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1. - IvmeooucTion

In the lust few years several definitions of generalized cvolution by mean curvature
have been propased in different contexts, such as geometric measure thoory und the
theory of viscosiy sahutins for parabolic cquatons. Such gencralzed approaches aise
ince smoath Iving by ities after a
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the mean curvature evolution in the context of varifolds theory: the approach of Osher.
Sethian (27), Evas-Spruck [17,18,19], Chen-Giga-Goto 8], Giga-GoroIshit-Suta (20],
which consider the level scts of the solution, in the viscosity sene, of a suitable non lin.
cat parabokic parcial differential equation; the solutions that can be obisined as asymp.
totie limits of the scaled Allen-Cabn equation(3,7,11, 12,15, 16 the waritional ap-
proach of Almgren Taplor-Wanig 1] and js passible, generalizations by means of mini.
mizing movements in the scnse of De Giorgi[13}; the eliptic regularization method of
Umanen [23); the method of the minimal barciers of De Glorgi[14, 2].

The aim of this paper is 1o shaw of minimal barriers applied
o the driven motion by mean curvaure of oriented boundarics, und to carmpare the re-
sulting cvolution with an abstract evolution satisfying suitable peopertics. In particular,
d-emumnbcmmnwgbmicrsu\d&mmhﬁmhhﬂxip&iuhbe
theory of sct-theorctic subsolutions of llmanen (23], who considened closed evolutions
without driving force.

Let us beiefly describe the content of the paper. In Section 2 we recall the abstroct
definiions of burriet and minimal baricr. In Section  such defiaitions are particulsr-
ized for the driven mean corvature evolution, The minimal busrier mibar (E, ) i -
{mdumdhu&vrkmsj,lﬂgh:mbmmdﬂwﬂwdlﬁmdmnﬁmﬂhm
auibacy (E, 7, ), mibar* (E, % are defibed in Seetion 3.3, Due to the presence of the.
forcing term g, th describing the evolution i ranshation iswasiant; to.

mibury (R'NE, 7 ) = R\ mibas*(E, 7, ),

‘hich shows the consection berwoen the barrers sarting from the set B with forcing
term g and the barsiers starting from the set R \E with forcing term g,

In Theorem 6.1 we compare the resulting evolution with an sbstract evelution of
mumﬁummmwmmnﬁhmnmbwpmmmd-mwbw
prinripb.Inpulﬁulluwpmndmmﬂov.(é‘.ﬁ,)udmibm‘(&.ﬁjyﬂd respect.
ively a lower and an upper bound for any abstract evokution sutisfying the previous
propertics. As & particular casc, the comparison berween the barriers and the viscosity
svolution is given in Section 7.

Mu«vahcnwknprmndhlbi:mhnnb«nmmumh\lﬁ,

2. NOTATIONS AND GENEBAL DEFINITION OFf BARKIER AND NINTMAL BAKER

We choose the falloving comventions: if E¢ R is a sct with compact smooth
boundary, then 3F is oriented by the outer unit normal sector vy; hence if & is the
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the following we fix the interval 1= [, + [, for fe R,

We denote by R ) the famlly of all subsets of R, n 2 1. Given g set C e R, we

te by int (C), C, wnd 5C the interior part, the closure, and the boundary of €, re-
. In the sequel we denote by g € €7 (K"  I) (L™ (R" x I) a function satisfy-
following property: there exists s canstant G > 0 such that

Jex ) —gln )] SGlx -y,

“The function ¢ will stand for o deiving force.
We recall the following result, which can be proved reasaning as inl21].

Lewia 2.1; Let TC R be a compoct bypersurfice of class &, Then thene exits 1 > 0
depending on the ™ worm of the second fimdaneental form of X and on the W' worm of g,
such that the evolution of X by mein cusitiure with forcing ter g i of cliss © for ary
tells, ty+ 7]

VeyeR, Vel

Let us recall the general definition of barricr and minimal barrier in the scnse of De
Giorgi [14].

Dusinmion 2.1: Let 5 be a set and et r ¢ 5% Assome that § = DV [E: r B fsbar i,
15 the ambient of the binary relation 1), Let ¥ be a family of functions of u real veriable
sibich satiy the fllowcing propenty: for any f @ F thers exit oo real mumbers ¢, b such that
a < b and fi s, b — 5. We say that s fonction & u baricr avsociated o the pair (r, ),
and e shall write & Barelr, ), f here evists & comex set ] 1 such that 9] 5 and,
sbencuer o, b, f satisy the conditions

[a.blg], Flabl=5,  fed  (fa)plader,
then
(Ab), plb) e r.
For any Ec§ st
Minor (r, E) = {x e S:(x,y) e v Wy E},
Maior(r, E) = {x & 5: (v, x)er ¥y E},
Mini(r, E) = E N\ Mivor(r, E), ~ Maxi(r, E} =

E N Maio (r, E).
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1f the set Mini (r, E} {resp. Maxi(r, E)) contains « unique clement, this element will he
denoted by min (r, E} {resp. max(r, E)).

andaﬁmmwthtminmdbmiu-ﬂufdhwiuddﬁdmbndwmnl
fzation of the definition gven in[14], where = [0, + =,

Dervrmon 2.2; ere.ﬁy'%maﬁwma:l—sdqﬁ.ﬂﬁruyu(b
the fornuls

22) ot} =minlr, (¢t} p:l=5, paBarlr, F), (9l er}),
we sball say that o is the minimal borrier avcisted 10 %, 1, | and we shall romise.
a = mibarlx, ., 1),

Wemdu:ﬂ:&hﬂcndbﬂﬁuimpwnlmd,mﬂumhm
smmnu‘ldan.l:mbﬁapﬂbdfulhmofmuﬁnﬁlnf-lhhuymd‘mm-
sion {see [14,2]).

3.+ BARKIERS FOR THE DMIVEN MMAN. CURVATURE 5VOLUTION

In oeder to obtain the definition of burrier and minimal barrier for the evolution of
o hypersurface by its mean curvature with forcing term g, we choose in Definition 2,1
{511 r={E,.LyEcLcR’},  §=otR")
and we choose the family & which we shall denate by 4, as follows.

