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RODOLFO SALVI (%)

Some Problems for Non-Homogeneous Fluids
with Time Dependent Domains and Convex Sets (*%) (***)

Qualche problema per i fluidi non omogenel
in domini dipendenti dal tempa ed in insiemi convessi
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1. - InTRoDUCTION

mmnm.mumma,,mpmm, the mo-
ton of 3 which
describe the morion are

» 8+ o VH—p A = g f—Vp
an Zue ba-Ve=0 ng,
T 0

where = (0, T)%%2, & is 1 bounded domain in R* with boundary I
0 7' oo, and 2, = Ffet; moreover ¢ = olf) = p(x, ) is the density of the

= nft) = ulx, 1) = (%, £, s, £), an, ) the webocity, f = f(0) =
=, )= f :=.z>f.(m)f.<r.r:i extermal force, wu PO =)
the pressure; the constant i is the coefficieat.
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We complete the system (1.1} with the following inftialboundary condi-
tioas

Wm0 on Ly
.2 e, 0) =g in 2,
o(x0) =g

The existence of a weak solution for the system (L1), (1.2) has been proved
by S.MN, Antonzev - V. A. Kajikhov in [1] with 0<xcaycp (2, = con-
stants). For this problem see lso [9]. Later ). Simon, in [20], proved the
existence of & weak solution with 0.<gy<f.
Moreavee'A. N. Kajikhov i [6], and 0. A. Ladyelenskaga - V. A. Solos-
nikow in [7] studicd the system (1.1}, (12) in & class of smoother functions.
In this paper we consider the following physically important problems :

Protest 1z, Fisd a seluties of the sarem (1:1), (1:2) wbem sbe spoce region 0(2)
Jiled by the fvid ut time 1 deperds un. 1.

monsxsy 2: Find a siutinn for @ serisiisnad iveguality wiscioted o gporent (1.1},
(1.2} with & tiowe: dopemdont conves: set.

Some papees (131, [5], [10], 11, [12]) sppearcd concerning Froblem | fox
Navier-Stokes equations (g is constanc). In pamticular, H. Fojita - N. Sauer
ia [3] proved the existence in Hopf's clss by a sart of @ penalty method.
Turthermore, 2 far a3 1 know, the only esistence sesuls for Problem 2 has
been obrained by M. Biroli in [2] for the evolution Navicr-Stokes cquations
in the rwn dimensional case, and the convex st depends on time smoothly.
The cxistenes of o waak soluion foe Problem 1 was peoved in [17] by waing
the Rothe method and an elliptc regularization aysuming 0 <=<qy<f:
thermaze Problem 1 was considered in [18) using the method of H. Fuj .
N. Sauer for 3 diffssion model of an inhomogencous Ruid. Problem 2 was
considered in [15] with particular time dependent convex seis, where it is alio
given the physical meaning of the variational inequality studied.

In this paper we prove the existee of o ek seliisa of Hopts choss for
Probiem 1 with 0 <.y | by wsing the meshod of H. Fujita - N. Saver combined
with the elliptic_regulasization, This fact permits 1o use directly compaci-
ness, thearem, valid in cylindrical domaing, proved by J. Simon in [20]. We
notice the method of the elliptic regularization was used by the author in [16]
and impeoved in [19] for the Navier-Stokes equations in non-cylindrical do-
mins.

Problem 2 i investigatcd by using I|||: ]sclln]iy method.

The outline of the papes is as follow

Wullll 2 is devoted To the notations, and 1o the stements of Pro-
blems 1, 2. In section 3 we prove the existence of a wesk sofution of Problem 1.
Section 4 is devoted to the cxisteace prood of a weak solution of Problemn 2.




