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On the Series of Fermi Random Variables (**)
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the amplitudes of extracted from a Fermi distribation.

In this paper » few proposiions e proved which
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Sulle scric di variabili aleatorie di Fermi

Stro. — Neﬂamdmrmmmvﬂndx@-ﬂlﬂwjﬂ sleatoi, prodorti per i ricena-
. wibeazioni parziali wengono catratte
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" In a few recent papers about the detection of a pitch in scoustic signals by neural
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» trigonomerric course, by conskdaring all the i
‘quences {r,, 8, ), v of coctficients tvi!- . ;n.nd 058, s 2x) such that the
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converges {in a suitable sente) we will recover all the set of the reafitic periodic signals
“The simplest sufficient condition an the cocfficients which gusrantees that the trigono-
metric sedes converges is

St

O the othes hand, since followiog the Ohars law (scc for cxample (2] pag. 114)in s
pitch

petception, these conditions scem to embody the essential physical requirements. for &
useful simutation. I now we want to pick up at random a periodic signal we can consid-
er the stochastic process £(¢) given by the randaw rigomometric seres

m fn= %;_m(z.‘mﬂ_)

by substituting respectively the numbers 7, 0, with the sequence of independent ran-
dom variables £,, £, (6. = 0; os:_<z»r.w-m Tu!ver!‘ﬂmoizrfll\cmndm
sequence [£., &4 baun, if th e, it i dated a periodic
signal given by the sum of the trigonometric series. OF course our problem will be now
that of the characterization of the random variables £, £, in such a way that the series
(1) be comvergent (Pax).

From the previous remarks it is ciear that a sulficient condition for the convergence
(B9.8) o (1) is the comvergence (P ) of 3 £, and a suficient condition for that i
the convergence of the serics
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An interesting exsmple can be given by assurning that each £, admits a Fermi density
[umm' We recall that a Fermi density fs a probability density function of the
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‘cumulstive distribution function
In(1 +eMe*)
In(1+e*)

fxz=0
ifx<0

40,23 0 (sce Fig. 1 for an cxample of the Fermi densty with 4 = 2 and
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d T attention ia the prot we will prove now

pquﬁu uschul to study the converpence of series of Fermi random

2. - Sumes o FERMI RANDOM VAKIABLES

 First of all it would be very interesting 1 find precise conditions o the paraméters
our Fermi randora varisbles which entuil the convergence of the scries (1), These
‘are be spelled out in the following Theorem:
 Tuoren 1t Let {§. }a e be a soquonce of Fermei random variables with parsweters 2,
Aui amomy the four siatementt
E“Elé.)\ll<+m.

B Zletalicte,
) X BE<+x®,
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the following implications bold: (a) = (B) = (¢) = (d); f morecer the §, are imdepen-
dent, alia (d) = (a) bobds w0 that the four statements are 1 foet equivalont

o prove this Theorem we will need the csimates of the following Lemma:

Lessan 2: I & 45 @ Fermi randons variable then
) i sty am wmiversal eal constant € > O such that EE< Cla W A7)

() whew 2 < 1 we bove
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Proor: We remark first of all that E & = 2 gl ) where ¢ is the following function
defined on [0, +%[:
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When x— + @ we have for this function

ey
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so that from the relations

i e

we imanedianely have glx) ~x = (1/2)x'= (1/2)z, Hence we can say that it exsts a
real number b > 0 (which of course is independent from the purameters of our Fermi
random variable) such that glx) € x for x > 5. If then ar is the maximum of g(x) on the
interval [0, b1, we have

u [ fad<h:
ATaRl =4 otherwise.

As a consequence, our universal canstant i € = mr / 1 and the statement (I) is proved.
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The proof of the stement () s o the following relstions which hold. for
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This compeses the proof of the Lemma  ®

 Proor ar Trnonsss 1; We observe that the implication (8) = (c) follows from (1

‘Lemma 2, und that (¢) == (d) i trvial. Moreover the validity of () = (a) in the

se of independence is & well known resul {see for cxample [6] Ch. I, § 4) 5o that
are roduced o prove just the implication (a) =» ().