Dermmos 3.0 Leta,baRiou<h, Lo, BICL a function f:[a, b) — MR ) belongs
10, if and anly if she following. throe conditions bedd:

li)lﬁt:u((x,rl:tﬁtﬁb,xaﬁ})}:k‘"&MW&&MW!:;,

(2) i i, ¢) demstes the signed-diseance function to the set fif) megative siside /1t for
rels,b] ie,

dix, 1) = dis, fie}) = distie, R NAD) Wxe &, Weelo,bl,

hem theve cxiss s upen set A G R o thut d & ™ (A % [, 1) and GALVC A for amy
relebl

(3] the following equation i d s verificd on 3r):
62) H_aitg=0 Veelob) Ve

Observe that condition (2) requires that the ser fi#) is of class € for any
t& [, £]; condition (3) implies that 3f¢) smoohly cvohves in time re [, 4] by
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curvarure (lmdq:hd by —{n — 1)) with forcing term g, since the capandisg.
s acmally
d—afhdgnfmelhhnﬂvnhu(bdnm)ndmhcwhm
o0k th 6 , then 1) is o commpact subset of & for any £ & [a, B]; note also that
evolution * = R,/ stisties conditions (1)-03) of Defnition 3.1 with g re-
by —g, s that fe 7.

| Jathe sopucthe rebson il b heiclsion of s s i (3,13, s in e o
3 we hall diop the dependence on r, thus denoting the class Bare (<, 7,) by
Bare (3,). From the peevious definions the notions of barrcs and minimal barrics with

fespéct to the inclusion of sets and to the family % read as follows.

Duswsrion 3.2: A function g i 0 barmicy for the meen curvatuee evolution with forcing
term g, and se shall write ¢ & Bace (), if and auly if there exists @ convex set ] ¢ 1 such
that ;| —» AR ) and the following eondition bolds: if f: [a, b1 C ] —» SR ) belomgs to 5,
and flay g pla) dhen fib) C $B).

' The following observation is a direct consequence of the comparison principle be-
nireen smooth cvolutions, and will be uscful in the scquel.

Rewme 30 Lot £:06,B1CI00) fed md le beo (R xDN
AL (R x 1), fi:la,clc I+ HR) fie K. Ther

(33) b fleveflal=AMchle  Viala,mintb, o)l
Let us now introduce the class Barr ™ (&), which will be useful in the sequel

Dirmrion 3.3 We write ¢ & Bare™ () if and only f there exits & comves set [ ¢ 1
ch that @1 — FUR ) and the followwing condition bolds: i1 [a, 6] € ] — R* ) belomgs.
10 & for any he C (R % [)NL™(R" X I) with b= g and fa) g pla) thew flb)C
CHE).

Note that Bare™ () can be defined under less regularity assumptions on g, for in-
stance by requiring only thet g is continuous and verifies (2.1).

Tt is clear that the definition of Barr~ lJJhmmmﬂMhn&n(mmm
Barr () ¢ Bure (). The following & hows that these two
cde. In =wa.|wlhl|1lhmw&ml.7)mphrm{ﬂm[.f)w’:n
necessary.

Lesoea 3.1: We bave
Barr () = Barr™ (F).
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Proow: We have w show thar Bare (7 ) ¢ Barr™ (%), Lex @: = (R ), e
& Barr (F)ileth € 0% (B X N NL™ (R X 1),8 < g Levfi: [, 61 ¢ T— AR ) i w 5,
with f; (2} € la ). We bave to prove thae f; (6] g (b ). Letse [a, 4]; we apply Lemma
21 with 3 = 3, (s). By defnition of 4 the set 3 (s) is  smooth hypersurface for any
14, b], hence there is & bound on the L.* noem of the secoad fundamental form of
& (s) which s uniform with respect 1o 5 & L. ). Then the number 7 given by Lemma
21 (depending alio on [lgler -} does a0t depend on re [, 8). Write le bl =
= Ul b wherea =1, < .. <tmey=band ) =1 % 1. Let us denote by (1)
dnnnnummndmdﬁ(ﬁ)-ilhfwdummgwhn!heb»-w&eh:ml
[t 4211 By (3.3) we have (4,011 G214, ). Then, reasaing by induction on /, esch
Fi satisfies () (L), hence Silh DEplnLy), and therefore filh. )¢
Cplt o). For = the assertion follows, ®

3.2. The rininsal burrier wibar (E, ),
Given an. arbitrary sct E ¢ R* it s immedime o verlfy that the sct
Mled: p:l— 3R, e Barr (), pley) 2E}
bartier, which implics the existence of the minimum defined in (22). Hence the
nmkn.ibwﬁ:nmbulﬂ‘.‘tj‘f]!wﬁ‘ﬁummﬂﬁhmmﬁ;?wi;hfﬂ&u:m-nl

m&edmwljit.,lhmﬂmdmhdﬁwmmwﬁhfwwu
term g defined in I, reads as follows.

Dusmainon 3.4: Lot EC R The mivimal bareiee mibar (B, 5, 1): 1— 3R ) 5 de
o

(3.4} mibar (E, &, Iy = Witk g: 1= HR"), ¢ eBar(F), pis)2E)
for any rel

Since in what follows the interval I is fixed, for simplicity we drop the dependence
on L the notatian of the einimal bareier, thus denoting the evolution mibar (E, 7, 1)
by mibar(E, & ).

Observe that the set defined by £ if ¢ = 1g and by mibar (E, ,1(6) if > 4y, 2 L is
still a barrier, 5o that mibar (E, , Mto) = E.

Obsiously if E, Fe 51R") then
3.3) E¢Fesmibar(E, %)) Conibwr (F, £,1e) Ve .

The following remark shows that if E is smooth and admits 2 smooth evohution then this
evolution coincides with the minimal barricr.

Restank 3.2¢ Amm»nfam.dﬁunmmammqmq
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curvatare swith forcing g[mng-lmmnww[-‘.hlfﬁw
m,nn:c.m,&.uuu, nl

puriscn principle smooth: evelutions, one has that
3 215") 5 b, o et e (F, FU0) € Cele) for al 26 lrg, 1,1
, since Cpe 8, Cplta) = & = mibar(E, &)t,). and mibar(E, %) &
Bt (5,), by definitin of barrier we mum have Cgle) g mibar (E, 5, e} for all
tmltgnl ®

To clarify the previous definitions, let us consider some cne-dimensional exam-
ples.

