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Summary. — In this paper it is shown how to regularize some boundary integral equations of
the first kind in Mechanics. This is done by means of the study of singular integral systems in
which the unknown is a vector whose components are scalar functions while the data is a vector
whose components are differential forms of degree one.

Regolarizzazione di alcune equazioni integrali di prima specie in Meccanica

Sunto. — In questo lavoro si mostra come regolarizzare alcune equazioni integrali di prima
specie che si presentano in Meccanica. Cid si ottiene mediante lo studio di sistemi di equazioni
integrali singolari nelle quali I'incognita & un vettore a componenti funzioni scalari mentre il dato
¢ un vettore a componenti forme differenziali di grado uno.

1. - PreLIMINARY

Let B and B’ be Banach spaces. We say that a linear and continuous operator
S: B—>B' can be reduced on the left (on the right) if there exists a linear
and continuous operator §': B' — B such that S'S=1+T (§§' =1+ T ), where
I is the identity and T is a completely continuous operator from B into itself
(from B' into itself). One of the main properties of such operators is that the
equation S¢ =1 has a solution if and only if the given data vy satisfies the
compatibility conditions (there may be infinitely many of them ) : (y,y)=0,
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(**) Memoria presentata il 3 gennaio 1995 da Gaetano Fichera, uno dei XL.
(***) This work was carried out while A. Cialdea was a Visiting Professor at the University of
Delaware during the Spring Semester 1994.
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VyeB'*, $*y =0,B'* being the topological dual space of B’ and S*: B'* — B*
the adjoint of § (for this and operators alike, see, e.g.,[6], [9], [15]).

In what follows, let £ be a bounded domain in R” such that R*\ @ is connected.
We shall suppose that > = 98 is a Lyapunov boundary, i.e., 3 has a uniformly Hélder
continuous normal field, and we denote by v the outward unit normal. For later use, we
need some basic notations for differential forms in R”. Following [7], we write

1 i p
u = Eu,‘lm,’kdx’...dx" N

for a k-form in R” with the coefficient #,; _; , and denote by du the differential of #,

(Here and in the sequel, the summation convention is employed). The adjoint of # is
designated by *« and is defined by

1 * i ;
*y = X 1 ik
u (” "k)' uxl.,.x,,_/,dx >
where
1
* al gl dvpsl D gLl
Ui isoniTT k' o :1.‘.:;,11...1,,_ku31..4:§ 2

We also need Ou, the co-differential of #,
ou = (_1)n(/e+1)+1 xdwuy.

We now introduce J, the operator given by the differential of a simple layer paten-
tial on

Jo) = [0)d 1S, )1do,,  xeX,
=

where S(x,y) is the fundamental solution of the #-dimensional Laplacian 4,

S(x,y) =

_(Z—In)c,, |« —y|2~7", n=3

with ¢, being the hypersurface measure of the unit sphere in R”. Then, it can be shown
that ] is a linear and continuous operator from L? (¥) into Lf (X) (i.e. the space of dif-
ferential forms of degree 1 on X such that their coefficients are integrable functions be-
longing to L? in any admissible local system of coordinates) (1 < p < ®). Moreover, it
has been shown in[1] that | can be reduced on the left; that is,

(1.1) J'J¢ = - §¢ +K2g,
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where

I ) = jw(x)/\dz[s,,_z(z,x)], A
>

S, (%)= X Slz,x)ddt...dd-adir . dn?

S1< o <Jn-2

Ko(x) = jqb(y) 8?1 S(x,y)do,, xeX.

z

Here ;l; has the following meaning: if A is a (# — 1)-form on X, say A = Aydo for some

scalar function 14, then ¥ A=A,.

Remark 1: In [3, pp. 253-254] it is shown that
(1.2) N = N(])

(N = kernel). This condition does not give the so-called equivalent reduction (ie.,
N(J') = {0}), which would imply: J¢ = v if and only if J'J¢ =]" . Nevertheless,
(1.2) still assures a kind of equivalence. In fact, (1.2) implies that: 5f  #s such that there
exists at least a solution of J¢ =  (and in our case, since ] can be reduced, this happens
if and only if v satisfies the compatibility conditions), then J¢ = if and only if J'Jo =
=]'. The proof of this last statement is trivial.