2, - NoTAmions AND PRELIMINARIES

W:mmdd:r!hellwn{!he!wﬂ|nlspned0mﬂn§(ljudm1s!|l by
We assume that 21) is & bounded domain in 2% As ¢ over (0, 1,
(s} gesesates a (7, 3-domain Uy and 1), the bou

) 3

which one requites 1o find », g, p sucisfying

b aw Ty dn = g f — S
@n Bt wVp=0 in 2,
Tumi)
with the initial-boundary conditions
=0 on Ly,

R 0 =ty e O 0 O0),

where

wVamEuins V-ur-'i?,ﬁ-
= 5

Naw we give the weak formalation of the Problem 1. To this end we need
particular functionsl spaces. Let 2 be an arbitrary domain in &%, We put

DG} = (g e (G, Top = 00

(G} = the completion of D(f) under the (L3(2))norm ;
V(2) = the completion of D{f]) under the (H'(@)*norm ;

(H(@) is the usual Sobolev space of order 5 on L¥(D)).

o-.q.-g wrdvs b=l

=3

Gy 10ER = wla
:
and in general ||, denotes the norm [n the spice L.
Lot G be an arbitrary domain fa e T sl T St 1B
Far functions u defined in & we define

u(,),“i J e




=
whenever the integral above makes sense. Then we introduce
D@ = {pt pe(C@OP. wppac G, Tig=10),
H(G) = the completion of D(G) uades the (LG} norm ;
(G) = the completion of D(G) under the norm »(g) .
We ser the definftion of weak solutions of Probleim 1 (for semplicity we set
=1
(4, 0) i & woak daltion of Problem 1 if
i} 28 V{#e): 08 Lo(@0); Vigus Lo{0, T: LHOG)),
) Ve D(O,) with §(7) = 0 the cquility

.
@) [ltom 2o o+ (oo 5 Ty s ) = — Gt 90y
holds:

iii) £,0+a-¥g=0 in the distributinns scnsc.
We semark there Is oo essential difference between Problem 1 with #ly, = 0
and with 4l = b 50 far a5 the existence of wesk solutions is concemned,
Now we set Problem 2,
Lex Cle) be a closed convex set in F(Q(5) at time £. As ¢ increases aver
[0, 7). (1) geneemes 2 set U Clebe L0, T; HE@(D)).
We shall find functions v g puch that
(024 g Vo w— ) - ([, 0 — ) — (o, — )0,
@4 Bt w-Vp 0,
w0 =s, o0 =p0,
SO e S N T S e R O Vel T
(,8) = (ny ()= .

We give the definition of weak solutions of (12), (24).
(3, 0) s & muck miutinn of (1.2), (24) if (sec [14])

.
[t v - (o T — ) 0= ) oo v — )

> VEE®—s)
25  Fe-+#Te=0 in the distrbutions sease ;

Ne L0, T: V), (e Cl) ac. in (0.T);  oeL=(@);
Vane 220, T @A) e HNO. T3 VD). #)eCl)
sie. in (0, 7) and (Y= 0.,
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Now we state the assumptions made throughout the present paper.
Assurrion 1: Ty of eless C
Les PY) the ..m;m‘m, operntar from H{fh) onto Clr), and w0 an

integer. Now for evesy decomposition of (0, T) in ar intervals (1, 1,,.) we

denoie by C el convex of U (.
We have

o=y co.
e e

ty=Tim et 1,2, m—1))
,c0= U €0, 0=cp), v0.
Uc denote by P? the projection operatar from H(G) onto €7 and by 7(/)

tic function of the interval (7, f,,). We state the following
ms on the convex set.

Assiarmion 2:
7

lim g:?f’)(-".‘—ﬂ:n):ml'dr:n weLg.

1ot
st [l PRt ase

swformly with respect 1o w, 1,4, aad with & = Tim, ad ¢ & foced coustont (in the
following ¢ denotes diffecent constants).
Now we state our results.
Theonest 1: Lot
meE(QO)  [elXD): el (@) O<p<d

(3 dr & porisive ssastansy, Fartivrmors rie Assumption 1 batds. Then. there exists a
wisk solnsios of Problem 1.

Trueorew 2: Pr ectire

WS H@NCW:  f5L0, T: ) ;
weLo@) Ocoshs
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0 ix an interior poiut 4f rl.C(J). Furthermure Asimmption 2 bolds.  Then thare
i« wrak selwion of Problers 2

Tuones 3: W aschont
me HEHACE ;
acl=@);

Furthermre the Asiumprives 2 and 3 bald. . Then dbeee excists o weak salution of
Problem 2.

FeIO. T H2) :
Dep<f.

3. - Proor or Timomesmt |
Let us begin by considecing the following approximating problem.
30, - Auiliary problor.