Exasvis 315 Let o = 1, f:[a, B} ¢ T+ 40R), fe &y and let d, A beoas in (2) of
Definition 3.1. As 1) is & compast set contakned in A undl the signed-distunce function
s of class " (A X [a, 51), il[nllomdmg!r)ulhlnm\mdm«,nhlﬂr!«
' finibe union of ntervals, evobiing in s smoath way, Moceover d i lineas; and hence
Ad =0, Assum that [x (6], x* ll)lumulﬂxmvﬂsmwmﬁcllwmyll
&la, b]. Note that

8y —d Bdy . -t
£ {x= {6), 1) & ), & x* (1), 1) 7 1) Vrelab)
Hence by (3} of Defiaiion 3.1 we get

S m g0, Bt Vielad)

. Let v = 1 and les E be the union of two dijoint imervals, £ =
-E,:f,)us,rr,).whmsm)um (k! (o], =1, 2, and xy" (fg ) <37 (fa), Lt
s assume that the sets E, (1)) smoothly evolve in time by mean curvature with forcing
term g for any ¢ [ty #* ] (see Example 3.1}, and denote by &,(1) = [« ()%, (11]
evolutions, / = 1, 2 (see Remark 3.2). obmmlyvcmu-:m."ixn.vvr
akso assume E, (1) 1 E, (81 = @ for any 1€ [fp, £, aod ' (%) = 55 (1*). Then

(3.6) mibar (B, FNe* + ) = Ly (6 4 1h" (1" + 7]

far any ©> 0 small enough. Indeed, a5 E, (6,0 G B, Ey: [y, () = #R), E, @ 5, and
mibar (E, ) & Barr (), we have E,(t) ¢ mibar(E, % )i¢) for any £& (i, #*], %0
that

(37 Eylr* ) U B (%) = a7 (r*), 5 (%)) g mibar (E, %)(e% ).

Then (3.6) follows from (3.7) choosing E; (%1 Ey (+* ) as starting smooth set for the
evolusion.
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Different definitions of barriers and minimal berriers (and hence of gencralized
evolutions of the set E) could be obtained by replacing the family $(R° ) with other
familics of sets, For instance, opecﬂddmnoduwhmmulqﬂ-:ﬁlmﬂynhllm
pact subsets of &'; with this choice the corresponding gener
ot set. Note that if X, Y:nrlwnlud-bmitumdl!x:)’ ot o e
hmdd:mﬁmwmwxmmhmﬂuddemm
sponding 1o

Fwﬂirobumﬂulﬂwmwhrtt‘ %) s very sensible 10 modificstions of the
original st E on sets of zero Lebesgue measore, a5 sbowed in Exunples 3.1, 52,
3.3. The evolutions mibaty (E, &), mibar* (E, 7).

It is useful w give the following definitions, Let E ¢ R; for any g > 0 set
(3.8) Ey =i\ [xe R dintlx, R \E) < p},

39 E; = {xa R dist[x, E) < g},
and let us define the functions mibary (E, ), mibar® (E, %) as follows: if ¢ & | we
set

mibary (€, e} = U mibar (E;", 5)0e),

(3.10)
mibar (E, 7)) = 1) mibur (B, e}

Rivank 3.3: For any 11 we have
G mibar (E, 5, )¢) § mibir (E, 3, ) C mibar® (E, ),
end such inclusions can be srict.

Proor: {3.11) follows immediately from (3.5). To show that inclusions (3.11) can
be. strict let m = 2, g =0, and simply Jet evohie respectively the o sew F = {x e
eR': {x| €1}, and int(E). Then, if ¢ > 1y is less than the exinction time, the set
mibar (B, Fe) is closed (sce Remark 3.2), while one can directly check: that
mibary (E, 5 M1) is open; so that mibar (E, % Xr] 3 mibacy (E, 5 )(t). On the other
hand miber (i (E), 7)01) s open and mibar® (int (E), %4 &8 closed, bente
ibar (int (), 75)(4) ¢ mibar® (inc(E), F)(0). W

As we shall see in Seetions 5, 6, 7, the set mibar (E, &) does not easily compare
with other notions of generalized mean curvature evolution; this s ot the cuse for the
evolutions defined in (3.10), where the comparison is more natural,
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e 4, - THE EXPONENTAL ESTIMATE
“The main resuk of this section is Theorem 4.1, We need some - preliminaries.
R i Ay S B
welacity = ~(n = 1/ it} = Dell-».
 The fuction g is then an increasing continuous function which is (1 /2)-Holder

 continuous at 1= 0, and with g(0) = 0.
‘The fallowing lemma shows that a harrier cannot shrink too fast.

Lo 40 Ler i [ (R, e Bam(Fh siel s> 2 Then
fx e R dint bx, R"N\#12)) > o — )} gint (9L5)).

Pasor: Let x € g(r) be such that dist bx, R\@le)) > § > gls — ). Denote by
Bix,5) the ball centered at x with radius 3. and denote by B(s) the evolution of Bix,G)
by mean curvature with forcing tesm & ¢l.-. Thanks to Lemma 3.1 we have g &
& Barr () 50 that x & Bir) ¢ gis). Since G > ols = 1), we have xeint(¢(s)). @

\Corowiairy 43 Let fila,BIg T = AR") fe 5 5,16 0a, Bl r>¢ Then
Asve xe & dist ({x, Ae)) = gls = 11}
Proon: Letf (1) = K~ A0, ¢ e la, b), Then/* @ Bare (7., ). Applying Lemma 4.1
with @ and g replaced by  and —g respectively, we have the assertion. B

We recall that i g does ot depend on 3, the trandlation invariance of equation (3.2)
provides the following wscful propesty (see (23.241): let g1 — K"}, ¢ & Barr (7).
ind Kt fila, B1CI—HR"), f= 7, be such that fla) ¢ ¢lal. Then

dist (e}, RO\ @le)) = disti fla), BN\ @la)) Viela, bl

In the general case in which we allor the forcing term 10 dopend oa.x we car prone the
fallowiag cesult, which states that disc (Ar), R\ (1)) could decrease, but in a con-
trolled way.