2. - SINGLE- AND DOUBLE-LAYER POTENTIALS

One may apply the operators ] and ]’ to the solutions of boundary integral equa-
tions of the first kind arising from boundary-value problems. To illustrate the idea, let
us begin with the Dirichlet problem:

A,u=0 in 2,
ulg=f on ¥
for given fe W12 (). If we seek a solution by means of a single layer potential, we

then obtain the integral equation of the first kind

@2.1) j¢(y)5(x,y)day=f(x), xeX.

5
Taking the differential of both sides of (2.1), we get the following singular integral

equation:

[#(3)d. 1Sty 0do, = df(x),  xeZ

z
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(in which the unknown is a scalar function ¢ € L? (X), while the data is a differential
form of degree 1, dfe L{(X)). That is, we obtain the equation:
(2.2) Jo =df.

Because of (1.1), the operator ] can be reduced on the left, and therefore there exists a
solution of (2.2) if and only if the data satisfy the relevant compatibility conditions. In
[1], it is shown that, if fe W12 (X), then df satisfies these compatibility conditions and
therefore there exists a solution ¢ € L? (X) of equation (2.2). Because of Remark 1, we
see that (2.2) is completely equivalent to the Fredholm integral equation of the second
kind:

— 59K =]' ).

Of course, the solution of (2.2) is only uniquely determined up to a function ¢, such
that

J¢o(y)5(x,y)day=const (xe Q).
b

The latter can then be determined by (2.1).
Let us consider now the Neumann problem:

A,u=0 in

ou _
e =f on X,

where f e L? (X) satisfies the condition | fdo = 0. We want to represent the solution by
means of a double layer potential: =

(23) ulx) = Jw(y)a%-S(x,y)day, WED
5 ¥y

with 9 being sought in W7 (X).
First, let us remark that (8« / 9v)do can be considered as the restriction of 6 * % on
Y. On the other hand, we have

(2.4) 6*Jw(y)—a—S(x,y)doy=—dxjdw(y)AS”_z(x,y), e
E ov, E

(see [11[ p. 1871). Therefore the boundary condition d% /dv =f can be written
as

jdzp(y) NdLS,_2(x,9)] = —fdo,

z
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ie.,
(2.5) J' (dy)=—f

(where J' is the operator we have previously introduced in (1.1)). Now if we
write

(2.6) Wix) = j(f)(y)S(x,y)day, xeX,
>

then dy = J¢ and, keeping in mind (1.1),
J'@y)=]'Jp= -0+ K.

This shows that the operator ' od: W'?(X)— L?(Z) can be reduced on the right.
Then there exists a solution of (2.5) if and only if f satisfies the relevant compatibility
conditions.

However, in this case, we can prove that there exists a solution of (2.5) in the fol-
lowing probably easier way: because of the aforementioned results of [1], any function
p e WH?(Z) can be written in the form of (2.6). Then there exists a solution y €
e Wh?(X) of (2.5), if and only if there exists a solution ¢ € L?(X) of the equa-
tion:

2.7) N i—q) +K2p = —f.

If, as we suppose, J fdo = 0, then it is well known that there exits y € L? () such
that 3

(2.8) —%'y-}-Ky: _f
and moreover, there exists ¢ € L? (Z) satisfying the equation
(2.9) %q& L K= p"

Consequently, (2.8) and (2.9) imply (2.7).
We summarize these results in the following theorem:

Turorem 1: For any fe L? (X), J fdo = 0, the solution of the Neumann problem can

b

be represented in the form of a double layer potential (2.3). Moreover (2.3) #s a solution of
the Neumann problem if and only if its density v is given by (2.6) with ¢ being a solution of
the Fredholm equation (2.7).
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3. - THE STOKES SYSTEM

In this section we shall consider the classical Stokes system for the viscous fluid
flow:

{,uA,u—gradp=0 (u>0),
in .

divu =0,

Here the unknowns, # = (u; (x), #, (x), #3 (x)) and p = p(x), are respectively the veloc-
ity and pressure field and the kinematic viscosity (1) u is assumed to be constant. Our
aim is to extend the results for the Laplacian to this system. In particular, we are inter-
ested in representing the solution of the Dirichlet problem for the Stokes system by a
simple-layer potential.

