Rendiconsi

Accademis Nazionale delle Scienze deta del XL
Memarie di Matemstica  Appliceziont

119" (1993), Vol XIX, fasc. 1, pagg. 263271

LJUBOMIR CIRIC(*)

Nonexpansive Type Mappings and a Fixed Point Theorem
in Convex Metric Spaces(**)

Amsnacs, — Let K be
ﬁllmﬂhTh‘mm»‘Kmmﬂﬂxmmmdhi—pﬂhh
real numbers 4, 6., .-1.3.n<s<|.na.,v.§+:;:|<-.m-.;h

AT, Ty) Sadix,y) + b max| de, Tx), diy, T3) ) + z[.nu.r,u.u;.m]
hurnuux.mx then T has n unique fixed point. and st this point 1 is contimsous. This re-
sl generslizes and mmd&wlﬂtmﬂu“nmum,\n
example s gven to thow that our theosen & a skt mary known reshe.
(b Subiot Closicson (1991 prmary 47109, THIG: -emndus 54H2.

Koy socrds and phreses: noncxpussive type. mapping, comwex metric gpace, foued poim.

in uno spario metrica convesso

Ruassunvro, — Sia K an . comvessn complet
wﬂnmiww(wmenfmwhﬂﬂ*ﬂxn* Il risultato peinci-

segucne: 52 wite un temma 4. b, ¢ di umer resli

)

l Un tcorcms di punto fsso per applicaziont di tipo non espansivo

‘ del presente artcobo & i fon negati
LT, ks 1k s o oty R st 2. el s
lianza

dTx, Ty) € adix,y) + & max| dix, Teh, iy, T} 4 ([.u'l.r. Ty) +dly, Tl],

| alloca l'appiicazione T possiede un unio purito fisso, od in questo punto, §i estendo:
¢ mmmmmumumﬂmm.&mmﬂd 131 ¢ da Li[91. Si prova pod
con un ctempio che il nostro tcorema & un'cficttiv geoeralizzazione i molt risuhati not

(%) Indirizzo dell'Autose: Instirte of Mathematics, Serbian Academy of Sciences and Arts,
I Kieza Miballa 35, 11000 Belgrade, Yogeslavia
| (+*) Memoria prescntata 21 sgosto 1995 da. Giorgio Letta, uno dei XL.




Let (X, ) be a metric space, T a mapping of X ino itself, and & a nonncgtive real
rumber such that the inequality diTx, Ty} € kd(x, ) holds for all v,y in X. Ik < 1,
then T is said 10 be a costraction nspping; (£ & = 1, then T i said 10 be a nowerpansive

paapping, The well known Banach's contraction penciple — already obtained in particu-
lar situations by Liowville, Picard and Goursar — states that if X is complete, then every
contraction mapping T has a unique fived point, which is the limit of T"x, the m-itera-
tion of T applied w any point x of X, However, 4 nonexpansive mapping may ot have
fixed points. Yet thesc mappings have  fixed point when X has o coavex structure.
There exists a very sbundant literature about contractive and noncxpunsive type map-
pings, where the coniractive and nonexpansive conditions are replaced by more general
conditions

Let X be u Banach space and C a nonempty closed convex subset of X. Generalizing
the fixed point theorem of Gregus (8], Delbosco, Ferrera and Rossati proved the fol-
lowing result:

Timones A (Delbosco et al. (31 Let T: C—C be & mapping satisfying
) T =Tyl € a b=yl + & [T =+ 0Ty = ol] + [T~ ol + 1Ty =]
for all x,3 tn G, where a, b, are nownepative real numbers such that
) 0<a<1, Bee, bEO-4)/(2+6,

2 at2bt2=i.
Then T has 4 anigue fosed point.

Many resuhs which arc closely related to the theorem of Gregui have been pab-
lished recently (12-51, [7-101).

The parpase of this note is w introduce and investigate & class of mappings which
are mote general than those considered in Thearem A. Moreover, we shall replace the
Banach space X by a convex metric space. In this more gencral context we shall prove a
fixed point theorem, which extends Theorem A, as well as the theorems of Li [9) and
Gregat [8]. We shall consider mappings T of a metsic space (X, d) into tself not nec-
essarily continuous) satisfying the following contractive: definition:

@) d(Tx, Ty) S adlx, 3) + b max{dix, Tx), diy, Ty)} + fdlx, Ty) + diy, Tel],
where #,b, ¢ are nonnegative real numbers such that

(5) 0<h<l,

(6) adbr2eEl,

We point out that the inequality (1) implics the inequality (4) with & replaced by 2b.
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mnm lzlmdu\hnplvl!l»d(i)tmvﬂlinphwdby?i) So our result s 4
twolold generalizstion of Theorem A. An cxample s given to show that, in fuct, our
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L - Mamv mesurr
We shall use the following definition of a convex metric space

Dreanmon 1,1 (Takahashi (1111 Let (X, &) be a metric space and [ = [0, 1] the
*closed unit interval. A continuous mapping W: X % X % 1= X is said 1o be a convex
strcture on X if the incquality

dlu, Wix,y, 1)) € dd(w, %) + (1= d)ellu, y)

m&mx.,,mxmﬂam The meic space X together with a conmvex structure

called a comsex metric space. A subset K of X is comve if Wi, y, &) K foc allx, y in K
;_-u_ur
_ Cleidly a Banach space, or any convex subset of i, s a convex, metric space with
ﬁ:;.i) Ax + (1~ A)y. Moze generally, if X is a linear space with a translation in-
i ‘metric d satistying d{#x + (1~ 4)y, 0) % Adix, 0) + (1 — A)diy, 0), then X
i a convex metric space. There are many other examples, but we consider these as

parndigmatic.

