such that

.
] < %sﬂ-"wqm“, GeN,0<a<l).
Morcover to every {51} {1 = 1, 2, .., ) it will be uselul 1o associte the following
funcrions

25 "=z, xedal,

260 Fix)=g+ ¥ z,{x —ib), xed,

- . f
en wm= [ P - | morde -2 [ morse=
hix

L
-7 12

‘+:}:‘.)+-=:::[x-(t--2-) ] 7&‘";{2- f—%}br. xedi,




7= “'. + -"—:4 .{x = [-'— —)A] e,

The function (2.5) is a step function, (2.6} is & poligonal line connecting the points
Ff'.wbmmbuawm (2.7) has the first derivative continu-

Ium[:,]qs,lknd-ﬁnmulnndeﬂnd-d-&c&ﬂwm.hmdq
und symmetric conditions
S0 =M (L) =0, U0 =g (L=0, 20 =F"L)=0;
)= =r(—x), (2L —x)= ~2"(x),

)= =g (=a), FEL—x) = —g" ),
morcover the following lemma holds:

Lanoas 22: Lu—h.).be.qulqhnmh-mz,adepm’wth
such that the following relations bold

bR e S 11
lBisie, § 1000, st 3 | 220
B sie § e Bk B | 4]
Bbsse £ | S
o9 s-nieare 3 [| S+ | 20
Finally, the following lemma holds:

Lt U5 s i 1, {0 1)
L.,-,;-:,m LA Y, dmh y--um.wfgai‘w AL

F) =8f B xed,,
there exity 4 constant Gy such that
|5 - DYl =

Beyp il
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3. - THE CONTINGOUS: PROBLEM
We can state the following Existence theorem for the continuous peobler:
Towonen 3 (Existence): Lot the following bypotbeses bold:
[E2H] feLHQ) FeH'' " NH}, (s>0); §'el;

Then ibere exist at lewst a solidion ,mm‘(n T L (A) N L2 (0, T; Hi (), of
(19), (110} i the seme indicated above (see § |

We can divide the proof in the following steps:
#) Let (3.1) bold and st (according (2.1))

62 =1 [fwe 5=t [y ke, fin=1 [nx née,
i

we buve then

et Giles; {f}es, Welo T
3.3) dby=4*, 2-20<u<2,
there cxits @ contant @ such that

Epwics Sk, $50< S,

®y L
B85 < G, an 3 (25 [ <pe20n 20k
b) Substitaiting (3.2) and (3.3) into (5.2), we have, by stcp @), Thevrem 3.1, and
Lenma 3.1, an’ uinigue solution {50 (2)}, which satighes (5.5), Ve and Nt € [0, T
<) Setting

="+ Fz."m xedf,

it is possble to/select ' subscquosce (indicated by {8 }) such oha
(34) Jim (0} =)

strangly in L{Q), weskly® in L* (0, T; H'),

3.3)




stromgly i L, weakdy in H', and
.6 Jim a0 =", Jim olDF ) = @),
weakly® in L0, T:L7),
) There exist three sequences {0 ()}, {&* 00}, {710}, witb

i [ () = Dultem o, = 0,

Jim, J#= ) — ooy = 0.

Jim, [l olhade=0,

I
auch that the following equation bolds:
38 [(i""’(t),-'(l))u-(gﬂDﬂ‘"tr]!. ainy — (fiz), & Ny Jdr +
J

03 0, B0 = (31140), B (0N + [5""(r)1; =0,
o
ae i [0,T), and Vwe L3(0, T; HIY N H(0, Ty L)
) In (38) we bove
B39 Jim (D) (0)) = 1) = g{D3 (1),
in e weak topology of 1700, T; L}
Lettng in (3:8) n— =, the theorem Is-proved by (3.4)43.7), (3.9).

4. - Proor or T ExisTeNCE THEOREM

Step 4). Follows from Lemma 5.1, 1

Step b). Follows by step a), from Lemma 5.1 and Theorem 5.1,

“Stcp o). Follows by the definition of 3™/ (x, ), because from
Fen =0 e, ded,
P =0+ Sy, vedl,

Dy =S, sedr!,




and subsequently

b= l [tpgor + (g )*wal”' -
¢
7 JT{:;':J[( auif + (z‘m + 2 mu+m)'Ha|w ™
< e,[ f[:él:[l:%nm)’ r20+ S un’]b]a.lm

finally (5.3) gives, Wi, )
R IE SRR il T RIET T i TR S T

for suitable positive constants @ and €,

Step o). Let us caleulate at first the frs addendum of (38) sopposing uif) e
eH™ (0, T; L*) L™ (0, T; H* N H{).

Serting, for the sake of simplicity,

mx‘n=jutg‘nt5. )= ]’u‘(E.r:dE‘
¢ i

mi =1 [minnd, mio=1 [m'eo0d,
3

4

we have

T e E e e
i
=g, b, 0 = [ D e, o e 1 =
i

-y
s )j ] Lt ndom - %‘,o:smm;uw

i el
= =zl {Em) )+ (Dl (6 + % & 0dm ) =h );x,'irl%m,’_,trl.