A fundamental solution for this system is given by the pair of the fundamental veloc-
ity tensor and the pressure vector:

PO s | . S S
o dru | |x —y| 2 Ox;Ox; :

16 '@ 1

s,»(x,y)= E—a;m

We shall consider also the classical boundary operators:

L R
Tj-u=l:—(5,-,-p+,u(gz'_ + az]_)]vi, T]-’u=[6,»jp+,u(%+ ax]'):lv,-

7 7

for the solution pair (#,p) of the Stokes system, and the corresponding double layer
potential

w;(x) = Iu;,(y)%[y"(x,y)]dg ,

(3.1) *

g(x) = Zﬂf ?9?»_[8” (x,9)u,(y)do,
> y

for x ¢ 2. In (3.1), ” (x,y) = (y4 (x,y)) denotes the » ™ column vector of the funda-
mental tensor ((y; (x, y))). Here and in the sequel, it is understood that for fixed 4, the
fundamental solution pair (y*, ¢,) plays the same role as that of the solution pair
(u,p).

Throughout this and the next sections, for ¥ € L{ (X), we define the operator @, by

() In order to distinguish it from the unit normal, we deliberately denote it by x instead of a
more standard notation v.
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the relation,

0,(y) = * de[Sl(X,y)]/\w(y)/\dx’,
z

where S, (x, y) is the Hodge parametrix considered in Section 1. This operator satisfies
the equation

9 9 e Sa
(3.2) o J u(y) s S(x,y)do, O, (du), xe

for any » € W? (). This follows immediately from (2.4). Furthermore, we introduce

the operators IC;:

969 =0,(y,) - a},gfj ai [H, G, )1 A 95 (3) Ady?
Z 'S

for vector-valued function ¥ = (Y1, ¥,, ¥s) € [LY ()P, where

1 1 o) 0
Hy(x,p) = = —— L x—y| = |x—y].
9 = 4 o=yl ®J y| jI vl

In terms of the operators @, and 3¢;, we now establish some relevant properties for the
double layer potential:

LemMa 1: Let ue WhHP(XZ). Then for x ¢ 2,

7

o,

= G, (du),

g(x) = —2u@,(du,),

where w;(x) is the double-layer potential (3.1) and du = (duy, du,, dus).

Proor: We have (see, e.g., [14, p. 55])

w;(x) = — s

(5 = 95)x, — 9,06 = 9;)
47 Ju,,(y)
z

5 . vi(y)day: XE.Q,
|x =y

which can be rewritten in the form

1 9 _1 1 o i = %)y = %)
w; (x) juj(y)a—vy Wdoy + 4_nz,[ub(y)Myb|: » _x]|3 = |do, .

z
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Here we have adopted the notation:

dhe s 4 i 3 i
M*v (v, o V) ;i)v
and note that

xbx_.fxivi iy b xl'x}' XV
A Bl —= | -0 —.
|x]° Ly -l

Since x ¢ 3 and M* are tangential operators, we see that

w () = = [ 4,09)2-S(x, y)do, — [ H, (e, 5) MP [, ()1 do,
5 v, 5

Therefore, from (3.2), we obtain

d
Ox,

Sw:
L =0,(du) - 612

™ (Hy (x, )1 A\ duy (y) N\ dy? = 3G, (du)

z

and

) = 2 [ LStx, vy (9)do, = ~240, ).
5 ¥y

This completes the proof of the lemma.

For the reducing operator, let us define the following singular integral opera-
tor: '
F': [L} (2P -7 (2P,

(3.3)

E'y =p[20;0,(y),) + oGy + G |vi .

As will be seen, this will be the appropriate reducing operator for the Stokes system,
and it will play the same role as ]’ for the Laplacian in Section 1. The following lemma
shows that F/ y can be considered as the restriction on X of a particular differential
form:

Lemma 2: Let ¢ = (91, ¥y, 93) € [LY ()P and 9, be the Jollowing form:
;) = u[20;0, (yy) + Gy + Iy]dx’,  xeX.

Then the restriction of +9,(x) on X is F'y.
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Proor: First, we note that from general theorems (see [4]), it can be shown that
there exist Hoélder continuous functions ;; such that

(3.4) lim *&;(x) = ay (x) We (%) + F 9ixo) (ae. x5€2)

+
X —> X0

for any ¥, = Pydx’ e L} (Z).

On the other hand, if ¥, = du; with #; being in C' * (), then it follows from Lem-
ma 1 that

B (x) = ul20; 0, (duy) + 3¢;(du) + G (du)ldx’ =

3 & o s
=[—6,}-q+/’£(a—x+a—x{)]dx1, xe¢,

7

where w;, g are defined by (3.1). This implies that, in the present case with p replaced
by ¢ in the definition of the boundary operator T;:

(3.5) lim & (x) = [Tjw]. (x) .