Before stating and proving a fixed paint theorem for mappings which satisfy (4], we
shall prove the following Lemma, which is of interest also in its own right.
 Lesnon L1: Lot K be a momenpty comvex subset of a comex metric space (X, d ) and Ta
Aot mecersarily continuons) mapping of K uro oelf If T sarigfies the inequality (4) for all
3 in K, where the nomsegative cocficients a, b, ¢ satisy (5) and (6], thew
(e inf {dix, Tk xe K} = 0.

Paoor: 1f (6) holds with the stricy inequality, then (even without the condition (5)
nd the convexity assumptions concerning X and K) the statement of Lemma follows as
& consequence of Theorem 1 of (1], So we shall assume a+b 4 2e = 1.

Tt suffices 1o show that for any point % in K there exists a point y in K such
ar

diy, Ty) & ddlxs, Tay),
where 2 is defined by

L=k ife>0,
i

1 q
l-;d He=0.
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Consider the sequence {x,} in K defined by x, , = Tx, (for n = 0, 1, 2, ...), and
et

n=dx, T),  n=dx,Tx,).

From (4) we have

8) roEar,_y+ b maxir,
@) 55 ag o+ b max b eldi o Toa ) +nl.
Since we have, by the triangle incquality, 5, € r. .y + 1., we get, from (8),
nEarn  thma(n R} belno tn).
Hence it follows that if r,, <r,, for some n, then we have
ro<ar +br +2er,
which is a coatradiction. Therefore, r, v, | for each n, which implies
(10) rEr=din, Tn)  (frn=1,2,..).
As we have, by the triangle inequality,
dx g T} Sntna,
we get from (9) and (10)
LEanathnteln  tnatn),
and hence, a8 5 S,y r S 2,
{11y L€ (2 tbtddr=(2-bln (forn=1,2,.
We get from (8), (10) and (11)
(121 rElatbtd2-bln=(1-blr, (fora=23,..).
1f £ >0, then we have from (12), for n =2,
(13) dixy, Te) € (1 = beddixy, Tag) = Adllz,, Tig).
Cansider now the case ¢ = 0. In this case 16) reduces 1o +4 = L. Set

sz'(T:“Tx;‘ 1).

Since K Is convex, z @ K. Definition. 1.1 and inequalities (10), (11) imply

A BT TS

(14) dtwy,2) € Jatsy, Ty) + 3 oy, T

+iusint Le-bn,
15 =21

1
as dixy, 1) € Ll Tead= 31 S,



2=
¥ m diTz,z) € o d(‘l'z T+ = les.qu!

| On the other hund, sing (4) (w.nu-m a0d (10), we obtain

f _rm T, T) S adiz, ) + b max {dz, Teh, g} (forf=1,2).
!h. by (16), (17), (14) and (13}, we get

th.mc { 326+ ot b s T} =
= .—;-b]r,ummz. Tahn} <

b (n--li*i:lmu(d(:,'l'z),m;}-zm(!{:,le.r.},

&pxlﬂ this implies
dz, T2) € dry = Adizg, Ty ).
) and (18) we conclude that in any case there exists u point y in K such

dly, Ty) € dixs, T )
) - This completes the proof

- Tueosew L1: Let K be a nonenspey closed comvex subset of & complete comvex. metric
| (X, d) and T wiapping, of K into ielf f a, b, c are mommegative real wisabers siach
) and (6) bedd, amd if T satifics (4) for amy x, y i K, then T has o unique fixed point
and at this podint T i continuous. Mareoer, if (6) bolds swith the strict inequaliry, then
comvescty assumptions (for X and K) a5 well as the comdition (5) m be

- Proor: I6(6) holds with the strict inequality, then the statement follows from The-
b&mmmmmmmmumumdkmw“m
. §0 we suppose ¢ + b + 20= 1. We shall show that the inequaliy

max {d(Tx, T3), dtx, 1)} < 1 *‘b*"‘ max {dlx, T, dly, Ty}

dle,y) € dlx, Ta) +d(Tx, Ty) + iy, T) < d(Tx, Ty) + 2M,
dix, Ty) % dlx, Te) + d(Tx, Ty) € M + 4(Tx, Ty).
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Using (4), from (21) and (22) we have:
AT, Ty) € a [dTx, Ty) + 2M1 + 5M + 2c [M + d(Tx, Ty)]

and hence, as {5) and (6) imply e+ 2c=1=b<1,
Zatb+2
ey

-ty

T, Ty) <

From this and {21) we get (20,
By Lemma 1.1 we can choose u sequence {x, | in K- such that

N

23) A, Te)€1fn  (formml,2,

‘We have, from (20) and (23},

max {d(Tra, T, dlva,x)) € M fxl€eEm

Tbnxlwebmh{&}md{ﬁ,}n(}wd:ymmmk and since K i closed and
, they converge in K. Moreovet, by (23) they have 4 common limit, say u.
Fm ) we have

d(Tu, Te,) & adls, %) + bmax{dls, Ta), dls,, Te)} +c ldlu, Te, ) + dix,, Tl
Passuge to the lmit as # tends 1o infinfy yields
din, Tu) % (b + ) dlw, Tu).