Lisonan 42: Let : T = R"). e Bare (&), and Jet f: Lo, B1 T — OHR'), fa 7.
e such that fla) C Pla). Set

Ai) = dist (fin), R Ngl))  Wrela bl
Thew, recalling the definition (2.1) of G, we bave
“wn ) 2 Slalexpl ~ Gle=a))  Weala, b1,
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Proor: Step 1. We shall prove that
(42) Mol -2pli 1) Wrsela bl >0,

where g is given by Definition 4.1. Let ;e[ 6], 2> 1; choose xe/ls) and ye
@ R*\Us) in such 1 way that |x — 3| = 8(s). By Lemmna 4.1 and Corollary 4.1 we
have

dist {y, R*\g(1)) £ gls — 1), dist bx, fir)) = pls = 1),
Using the triangolar property of & we then have
8le) € 80s) + diselx, An) + dise (y, R"\pir)) < 8is) + 200 — 1),
and Step 1 i proved.
Step 2. We shall prove that
Sy = e +1)
Eemp ———
Given s € ¢ <b, for any 1> O such thas + 1< 5 berp, € flr + 1), 4, « R NBE T 1)
be ‘such that [p, — ¢, | = (¢ 4 7). By compactness we cun extrace a sequence {z, ]
CORVETRiNg 10 &0 88 A~ + 2 such that lm_p., =pe/it) and lim g, =qe
© RNgl6) with [p = g1 = d4¢), Given 1 < et (s) be the transation of 1) by the
vector ¥lg = p). and letf, (f + ) be the mean curvature cvohstion of 7, (¢} with forcing
m.fw.mun'mu>usam=f,us,udﬂu:my,ng«i,cf+nmu
++ 1), and by taking union with respect 10 y.we bave it/ (£ + 1)) ¢ 9le + 1) for any
small 7> 0, eo that, pussing to the interiors, int (£} (2 + £} € int(gl¢ + 1)),
Deriating by v = g — p) / 8(¢) the outer unit normal to f{t) at p, we bave that v is
alio parmal 0 /(1) g, Since poe 1 + 1) and i+ 1) s a regulerly evahing
smooth surfice we have that

.3 tm 2Ly ay,

=GHM)  Wela, bl

where Vs the ourer normal velociy of lr) atp. Also, since g, ¢ int (£ (¢ + 1)) and g
afy(t) we get the inequality

(441 liminf Ly 2 7,
where ¥ denotes the outer normal velocity of /(1) at 4. Now
Mt +v) =8y =g —p,| = lg=pl =gy —p.)ow = (g —plw=
=g =g)v=ip—pir.
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)&‘Mﬁqb’ r and taking the liminf, vsing (4.3) and (4.4) we pet
tmiag 22 5y -

0t

“Suppese by conteadiction that we can find a time nele, 4] soch that
i) < dlayexp( - Gl = ). Let s) = Pishcap ~ Gls — ), whero P i  nar
decreasing polyriomial such that ula) = 8(a) und ulty) > Bit;). Define

u +* =inffre o.b) 80 Sule)} .
m—s&;lwhwm‘)ndu ), hence +* <, and by definition of *
a(r +r) - a(:*)

' ls*) < ~GAG*).

which contradicts Step 2. @

Lemama 42 in general docs pot hold i s seplaced by o barier snce n this ac
the Inmz: could st
The following result ga:mhn the awoidance principie of Imanen[23, 4E].

“Tponens A1 Let ¢'& Bar (%) y & Barr(F.,) be two bawiers defined om | =
=y, +=[ Am;immr\m:wu.]: or R*N\int (@l )) &t compact. Set

i) = dist (R*N\gle), RN ple))  Wral.
Then
“3) i) Zyl)expl = Gl —n))  Wrel.

Proor: We assume that iz ) > 0, otherwise the result is wivial. Also we assume.
that R"\int (p(r,)) is compact, Let r&{; by Lemma 4.1, for any &1, 5> 1, we
have

FNint(plo)) ¢ {x e R dist (s, RN (1) < ol = 0}
RN () ¢ [x € R dist (x, RON\ple)) € ple = 1)

{in parscular &*int (pis)) i compact). Using the triangular property of 1 (see the
proof of ster 1 in Lemma 4.2) we bave

(460 POES GRS TR
Assume by comradiction that (4.5) is false, and let
1* =inf{rel: gl <uinepl - Gli—phl< +=.




By (4.6) it followes that

47 o) 2 ltalep (- Gle® = 1))
Foﬂvrmmﬂnmﬁndnﬁuﬂy(@-)ofmhmumr&mwhul'
nom of the second fundamental form is ‘ounded with respect to £, and sut.

isfying the following property:
(48] dist " Nint (1)), Q) + st (@, R N p(e* ) 2 ™) = .,

Write R us union of three mutually disjoint sets, 5 1" = Of UL U ON, where I's s
dkwmmedmmnfl’\q,'-whchnmumnim'(l ) Then O U QS ¢
Splr*).
m:hmwmzawwm ¥ may depend on £ but can be chosen
k. O (resp. 1, O) with forcing term
£ starting from (Jﬁp.ﬁ'm ,uwm.mmhrul:'n + rl. There-
fore te[¢*, 0% + Tl [T UQ! l!dnna o F and i€ (i, 4* + 1] = Of U QF be-
kﬂvw!.,%gielﬂuﬂhrm,lmmllmuﬂ}whm
200) 2 dist (RO\pU0), IF U OF ) +dist (OF U Q! R\ i) >
= [dist (R \@le* ), I8 U Q8 )+ dist (O U @, RN 3 lesp (= Gl — 1)) 3
= (pir*) —elep( = Gle —4*)),
for uny r& (%, 1* + r. Letting ¢ — 0 snd wsing (4.7) we get
e yexp ( = Glr* = 1)) < ple*) < yie) exp (Gle —17)) .
This implics. that
w2 ginlep —Glt—6))  Vreale*, " 41,
which comradicts the definition of (%,

Observe that if ra
49 7Y >0 @ir) 3 R Nint (w(r)) .