2= 2-,..&)-:. Via[0,T1,

I fuct ) wnd ” x, ) are odd Functions with respect o x = 0 and % = L; then
and ' (x,1) ore even function with respect w x =0 and x = L, Vre

we can verify thit

seHl 0., =

3 [ & [ wearesy [ wtenpe.
Aer . ¥ b=

} there exists o suitable € > 0 such that

e Sheol e

Rl 0 ® Sl e ren:

i n < Shling :

praves (4.3).
(5.4), (4.1) and (4.2) give

! aat
# (D rnde -Jll_guz,'(ril.'h!d! -

;' -w&j[é‘@(%:‘_.(r)] Seomab B sy m- I(!).g'(r)]h+

=

2 #Ez 0 -5 Za oo




&) =g ),

anin =2y,

g
(2.15) gives Fnally (38).

Step e). In order to caleulate the mit in (3.9), it is useful 1o set
(460 ba) = gla) +e,  pla) =bal—a,

subdividing gla) in a function hla) strictly monotone and another linear. Then we
have

- S B 0, xed,

A7 W= lim o058 (0) {6iD3" (1) = Dg*' ()} =

lim B(D5" (1)) = Dyte) = yie) = Dyis),

in the weak topology of L(0, T; L*).
Let us now introduce the functions 2L, 1) given by (2.7), and observe that by
12.9) and (3.5) we have

oz 1) - D3 uam-ss'e.‘_iq[{ ) + (f;:#")’] <

Py R ST )
T hilh) b s
and then, by (3.3),
(“8) i JD2 1) — D el = J‘-Tﬁ =hir=p
Finally (4.6 and (4.8 give
Jlim [(DZ (1) ~ BDT s =0, eal0,T),
and, by (4.7},
(49 xle) = Jim SDZ" (1))

Now we have to calculate z1¢) in (4.9); we shall obsain this following the same pro-
codure a5 in[7).
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- fact there exists 4 constant €y such that the following inequalties hold
| s, IS0k s, relo,T),
1) Bl oo € G, 15 0k € %. tel0, 7],

(4.10) and the second of (4.11) ean casily be deduced from (2:8) and (3.3), We can
the first of (4:11) in the following way.

wlr)eL?(0, TiH N HY),

n"éﬂx,:)-m,rx TO. =L )=0, rel0,T],
L H*NH{), and moreaver

.
st 1 = j[lz“"(-.unrtv. - [ m-'u.::mcx,m}h
5 1

= ﬂ[—vz“*::,nm.n& +[Dizin m..ua]a»_
i i

Iﬂ]-:“"u,tlvbum.-
i
o Libfa,
%}J,—Ea‘..wrmm- _[ ;%‘::.wm;m- | %:— i.a)m.na}au
2 -4 2
A -
< Jag | B o
g A

o 0 o
= “[ru.r:.k ui=%r .,

AXN). {14} @5, ¥e e [0, T) and moreaver T,, e L7(0, ), we have then suc-




cessively, by (4.12) and (5.3),

r P s
J&Jz’"lmliwlml‘&'éfﬂ[ ol %-;_‘u) n:.n&]:
¢ 4 ¢

- AJ [zu'r.;—r,_.m}-» .ﬂ[ E:, u)uu:I
W

r
S e = v
-ﬂf';‘{p(;._,m:]bu = ahrds ,m 24t mm.u:}df

B

nn.uy (24), (5:3), and (4.13) give, for b small enough and for suitable positive
constants Gy, Gy

f
[w{ﬁz‘ ) :A Teath) = elh) 55 0t ,(t!-flr:—r,.,m}dr

|j'a#fs‘“-'rx,.unrx.:ux |1‘ &+ e.,jr{lo‘m:;ﬁ- + DTl <
i ¢

= 4+ elhisanan .
that i the firt of (411).
Following now the same procedure 15 in[7], using the strict monotonicity of b(a),
interpolating (4.10) and (4.11), and bearing i mind (4.8}, we con prove that
x= Jlim_b(D3") = 4Dy},

in the weak topology of L*(Q).
Bearing in mind (4.6) we have

i, @D ) = Jim {b(D4*") ~ D&} = lim DT~ Dy = gIDy),
in the wesk topology of L*(Q).

3. - THE DISCRETE PROBLEM

Tagorem 5.1 (Existence and Uniqueness): Lot

o F) wWles
{f(}es e In(0,T), floel®(0,Th




¢ she'ryucem (L14)

o ;
=3 +Ju,(m'r.

=i+ [{o{ i) - i v, i,
R0, Im =X, 3= =T Tl = Th-dr Ged™ ~h-i
gue solution €210, TINVH' (0, T), moreover 2,(0), 3 (the § Vre[0, T]

sonsw 3.2 (Conservation of energy): Let (5.1) bold.
Then she. solution {210,/ 1)) of (5.2} satisfes ¥h e [0, 7] the scmergye. ogua-

s L e of + o{%mdrl]]-

- fl‘[f,tr::. e+ Azt L

(5 ool )]
O(ul-urﬂﬂ)‘ﬂv

o 5.1 (The variational equations): Let us observe that i is posble ta
 problem (1.11)-(1.13) & variational form. Precisely ler (5.1) bold, ben the
(O} of (5.2) satiifies the varistional equations

I;{&'ﬂ.‘w{—z« .PA. “05)6,&-:},& ;+hf}ir.
i
(O} €8 W in [0, T), and & L0, T);

Blen v o fae) B B B i

- {’g,lz,u)q,(f}-r.' wmun} -0,
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Maoreover the following lemma holds:
Lusan 5.1 Let (5.1} bold, and suppose that there exists @ comiant & such that

3 fuone, Ei<t

=y

Sl yep @il

Then there exists w constant €y sach that the follouing relations bold

& 2o
23 .(r]]‘b.

3.35)
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