24)

Since (5) and (6) imply b + ¢ = 1 = (s + ¢) < 1, we have from (24) that d(u, Tu) = 0.
Hence Tu =w. Let o be also fixed point of T. Then we obtain, from d(w, v) =
= d{Tu, Te) and (4), [

du,v) & (o + 2c)dlw, ). "

Since by (5) and (6) @ + 2 = 1= &< 1, we have d(u, ) = 0 and so T has » unique
N::MI;IH{J‘,}\:lam:min!wilhlhnhv.'l"m“lw:hm
diu, Tu,) = d(Tu, Tu,)
Sadu,n) +bdlu, Tu,) + ¢ ldiv, T, ) + dion,, w)] £
Sadln w, )+ bldlo,, w) + dla, T )] + ¢ Ldlw, T, ) + dln, )}
and hence, lening 1 go to infinky, we obtain |
i sapdin, Tay) S (b + ¢)

supili, Ty
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As b +c<1, the last inequality implies
hmd{u.Tu.l-D.

ndlhhmudm T is continuous at &, Thus, the peoof is complete.

Rusiarx 1L1: I ¢ = 0, we obiain the resubt of Fisher (3], This rosalt also appears
hw.mlsl-ndtsluamwnfmmmumm

) > 0, then in Lemma 1.1, 48 well as in Theorem L1,  simple inspection of the
mm»mmmwwmxwxm

Rewnsx 1.2: 1 in our Theorem L1, dqu(m-ng.sb,mmmy

shows that T also may not have fixed points in the case b = 0.

Exawrie 1.1: Let X be the sct of reals (with Euclidean metric) and K = X. Define
the mapping T of K imo itsclf by Tx =x + 1. We then have d(Tx, Ty) = dtx, y)

L2y iEdn gz,
A Tr) + dty, T {z 4

Thercfore T satisfics (4) if the nonnegative coefficients 4, b, satisfy b = 0 and
@+ 2c = 1. Nevertheless T does not have 4 fixed point.

Comouary LL(LiI9): Let K be a nonemply closed comes subset of a convex metric
space X and let T be & mapping. of K into sself satishying the incquality
(35) d(Tx, Ty) € ade, v} + b ldlx, Tx) 4 0y, T3] + e ldtx, Ty) + iy, Tl
Jor all x in K, where
(26) 0<a<l, 520, 20, a+c>0,
a+2+3c%1.

han the property it every decreasing scquence of mamemypty closed bers of X with di-
dimicters demding; 4o zemo bar & womewspdy intersection, then T hax a wnique fived point in

‘Proow: Tt is casy to sce that (25) implies (4) with & replaced by 25, Morcover, in the
case a + 2b + 2¢ < 1 our Theorem holds without the condition (5). So it remains w0
show that in the case s + 26 + 2c = 1 we have 0 < 25 < 1. Since (27) implics that the
-equlity @ + 26 + Zc = 1 is. possible only if ¢ = 0, we have from (26) 0 < +¢ =
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= a < 1, This and the equalitya + 26 = 1imply0 < 1 = a = 25 < 1. Since the property
‘of ¥ imposed in Corollary 1.1 is equivalent to the completences of X, we see that all the
assumptions of Theosem 1.1 sre savisfied.

Finally, we give a simple example which shows that our Thearem 1.1 is sctuslly an
improvement of the results of Delbosco, Ferrero and Rossaii [3), Gregut [8], Fish-
erl6) and Lif9]

Esanrez 1.2: Ler K be the dosed convex subset [ —4, 4] of the real line and T the
mapping of K inio iself defined by
ifxel=1,4],
otherwise .
It s clear that i x, y @ [~ 1 I]nfxysﬁ—d.‘][ then d(Tx, Ty) & L
now xel—1,4] and ya [— . Then we have
d(Te, Tyl €4+ -« = —-ss A'w(i'h,Tyl. Az, T}
Therefore, T satisfies the condition (4) witha = L, b= 2 and ¢ = 0. Since K is com-
pact, hence complete, T o U ot 1.1 e sl wid = 0 tha
unique fixed point of . But T does not satisfy (1) with a, &, ¢ satisfying (2) and (3). In-
doed, for all x in [~1,0] and y in [=2, =1[ we have
adle, ) + b [dlx, T + dly, Ty)] + e e, Ty) + dly, To)l €

<o+ 20+ 20 i), 31, T+, Tl L0400 o)+, T} s

g 113 3 - y
snm[z. z(5+6}.z(l+zj} 3.5 <4 ST, Ty).
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