=
X —x,

Therefore from (3.4), (3.5) it follows that
Ou,
2ay (xo)éx—(xo) = [Twl, (xg) — [T;w]_ ()
b
and, because of Liapunov-Tauberian theorem (see, e.g.,[16]):

O,
djsb(xo)a_xh(xo) =0, VxeZX.

Due to the arbitrariness of # € C'*#(X), we conclude that: 4, (xo) = 0. In view of
(3.3), we then have the assertion.

We are now in a position to discuss the Dirichlet problem for the Stokes
system

uAsu —gradp =0 in 2,
(3.6) dive =0 in 2,
uls=Ff on X,

where the given data f is assumed to be in W'?(X) satisfying the compatibility
condition:

Jﬁ%da=0.
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We again seek a solution # of the equation (3.6) in the form of a simple layer
potential:

3.7) uy (x) = f‘Pj(y))’bj(x,y)dOy .

b
Then the boundary condition in (3.6) leads us to a system of integral equations of the
first kind:

(3.8) Jqo,-(y)y,y(x,y)day =f;(x), xeX.
>

Taking the differential of both sides of (3.8), we obtain the following system of singular
integral equations

(3.9) j 0;(0)d[y;(x,9)1do, = df.(x), xeZ
>

in which the unknown is (@, @,, @5 ) € [L? (2)]’ and the given data is (df,, df,, dfs) €
e [L?(2))?. Let us denote by Fg the left hand side of (3.9).

Trueorem 2: The singular integral operator F: [L? (2)) — [LY (2)T can be reduced on
the left. Namely, we have:

F’F¢=—%¢+K2<p onZX,

where F' is the operator previously introduced in (3.3), and K is the compact operator de-

fined by

Ko) = [@s0) Tuly* (v, 9)ldo,,  xeX.
z

Proor: From the definition (3.3), we have
F'Fp = ul26;0,(F,@) + 3¢;(Fp) + G, (Fp)lv; =
= ul26,0,(du,) + 9¢; (du) + 3G, (du)]v;,

where #, is the simple layer potential defined by (3.7). Moreover, by Lemma 2. F/ Fg is
the restriction of * 1, and

’l?i(x)zli—a,jq‘l‘/‘t(%'f?)jldxt, xe.Q,

where w is given by (3.1). Hence F/ Fp = T;[w] on X.
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On the other hand, we have from the Green’s representation formula for
xe 2,

w;(x) = Jub(y)T,;[yb(x,y)]day =u;(x) + J)’/b (x,9) Ty [u(y)ldo,

z z

(see, e.g., [14, p. 54]). Therefore, on X, we find that

T,lw] = T,lu(x) + [T, [u(y)]day} -

P

(1 P %)Tf” * JT/x[y”(x,y)]Tb[u(y)]dUF

>

Lo, + [ Tt o, [ Ty 0,200, ) do
z z

Since for a Lyapunov surface X of index d, the kernel of the above integral operator has
the singular behaviour, Tj, [y*(x,)] = O(|x —y| >*%). The latter then defines a
compact operator, and thus the theorem is proved.

We now state our main result:

TuEOREM 3: Let fe W2 (X) satisfy fﬁvida = 0. Then the solution of (3.6) is given
b
by a single layer potential (3.7) with the density @ being a solution of (3.9).
In order to prove this theorem, it is sufficient to show that (3.9) has a solution. We
shall proceed as follows. First, we note that because of Theorem 2, the range of F is

closed in L? (X); therefore there exists a solution of (3.9) if and only if the data df; satis-
fy the compatibility conditions:

(3.10) jzp, Adf=0, Vwell?? V(Z)P suchthat F*y =0.
z

By a solution 9 of the adjoint equation, F*y = 0, we mean that 1 satisfies the
equation '

(3.11) ij(y) Ndyly;(x,9)1=0 ae xeX.
b

As will be shown, the condition (3.11) implies that the «weak» differential of y;, dy,

exists and dy,; = cv, for some constant c; for ease of reading, we shall defer the proof of
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that in the Appendix (see Theorem A.1). Therefore, for any v € N(F*), we have

(312) waAduj=CJujdeU

z z

for any smooth function #. By using density arguments, we have (3.12) for any » €
e WH?(X), and therefore (3.10) holds.

To conclude this section, we remark that a different approach to the Stokes system
by using differential forms is given in[5]. Furthermore, by following [8], solutions to
the Stokes systems in R? and R are also obtained in the form of single-layer potentials
(see [12] and [10]). For general results see[14].