103 holds, then B8, A 11250, md this- abo koplies that £,50, namely

In{l +ebis=d)

P> = S = Yes 0

of al lhwala-: (..}..,,ummm f {aboan is pot

10 + = and we could cxract an infi-
!pna»{mmmmmlz 3.} s @ (finite or infinite) limit.
then'e > 0, we would have . (s, — #) ~ 4,4, forn— = in H, sathat it would follow

Jlim P> e) =1

 which contradicts the converpene in probability §, 0. Now, i{z Joan does not
* tendto + ® we could find an infinite set of integers J such that both the subsequences
{a, }oayand {2, }, o admit a finite limit, respectively 2 and A 1f then £ > 0, we would



have from (2) that

which sgain contradicts the comvergenice £, —» 0. Finally, if the (bounded) sequence
{84 Juan is n0t infinkesimal we could abvays find an infinite set of integers K such that

e subsequence (2, . . converges toward a finite number & > 0. Hence, 0 < £ < a,
frem (2) and from the faet that 2, 5 += we could get

i
lim P(E, > ) = lim
b =

sill in e with £, 0,

Let us take now a real aumber ¢ > 0 such that
(5] In{l+e&)<2e, Vi>g
and define

L={weN:iu €9}, M=[neN:la>q}, @LUM=N.
Since
Zltd)= Tl 47+ Z‘ca.ﬂ s
5[1+y")2na.+t]+qbzl4l:'
to prove (6] we must only show that
2._<+n_ 21;'<+w‘
‘The first statement follows from the remark that, since 2, =

we can ahways suppose,
without loss of generality, that 4, < 1 an-Nsarhs:lmm (3) and (D) of Lemma 2
we have
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To prove the second limitation, since 4, (1= 4,) = + o, we should just remark that
for 5= % in L (with L supposed an infinite set) it follows from (II) of Lemma 2
that
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This completes the proof of the Theorem, ®
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] “This ‘Theorem shows that it will alvays be possible to have (P-vs) convergent
* trigonometric serics when the sequence of the amplimdes {2, }, .  is constituted of in-
dependent Fecmi random variables with a suitable choice of their paameters.
o 3. - ESTIMATES FOR KOXVECTATION AND VARIANGE
W will prove now a fow results abour the expectation and the variance of a Fermi

Provosrmion 3: 1f & is & Fermi randows verishle, we have
4| f Tl s
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Proor: Since from  the normalization imegral and the changs of variable
f=ilx —a) we have that
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Morsover, since (see for example (3], formula 3.411.3)
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E Lot 2
J Tae =02t Rev>0

‘end since (sec [5], formula 9.542.1 and 9.71) 112) = 1 and §12) = 2* |B; | = 2% /6,




we get the fint relation

BE=s+ -1\(.1.]:].

o
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With the same change of variables, and taking 14) into account we have also that
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This completes the proof of the proposition. W

Since it is not possible o express the functions I (x) wnd £ (x) in terms of elemen-
tary functions, it will be useful 1o obtain some estimates:

Provosmion 4; For the functions 1, (x) and 13 (x) defined in the Propasition 1, the fol-
Towsing imequialities bold ¥x 3 0
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Proor: Since it is casy to see that ¥¢ = 0 and for # =0, 1,2... we have
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“Comouixws 5: If & is a Feronl randons varichle then its expectation has the form BE =
= glad) where
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Msmhmmanwmh:x} ** /2 abways falls in between
even und odd terms of the sequence of the partial sums of a comvergent seties, it is
e to recognize that it coincides with the sum of that series:
2 B gploe e
=5 = -1t o .

The result then immediately folloss from Proposition 3 and the fact tht (see for
mmpiem formulse 9.522.2, 9.542.1 and 9.71)
oS 1)‘—--—tw=~£.

&
This completes the proof of the Corollary.
We remark that as & consequence of the Corollary 3 we could deduce

immedintely
the relucion gtx) —x /2 for x — + % that was used in the proof of the statement ([ of
the Lemma 2. Moreover it is also possible 10 use the results of Propasition 3 and the in-
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equalities of Proposition 4 in order to get upper bounds for £ and V& At un example
we will only make use of the simplest among the inequalities of Proposition 4, even f in
this way we will get only some vety rough estimates. More precise resuls can be ob-
tained by means of the other incqualities.

Conovuaxy 6: I & is a Fermi random variable the follnuing inegualitis are alvays
iod

i 2
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Prooe: Since In(1+¢"} > Ine’ =1, Vs > 0, and (see for example (1], pag. §11)
£(3) <4/ 3, 1aking im0 account the previous propositions we have:
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Thismmplcwv the proof of the Corollary.
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