3. - SOME GENERAL PEOPERTIES OF THE MINIMAL NARRIERS
Observe that if E, F ¢ R and if any smooth subset of E with compact boundary is

abo  subset of F, dmui:u{ﬁ,f)(r}:mhrlf’.-fl(r]fnfnyllf In particular, If

E, F contain the same smooth sets with comy ipact boundary, then mibar (E, %) =




— g
 Rewow 31 For any ECRY we have

Gdh e (B0 Conbac FREL AN Vee, 024

in wdditon E tr clase dhes

@@ mibar (E, ) = mibar Gri(B), F)i0)  Veel, £> 1.

Procr: T Vg E is a smooth set with compact boundary, then V = ini(V), and
 therefore V' is contained in int(EY, dnd this implies (5.1).

0 nekd.mﬁl.ﬂmnE?hlE!.nMEnﬂiﬂ[Emeﬂwmmﬁm
 wd 52 folows, B

Observe that if E is soch that int () = 8, then (5.1) implies miber (E, 7,)(2) =0
any 6> 4, tal

Tuzose 5.1 The following properties bold:

(3.3) i AR apen then mibut (A, 5)e) i cpen for amy tel.

Y AGR is open and i {A, } i a family of opem sets suck that A, T A a3 ¢ —+ 0, then for any
rel e

54 mibar (4. %)(6) T mibar (A, HHe)  ms £+ 0.

I particular

550 FACK & opew then mibary (4, %) = mibar (A, %),

br addition, (fA:R‘ﬁlucyandK:AﬂnMxlmlﬁthﬁmﬁm
thew

(5.6) mibar* (K, ) ¢ mibar (4, £,

wwhile (5.6) does not bold in gewersl of K €A is 0 dosed set.
Finalty, if Ce R* & a closed set, in general mibar(C, 5 )\6) & weither closed wor

apen,

Proos: Let A ¢ R be an open set, Let g T — (K", § & Barr (5), 1) = A, We
claim that intlgh} e Barr ;). This is equivalent 1o say that if f:[a, 61 I — H(R). fe
€5, fla)gint(pla)), then fib) ¢ int (6], We have dist (fla), R \gla)) > 0, s0
it by Lemema 4.2 we deduce dist (/(5), R \9(5)) > 0. Hence fi6) ¢ int (#(5)), and
the clairs is proved. Hence, s mibar (4, & ) i a barrier, also int (mibar (A, %)) is &
barrier, and (5.3) follows.

Assertion (3.4) is & consequence of (3.3) and (5.3).

Let A be apen and K €A be compact; then (5.6) is a consequence of the following
observation: there cxists § > 0 such that K7 GA for any 0 < g < , where K is de-
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fined as in (3.9). To prove that inclusion (5.6} dees nar bald for just closed K, take n =
=22=0A= (i) € R x| <e 7] andK = {(x,. ;) € R x, = O}, Any
smooth set contained in A is going to shrink to a point st finite ume ', and r' s related
to the Lebesgue measure of A, which is finite. As « conseguence mibar (4, 5 1t) = 6
for eny ¢ > " (se< 123, Section 6], [22, 7.31), On the contrary, for uny o > 0 the set K;
is an infinice s which stays constn, 30 that mibar (K,' , % )(2) = K;* for any > £,
Hence mibar* (K, &)(t) = K for any ¢ > 1,

It remains to show that there is a closed set € so that mibar (€, 7 }7) is not closed,
Take w=2, g=0, C={x=(x,m) e |5 |21, || 1}, We shall_prove
that

53 mibar (C, J,)¢) = mibar (int (C), H)e)  Wrel, 548,

50 that mibar (C, 5)(7) s open for any ¢ > 4, (sce (5.3)), and this will conclude the
proof of the theorem,
To prove (5.7) it is cnough to show that
&8 (int (C), 7 )¢} E.Efe! e>4 o e
c if t=r,

Denwte by {€*}, .,y an increasing fassily of convex subsets of € of class & symmet-

ric with respect to the x; and ¥; aves, with the following properties:
U crame),
S NEC={l-1+e 1=elx {-L 1DU{=1,1} x[-1 40,1 —£],
and
BCENACT NIl =8 WosE' <e.

Observe that if § ic a smooth set ince 5 in any commer of €,
it follows that § ¢ C* for some ¢ &]0, 1. Consequently, to prove (5.8) it is enough 1o
show that, for any £ 210, 11, denating by (1), ¢ « L2, b1 ¢ . > 4. the smoath evolu-
tion of C* =C"{a) by mean curvatre st time 7, then

59) C*(B) ¢ mibar (intlC), F k).
Let us fix ¢ £]0, 11 We claim ' that
(5.10) dist(3C (), BC" N >0 Vre [a, .

Fix0 <8 < £/2, denote by p, (¢) = C* (1) NV {3, 33 ): 3y = =1 +8, % < 0}, and Jet
Sob[=1+8,1 = 8] % la, + [ R be the € functions defined as follows: /, & are
the solutions of the nonlinear parabolic equation of the mean curvature motion in




atisian form, with
S =hin) Bnehin)  Wiel-148,1-0l.
Ji=1H8,0=p ), M1+ 80 =pal0),
JorBo: [=14 8,1 — 8] = R represent the graphs on [ =1+, 1 ~ 8] of the
pars of 3C", C*/%, respectively, ic.
Alefotmalhe Jxi | S0 = 8] =l aadi o | S1-8, n<0}naca),
{la ot )): by | €1 =8} = [Lemade I | S 1 =8, X <0} N 3Ca).
Then sy & b fo(— 1 + 0, @) < bl =1+ 8,4), fol] — 8,2} < ho{1 = 8,.2). Cleatly in

the interval La, &) the functions f and b represent the the mean curvature evolution of the
]p-up-nnlac‘ s Wmﬁlolbﬂmhhmm

the

nmmyo<1(1hF,(¢)bcm:mmmnfC""m Le., Fi (e} = AC*/ (),
Clearly Fy{a) ¢ Fy (a) and Fila) Cint (C) forany 0 <4 < 1. Denate by F () the mean

carvanure evolution of Fy la). Now Fy (1%1) coincides with AFy 1), and Fy () = C*/3{¢)
kmmlbkrtu[- 8], hence there exists 4 €10, 1( such that the Hausdorff distance
between 3F; () and BC*/3(s), te [a, b, is asbitrarily small. Hence by (5.10} there
exists 2], 1] such
CUngFile)  Wiefa ).