We introduce an auxiliary bounded domain 4 in & such thar the

boundary
28 is smooth, () B, Vre [0, T, and dist (35, l‘m);wu e o, T
(dim = dirtance; and y — constant), We pat By (0, T)x B Lex Eme By

— 2, and zs the chamcteristic function of £. Furthermore d, is the nat
cxtension to B of uy that is @ = In 2(0) and 6, = 0 in B— 2(0). We let
i€ CUB) with

(311 D vicgicat Vi

and

o3—=ay  steongly in LA(@Q) for some p>1.

Wedenmnphnh,[th:mnuh,um ..3\9 of f.

We consider the following auxiliary prol

We look rorn:,g_mmmﬂfmchlh:
012 e HEIO LA, T VIR ¢
61 aecB);
r
O fle@ursEugde + (o plle— (et 02-Frdi—
— (ol Brte— (el f, ot mlxadl, pla} =

= (g3, 9(0))s— (T, #(T))s 5
G18) gl T =0,

Here & s obtained by a repularization of a2 by & mollifés (in  and 1) do-
pending oa ¢, sad by projection an /().
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Assuming #, is known, the existence of the solution g2 of the continuity
equation satisfying (3.13), (3.15) follows from smndard techuiques, using the
method of charscieristics (see | 7]).
Next we consider the existence of a solution of (3.02), (3.M). We set
.
oy 92 = [ (et Pt + (s i

'
— (oot T Fpda— (0h0t, Bupa+ m(zash, wab e + (AT, (T e
'
L4e) =[en fy whodr + (el #O0)s -

L s a continuons form in F(H;).
We note
@16 alel

LRTAECA AR

and the form of, —algh, 4%, ¢} in weakly consimuous in

HYBY L0, T: K.
In fact, bearing in mind that if », -+ weakly in H(8y) then r, —» ¢ strongly

in EA(By), the weak continuity of the form (g, o4 %) i obvious.
Now from the eontiauity equation (3.15), we hay

AT 12— (0 0), w7 0s) =
i
~ [l ot )k G i

Thus from (3.14) we have

i
et 2t o ot (s 21

alol.

4 3 HCTIACTY, 82T + ({05 0) O] et cnn

“Then, for a well known thearem (see [4], p- 106); there cxists & salition o

of (3.44).
To passiag o e limit ar = o5 and ¢ =0, we will need & priosi estimares

of the approximatians #l, gf.
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32, - Standard . prioei extimaiss.
Teom the method of the characteristies, (sce [7]), by virmwe of (1),
one has

@2y D<vVr<pl<a+vi.
Now, we zeplace in (3.14) g by #%, it gives
r
[ttt bz
o+ e i (o Wbt = (303, 12 000)a— (UL TICTY, (T ¢
Bearing in mind the continuity equarion (3.15), afict some calculstions, one has

.
fdrsei [imider: [VEDWO<e:
‘[-\m\:am VET (D,

hete ¢ is & constant independent of w and ¢,
(3:21), (322) and the rogulaity of g} imply for m = ==
w at weakly in L3O, T V(B) :

W =0 strongly in ZNE};

oz Pk =i wealdy in LA(B) ;

“ 3 weakly* in L9(B) ;

@ -g'  weakly in HO(B).

From the compactness thearem in [8], p. 38, (3.23) implies

dyew' weongly in L8y
¢a-sg'  stwongly in LBy,

comequeatly

i s i e,

Caiau, o' Win]  weakly in LNB;) ;
M. et wekly in LB
Furthermose, we note o = 0 on £ whence

o <elioly + WP INEE) =0

—I—




<omsequently

am0 on Iy,

Passing w the limit s -» oo, (323), (324) imply that 4" satisfes

029 [l i, et Sl (e S =
\ = et PO (AT D

Ve H\(B,) 1 L0, T (B) with support in Gy,

(3:26) B+ Vg =0 ac. in B

We note ¢ & CY(f) again (see [T], p. 707).
Now by virtue of (3.22), there exists a subsequence of (g, #7), still denated
by (¢ w), such that

w s weskly in V(B:
¢ o wek®in Lo(B);
Horedie  weakly in L0, T3 HH) .