4. - Tue LAME EQUATIONS

We now extend our approach to the Lamé equations in linear elasticity for the
isotropic material. To be more precise, we shall study the first boundary-value problem
for the displacement field #(x) = (u; (x), #; (x), u3 (x)):

4.1) {A3u+/egraddivu=0 inQ2(k>1/3),

U= f on2 5
by means of a simple layer potential. Here £ = (1 + u) / u is given in terms of the Lamé

constants A and . We assume that the given data £ is in the space [W"? (Z)]’. The sim-
ple layer potential now reads:

(4.2) u;(x) = Jwb () Ep (x,y)do, ,
b3
where ((Ej;)) is the Somigliana tensor:
o,
L I P b k &? =
Eix9) = 4n[|x—y| 2(1+ k&) Ox;0x; b winki

First, we need some properties of the double-layer potential

w;(x) = [ ()L, [E* (x, 7)1 do,
z

where E* (x, y) is again the column vector whose components are Ej;, (x, ) and L, is the
operator:

Lu=(k — &)divay + (1 +§)% + E(v A rotu),

where &£ is a fixed real constant and a particular choice of & will be made later.
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Similar to Lemma 1, we now have the following result:

LemMa 3: Let u e [Wh?(2)P. Then

&

(4.3) = Ky (du), xef,

Ox,

where

%, (9) = 0, (y;) — a}g,’j 2Ry e M A Y 0) Ady?,
z 'S

A T4 Al il
K, ()= [ E( (1+ &k 3|x—y| 3|« yl] 1

201+k) 77 20+k) Oy  |lx=yl’
and O, are the operators introduced in Section 3.

Proor: A simple manipulation shows that

i _ 1 |3+ 8k dlx —y| dx—y| 2+ (1 -8k |
L, [E* (x,y)] = [[ 20+ &, %, + 6 2115

3 1 kE—E(2+k)
v, |x—y| 2(1+k)

Vj(y)gab- vy () - ]ﬁ]

Then by making use of a substitution similar to the ones in Lemma 1, we may rewrite
the double layer potential in the form,

B f 5 ) - S(x ) do jrgi(x,y)be[u,,(y)]day.
z

z

Here S(x, y) is the fundamental solution for the Laplacian 43 and M % denotes the same
operator introduced in the proof of Lemma 1. As a consequence, we have

!y amj Exa—I[K,,-(x,y)] Aduy (y) A dy? = X, (du),
)

ie., (4.3).
In the same manner, let us now define the following singular integral opera-
tor:

R': [L{(2)P > [L?(D)7,
= (k= &) X (W) v; + (1 + E)Ky (W) v; + EO 5 v, Ky ().
We remark that both operators L and R’ depend on the choice of the parameter &. As
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will be shown (Theorem 4), with a special choice of &, the corresponding R’ may be
served as a reducing operator for the Lamé equations.

Lemma 4: Let @ = (9, ¥,, ¥;) e [LY(2) and w; be the following form:
a),»(x)=(,é—§)3£ﬁ(1p)dx"+(1+§)3£,-,-1/)dx"+.§6§71',3<wwdx", x¢X.

Then the restriction of * w;(x) on X is R; .

We omit the proof of the lemma, since the proof is almost identical to that of
Lemma 2. The Liapunov-Tauberian theorem we need in this case can be found in
[13, p. 408].

We return now to the boundary-value problem (4.1) by using a simple layer poten-
tial (4.2). We again arrive at a system of integral equations of the first kind,

(4.4) j<p,-<y>E,-,-<x,y>day =f(x), xeX.
z

Taking the differential of both sides, we obtain the following system of singular integral
equations:

(4.5) j«;;,(y)dx[F,,.(x,y)]day =df(x), =xeX.
z

Let us denote by Re the left hand side of (4.5). In an analogue to Theorem 2, we have
the result:

Tueorem 4: The singular integral operator R: [L? (2) — [LE(Z)YT can be reduced on
the left. Namely, we bave:

, 1
RsRep = _Z¢+K2¢

where Ry is the operator R' with E=Fk[(2+k), and the compact operator K is

defined by

K¢ = [0, (0)LI[E? (x,9)do, ,
z

_R(1+E)

2
L = divav + U+4) du k

2+k 2+k Ov  2+k

v /Arotu.