It folows that C*(B) ¢ F; (b) ¢ mibar (inc(C), {)Mb). @
Concerning the fact that mibar (E, f:nmmn&lewﬂmnmuuinﬂmm

of the ser E ‘on subsers with 310 Libesgue measure, we can prove the follow-
g

Exaserz 5.1 Letw = 2,2 =0, mdmum:l.lmi‘(h-rlﬂl’ iy e}
Dinote by 5 4 chosed scgment contained in the interior of £ Then

(541)  mibar(EN{(0, 00}, % )1} = mibar (E, £)Me)  Wral, 131,
312)  mibar(ENS, %)) = mibar (E, F)(t) Wiel, t3n,
and the sume esals hold when E is he open i bl
{3.11) can be proved (if E is cither closed or open) by taking a smooth set
Atg) g im(ENNA(0, 01} of the form
1!:,)=(x=(x,.=,:z£;|ﬂﬂ—n:x,—z}’h}ﬂz‘}
l'ndmd.p‘;vmr:ll.*cnMcro:nﬂ]m-dtnlhﬁlkwv‘miunﬁr,i'ﬂof
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Ata) ax time &, + 7 contains {(0, 0)}, hence
{10, 00} £ty + v) ¢ mibas (E, )it + 7).

Equality (3.12) can be proved (if E is either closed ot open) by taking a smooth set
Sita) Ci(EYNS, such that $r) = { [5] =1 — £} U 34, where A, is an ellipse, [z«
& E: distfx, §) < ¢} CA, Cint (E), |A, | = Ofe), and the rwo focuses of 4, lic on  line /
parallel to the line containing 5, with 0 < dist(/, §) = O(e). Then, recalling that the
shrinking tme of 34, is proprtional o the area |, | of the ellipse, given r > 0 we can
find fita) with the peopertics listed shove so that Sty +v) ¢ mibar(E, %)y +
+1).

The next example can be proved arguing as in the proof of 5.7),

Exauris 3.2; Letn = 2, = 0, and assume that E = {(xy,5) € RY:xf + 51 € 1].
Let p be & paint of 3E. Then

mibar (E\{p}, % 1) = mibar (int (E), £)e)  Wral, ¢34,

Provosmont 5.1: Let E be o subset of R Then

5.13) B Nmibar (E, 7,) & Bare (7))
In particulzr
(5.14) mibar (R*NE, &) ¢ & \mibar (E, ),

and.this inclusion cen be i, Einally
(3.1%) mibare (RPNE, &) = R\ mibar* (E, ).

Proor: Assue by contradicsion that (3.13) is false. Then there exists a function
Lo BICI— o), fa ., with fla) ¢ R \mibar (E. %)(a), sod with A6) 1
Omibar(E, $)(6) # 0. Letting /= RNf, we huve fe&, mibar(E, &)la)g
Gine((a), and there exins x @ mibar (E, %)(5)\int (/*(b1), Let us' define

) mibar (E, & )(¢) N inel £ (6)) if te o, 5],

0= | bar (B, ) if eI\, 5).

Since @{h) is swritly contained in mibar(E, £)(6), 1o have & contradiction it
s enough o show that ¢ « Barr (). This is cquivalent to say thar if b: e, d1¢1—
~+ B ), b & &, with ble) € ple), then b(d) € @), 1 [e, d] N Lo, 61 = 0, then bld) ¢
wa(!,xi-xlniu(E.J,)aBufE‘f‘).anwsumcrhlrc?n!hpg fe<a<d
we have bla) g mibar(E, % )(a) = pla). Hence let 4 €c<d b Since blalg
Cmibar (E,  )a) we-bave b(d) ¢ mibar (E, ,}d), and since $a) ¢ int(/(a)), by
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on pritciple between smooth evlutions we have also Hd) g int (f ().
(d) g ¢d), a contradiction.

o hat inclusion (3.14) can be wtricy, leg =0, 7 = 2, and E= {(x,, x;) €
ﬁ.‘l €1, |x; | < 1}. Then mibar (E, 5 )¢) is open for any 1 > £, (see {3.7) and
| hence & mibar (E, 7 )(7) s closed for any ¢ > £,. On the ather hand R\E i
ence mibar(R"\E, F,(¢) is open for any ¢ > fo from (3.3).
remains 10 show (5,15, Obscrve that (R*\E); = RNE], 0

 that, i red, by

ibara (R \E, 7., )00} ﬂwgﬂmibu((k’\fl,' E=
o

. z'gnnu‘h«(if\E.‘.L,)(llc,';"[R'\liE,,'.-f‘l(lll-
N 'R'\.'r}.lnﬂmlfb','.i-',li.:)=l'\m'h-é"(E‘6;)(:)
f Let us prove that

3.16) R \mibar® (F, 5 M2) ¢ mibary (RONE, . )ie) - Wrad

{I We claim that for any g, &> 0 we have

337 mbar(Ey. ., KN 2R Nmibar(RNES F ) Wel.

Set ir) = mibar (B, K0 and yit) = miber (R*NE) , 7, )0). Then pa
& Barr(#,) and @ Barr(F,). Let us apply Theorem 4.1: we have
) = dist (B \Ey o B ) = >0,
50 that 7(¢) > 0 for any 1€ 1. By (49) we then have
ruibar (B ,, )00 2R Nint (1) 2 B\ pie) = B \mibae (RONE, 5,00,

which proves the dliim.
By (5.17) we have

nibary (RN 00) = U mibar (R NE L 70002

2, U [t aibar (]

o0 = RN N mibar (B, 021 =

= R mibar® (E, & 1),

and this proves (5.16), and concludes the proof of (5.15).  ®



.