We remark that the proof of this theorem can be established step by step (with
some obvious modifications) by repeating the proof of Theorem 2. It is well-known that
in elasticity, the double-layer boundary integral operator corresponding to L, is general-
ly a singular integral operator. However, in terms of L?, the so-called pseudo-stress oper-
ator, it is a compact operator (see, e.g., [13] and [11]). Hence all the analysis employed
for the case of Laplacian can be easily carried out here without difficulty.
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TueoREM 5: Let fe [WH? (X)) . Then the solution of (4.1) can be represented by a
simple layer potential (4.2) in terms of @, which is a solution of (4.5).

Theorem 4 implies that the range of R is closed. Therefore a solution of (4.5) exists
if and only if (df;,df,df;) is orthogonal to any eigensolution of the adjoint
system:

J‘/’f()’)/\dy[F,y(x,y)]=O ae xeX.
b

This system implies that ; (7 = 1, 2, 3) are weakly closed forms (in order to prove
that, one can simply follow the same proof given in [1, pp. 189-90] for the Laplace
equation). We note that in contrast to the Stokes system, the given data here is not re-
quired to satisfy any compatibility condition. Details are omitted here.

Finally we remark that also in this case N(Rg R) = N(R) and hence equation (4.5)
and the Fredholm equation: RyRp = Ry (df) are equivalent.

ArpENDIX: THE WEAK DIFFERENTIAL
We begin with the following auxiliary result.

Lemma A.1: Let u e [Cy® (R?)P be any infinitely differentiable function with com-
pact support. Then the representation formula:

Fu;(y)
S Oy

u(x)=pu JAuj(y)y,j(x,y)dy + f SCx,y)dy

R’ R’

holds for x € R?, where S(x,y) is the fundamental solution for the Laplacian A in R’.

Proor: It is well known that for # e [Cy° (R?)]’, we have the representation
formula:

1 1
(S L s ffrppe e eI
u;(x) 7 J’u,(y) ™ y|a’y

R

F
and therefore we can write

32|x—y|dy_

1

u;(x) =ﬂJAu/(y)ny(x»y)dy i g f"”f(y)
8 i OY;
s ¥ %

R}
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Since the functions #; has a compact support, the last integral is equal to
1 [ Fu()

8w J oy,
R3

Fu;(y)
A, lx—yldy = — -1 J : 1

— | .

am | "oy Tx—y”
R}

The latter can be rewritten in terms of S(x, ).

TueoreMm A.1: Ify e [L{(2)P,q =p /[ (p — 1) satisfies (3.11), then the weak differ-
ential of v, exists and is equal to cv; for same constant c, i.e., there exists a constant c such
that

J.ijduj=Cjujdea VuECow (R}).
z.

z

Proor: By using arguments similar to the one employed in [1, pp. 189-190], one
can show that (3.11) implies that

(A1) [0 A,y =0, Vrex.
z
. 1 S(x,y)
Since A,[y;(x,y)] = — - ———— (x #y), we deduce that
Yi'%y K ox; o,

&
axiaijJWj(y)Ady[S(x,y)]=0, VxgX.

Therefore, there exists a constant ¢ such that

—c, xef,

0, xe R\ Q,

9

(A.2) =

lIIj (x) = {
where

Y (x) = j%(y) Ad,[S(x,9)].
z

Now Lemma A.1 yields that

jijduj=ﬂ JAuj(x)dxjwj(y)/\a’y[)/,,-(x,y)] +
xz )

R’

&u,
+ I ax,.gx/_(x)de V) AdIS,y)],  VuelCE (RP .

R3

The first term on the right hand side vanishes because of (A1), while the second one
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can be written as

J &a; 'Ilaix+ J V. dx =
O; O -
\ 2
au,» au,- aqu 314 au[ 811]/
’j_ax,- ijjda—Ja—& e j S wvydo - j e
Q R\ @

which follows from integration by parts. To justify these integrations, we see that the
first of these integration by parts can be achieved by taking domains £2,c 2
(0 < @ < 0,) with Lyapunov boundary 2, = 82, such that 2,2 Q. if o < @' (with
R, = 2) and that J Ydo — J ydo (for a construction of such domains, see, e.g., [2]).

b b
After integration byg parts in £, the resulting formula in £ then follows by taking the
limit as 0 —0%. The other integration by parts can be justified in the same
manner.

Finally, collecting terms and by taking into account of (A.2), we then obtain the de-
sired result:

J’ip,-/\duj=cj g%dx=cjujvjda.
b2 RN z
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