Provosmen: 5.2: Let E be o subser of R The foliowing propertis bold:
(518) mibacy (E, ) = mibary {int (E), ),
319 mibar* (E, ) = ibar* (E, 5 ).
Mareaver mibary (E, &)1} Js opew and wibar® (E, &, 1) i closed for any r L

Prook: Equaliy (5.18) is.a consequence of the fact that R'\E = R \int (E), s
that dist (¢, R*N\E) = dist x, R\t (E)) and £, = (ine (EV); (see (3.9)), Sirmlary,
(5.19) follows since B = (E)} (see (3.9)).

hlt!l:mﬂ:ﬂ.ﬁE,ﬁ]J{lluw,MmﬂhﬂE{‘»‘F,)(l)'ﬁopcnbyl!.}!ﬁ:rmy
>0

It rentains w0 prove. that mibar® (E, 7)) is closed. Let us show that for any
€:¢>0 we have
i5.200 mibat (B, WA € mibar (5], ZHe) Vel
Set

S0 = mibar (B, el wle) = & N\amibar (B, G)M0) — Vrel.
Then ¢ & Barr (7, ) and by (5.13) we have vo& Barr (7, ). Let us apply Theorem 4.1 -
since
nity) = dist (R enibar (B, 9))ita ), mibar (B, )ty )) =
= din (RNES L ES V=220,

it follows that nir) > 0 for any ¢e . Hence by (49] we have

o (B, T 0) 2R Nime (R b (', ) = b (B 3,007,
i, (5.20).
Then by (3.20) we have, for any ¢a f

mibar (£, 5 )e) = M1 eibar

AR

50 that mam'ne,.'r,)m-'qnmmms, + & )(¢), which is closed. This concludes the
proof.

6. - COMPARISON BETWEEN THE BARKINRS AND AN AMSTEACT EVOLUTIGN

The main result of this section is Theorem 6.1, namely a comparison theoret: be-
tween the evolutions mibar (E, % ), mibary (E, 5,), mibar* (£, %), and an abstract
evolution law R savisfying suitable propert




e

,Mmdgﬁmmnlmmmnhw&rmwmufwumuﬂnn
the dependence on 4 in the potstion of the comparison flow.

v 6.1 Let ¢ be a fanily of sts which comtais the apen ses and the closed
R Lot R be 2 function defined in €1 % L We say thot R is & companisan flow if the
bods. (B, 7) @ 80 X I, sething & = RUE, ), then §:[x, = [— PR Lr) =
and she following_propertics boid:
(i) (sentigraup property) for amy A e @, A with compact boundary, sy ty % 1% 13,
st B = RUA, 1, t;) e bave

¥ Rid, M) = RiB. &) Meely, +=0
(i) (extension of smooth flows) if C ¢ R i & clowed it with smooth compart baund-

Caryand if 1y 3 1y then R(C, & W8) conresdes swith the smoats evolution of C by it mean cur-
“Mlnmq term g for all times 1 3 4, for which auch swooth evolution exists;

i) (commparison priceiple) if A, B & @ with A CB, and if £, & 1, thew RIA, 1,0V
GRUB. 1 )04) for amy telr, + 0

o

Leninis 6u1: Lot R be @ companion flows, Thew

T

161 RUE 1) & Buse ()i
©2) int (RE 4, 1) & Barr (% );
163) RN\ FER) e Bar (F.,).

Proor: Set as usual [ = (1, + . Thea R(E, 1, ): [— 0{R"). Let us prove (6.1),
Let f:la, b1 g1 — MR'), fe F, with fla) CRIE. & )la); we have to show that fib) ¢
CRIE, 24)(b]. Since /« %, by (ii) of Definition 6.1 we buve fl¢) = R{a), a){1} for any
rela bl Therefore, using (6} and () we gat Ab)=R(fa)albic
G RIR(E, 14)ia), 4)b) = RIE, 1 )t5), and (1) is 3

Let us prove (6.2). Let:[a, 6] ¢ 1 = #4R"), f o &, with fla) Cint (R(E, & a)); we
have to_show that Ab) ¢ int (R(E, 2 (6)). For any 1= [e, ] sct gle) = R(E. £, 1d),
wlt) = RNAN, and ple) = dis (R \g(e), R\ pi1). Then peBarr(d,), v e
& Barr (., ), either " Int (la)) or R “imt (p{u)) is compact, and ipla) > 0. Applying
Theorem -ll we oheain b} >0, which irplies 1B ¢ int (R(E, £,)(6)).

Let s prove (63) Let filoblcl—@R"), fef, wih Aerc
CRNEE K@) = int (& NRE, pllal_we hwe to show that Abg
SR\ RUE, 1,106, Since disk (), RUE, 75)a1) > 0, we can find o smooth set f{s)
‘with compact boundary such that fla) ¢ im(, (a)) €, (4) € it (R* \RIE, £y }(a)) and,
i £} denates the mean curvatuse eyohion of £ (a) with forcing term —g.
then 3 (o, 61— TR, fre & Setft = BN whmfu 7, fi o) 2 ROE, 1 Wa),
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RNAEVIREGIE. By Lemma 42 it follows that
dis (A5).R™N [, (8)) > 0, and therefore /16) cR*N RIE.7005). m

Ruvirk 6.1 Lat R be & commparsson flow, Asuswe thit
(6:4) it (RTERI0) CRIE )N Vral.
Ther

KIE R & Barr (7).

Proor: Let fila, bl I = 1y, + »[— PR, fe %, with fla) ¢ RIE, 7p1(aT: we
have to show that A5) ¢ R(E, 1, ). We can sppraximate fla) with a family (£, (a)} of
siiooth sers with compact boundary so that , (a) ¢ int (RTE, #, W) and, i, (¢) denotes
the mean curvature evolution of £, (4} with forcing term g, then £, : [a, 6] —» ). f, &
&%, Using (i), (i), (6.4), and (i) we have
Fitb) = RUf, (a), alt) ¢ Reine { KUE, % 00aT, a)(6) ¢ RIR(E, £ M), a)(B) =

= RUE, 1306} ¢ RUE, 131) -
Thercfore /ib) = U /(b cRE. 0B ®

The relations. between the minimal barriers and a comparison flow read s
follows.

Timorm 6.1 Letg e @ (R" % 1) (L™ (R* X I) bea fumciron satifying (2.1). Let
e asin Defimition 6.1, and lt R be a compartion flows, Then, f E ¢ 0 bas compact bousi-
any, and if By, E are defined as in (3.8 gnd (3.9) respectivey, we bave

U RE e

ero

mibary (E, % )(1) = .y.ﬁ(E; Jle) =
& mibar (E, % 1) ¢ RUE, £, ¢) ¢ RTE, t-::r);'rjme,' el =

= D RES )e) = mibac* (£, 500,

for any tel.
Proow: Recalling | = [ty + =T, we have R(E, #): - P(R"). The inclusion
83 mibar (E, ENOCRIE, b)) Weeld

i an immediare consequence of (6,1) and the definition of mibar (E, ),




| We claim that
RIE; | io)f) ¢ mibar (E; K N6} Wral, ¥g>0.

>0 we have E; e 6i; for any tel set ¢if) = mibat (E, ) and yir) =
N, RUE; 201, Thens & Bare (), 1 & Bare (-, )by(6.3), ither B* \.int (91, )
RNty )) s compact, and

iy = dist (RTE , llag), RENE) = dist (B, KNE) = ¢ > 0.
Tt follows that 5(c) > 0 for any £ & T, so that B\ p{¢) € ¢ls) (see (4.9)), and (6.6] is

proved.
From (661 it follows that
67 'l;l.m;nﬂmr.o;:m Yiel
Let us show that
(68)  mibary (E, &) = _t_l.ma; o)) -vlgnim Vrel.

By applying (6.5) with E replaced by E; . taking the union over ¢ > 0, and wsing the
definison. of mibary (E, %) we obtain

69y mlbﬂ.(E..f,Kr)(,l;l,RlE;.l.:i.‘) Vel
In addition if ¢ >0 and ¢ 215, by (67) we have

mibar By . F)0) 2 U, BB Js 1 2000) 2K(ERy, ) V¥t
Hence

mibary (E, )02 U REG 0 = U BB, il Vewas,

030"
nd (6.8) follows.

Let us show that
t6.10) RE M N RES Sty Weel.

o
Let p > 0 and for any 7.6 [ set i) = RUES , 25)2), 9ie) = R\ R(E, 750001, Then by
(61) and (63) we have ¢ €Bare() and ye Banr(7.,). Moreover pity) =
= dist (R*\E;' .E) = ¢ > 0. By Theorem 4,1 we obtain y(¢) > 0 for any ¢ e . Henee
by (49) we get

RNl = RIE 700 ¢ ¢1) = REES .6 e)
which implies (6.10),




Tt remains 0 show that

©10 N RES o) ) RES 100} = mibar* (B, )0 W
The inclusion mibar* (E, 5)¢) ¢ 11 RUES ,#0)() follows by spplying (6.5) wich F re-
placed by B, by taking the intcrsection over ¢ > 0, and recalling the definition of
mibar* (E, Let us show that
(6.12) mibar (E, )02 0 RET, 600 Vel
If ¢ > 0 we have, by (6.7,

mibar (E7, 5)(1) 32 U, RUE, 20 4)l0),

and (6.12) follows. The proof is complete. W

7. - COMPARSON BETWINN THE BARRIERS AND THI VSCOSITY EVOLUTION

In this section we compare the minimal barriers with the viscosity cvolution, To this
aim let us introduce some notation. Let & be o closed set with compact boundary; for
any t & [ we indicate by VIE, £)(r) the mean curvature evolution of E with forcing term
4 in the viscosity sense [9, 10,20,25,26]. This means that

wn WVIE, ghin) = {ol:,1) =0}  Wrel,
where v & @R X 1) N L™ (R* % 1) is the unique viscosity solution of

Vo

+ [Vl
oy ) ¢ IFele=e,

- W-ub.(
22)

vl ta ) = walx),

and the continuous function  is constant outside some bounded sct and is chosen so
that E = {x @ R*: vy x) €0} 201, If E i an open set with compuct boundary, we shall
ke VIE.g)o)={e(4£) <0}, where 5, is chosen so tha E={xe
&R wylx) < 0}

Given the st E with compact boundary, when we write V(E, g} we implicidy as-
sume that E iy either closed or open, and VIE, g) is defined using the conventions de.
sciibed abave, Observe that the connection between the case £ closed and E open is
given by the equality

RONVEE, ghe) = VIR'NE, =g)le) ~ Wrel.
The fallowing result follows directly from Theorem 6.1, since VIE, g} satisfies prop-




- e

‘erties (i)-(iii) of Definition 6.1, Le., VIE, g) is a comparison flow (in this ¢ase we choose
a8 the family of all open and closed subsets of R*).
o

Tezowsm 7.1: Lot v be the viscosity solutson of (1.2). Then for any rel we

s
nhs.le Ft) = {ol-, 1) < O} ¢ mibar (E, 7 2) € {ul-, 1) = 0} = mibar® (E, &)1}

B e 5 i clsod inh campee ooy shes
: VAE, £)(1) = mibar* (E, 5)e) Ve,
B 5 i i et By thes
> VAE, £)(e) = waibar (£, 7,)0) = mibara (E, %,)06)  Vrel.

Note that from Theorem 7.1 we deduce

e E, o b (B, 00 = fotn1 =0} Wrel.

The foomiog el i 0 e it of he s o s

a consequence of Remark 6,

Tuzorey 7.2: Let v be the virconity solutton of (7.2) 1f

@3 int(Tot, A <0 g et <0} Wel,
then
Tr <0} e Barr ().

Assumption (7.3) i necessary: a5 a counterexample let n = 2, ¢ = 0, and let us con-

pkrdrvme,mhmmnf:i-lnuld-qnfmnﬂdlqmmk’hnunm

v negative inside the two squares. For any 2el the set

1_‘5»( <0 1o the unlon of the mean curvarre evolution of cach square
sepurately, while {v < 0 ...m.qge Hence r(—y. <) < 0] @ Bare ().

The result of Theorem 7.2 becomes interesting in wth the presence of
Mmmmmna-,nzgmmmmMm.u
Te5 11 < 0] is stictly smaller than {o{-, £} = 0}, Accurate connections between
VIE, ) and mibas (E, ) seems however non wivial in presence of fatiening due 10
property (7.3) and the counterexample above.

Adoestedgenrents, We want to thank Ennio De Giorgi for interesting discussions
on the minimal baricrs. We are also indebtcd to Tom lmanen for having showed us
the connections between the barriers and his results on set-theoretic subsohutions.
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