The compactncss theorem in (8] p. 58 and (3.22) imply

o —n steongly in LA, Ts HAB)) ¢
g weakly in LA(B2) .

Now reexamining (3:25) and bearing in mind 4 — 0 in £, we notice (3.25)
contiaues o bold Vo EIB) 0. L0, T V), with g 0 on T Now s
weak solution of Problem 1 could be ohtined with u and o provided that all
recams I (3.25) converge 0 the corresponding terms in (23). We obiain this
If gt converges t pw stroagly in L-(n.r H'Um. for example. To this
we need o cstimate 4 time

3.3, - Timr difference quotient ectisater.
‘We denote by ¥ the exrension by 0 of a for 1< 0. We let

-(=-';‘:|f?u)ﬂ

vhere  is 4 positive numbes.




=
We consider furthermore the function v solution of
— Ayl £ V=0 in20),
@.31) Vvl =0
v =# on I,

To estimate 2,y{, we fomally differentinte (3.31) with Tespect to 7 and we
consider 7y} a3 4 generalized solution of the problem

— byl 4 Vom0 in 2¢),
(.32) L =0
s =— (o i—B)b  on I

Bearing in mind the smoothness of 1(7), from well known results on Stokes
problem (see [21]), se have that

. E,ﬂsu(o. T, H{(a(n))
and the following estimates hold
G Iniloro,mommy <8,y <VE 18 o ey o 3
B39 Rerilogom <2~ Bl <
<Leih) (measure (90— s — )P atte— Bl

Furthermore, we denote by 8 & function which satisfes the Stokes problem
a5 (332) in B— (1) with the Following boundary coaditions

0  on2B,
6= on I(H).
For 0] the estimtes (3.33), (3.34) hold.
Now we denote by w the function equal to v in () and equal io B in
B,
Now we can replace in (3.25) ¢ by o — ¢f and we get

-
G39) [ afb0, e By — Rl — B — e, 7,0 (s 0

gl - (oo, @0Vl g} + (oo, 79—

— VB (o), Fele)— ot~ D)o+ (@, wha}dt =

= (o3, FOYa— (T (T w2 (g, (O a-t (A TIw T (T
Now we denote by 4 the extension of a* by #(0) for ¢ < 0.

e
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By virue of (3.22), Jensen inequality and the smoothness of I, one has
-Lfv-cam. FO-R—=B)i]<
< :wa.ﬂn\-(tmo—-u~ﬂ))1£\.+uvh—»—*nf—»)m.)m
<a ,FMH‘ + e (VB )i+ r-rﬁfw.rﬁt«

<el¥h -+ VBV PO (Ot <aVEs

T

._[[(..-..m,a&.;j';r;.luif‘»(‘)&llw..

< Mflv:.( _rﬁi*(-){zt)“ﬂ«ﬁﬂ :
W

(336
‘;‘J! [f[}il}bf;‘(t}d’r!‘ﬂ(

j{g-:-- ¥ _[' () -}.«

r

.;qw_[w J'I[ip)[-.i,)”'a-:-:fn:

|j(|z'f- m.ﬁi < r\n,llp&iﬂ-u)a fu.v.i:

mj'r:‘(,m!l-;
<WI(fww)'"<-m :

Thanks to (3.33), (3.34), similac estimates hold for the terms conaining g}

in (3.35),
Tinally we will estimate

1T w(T, (T <V T Dl

.
A Tl Bt




Thanks t0 (3.22) one has

@ —mfu-trma.lw— i) =

- mfwﬁﬂmzﬁ uw:ﬁvmmh

+ lf(mﬁvmw— Bt~

= utwfl\fm(m—i-(:— Bfedr=

= "f!#).ﬁ‘fmimi:ﬂ mi«)ﬁ«ﬁﬁ}?«—nuﬂ
= uanj((r(r:—a-(r— DYl — byl — o d—

- 'mfmmn»wmnhm+

+| f ({vl-_j':fr(‘) e Bo—s) o] -

— 11@:‘]:\@ (Ree)—(r— ) e <V +

+2 f ((iF(')WJd}*t'—ﬂ). b)) o]
i umflvﬁ?imo—w- H)ade<vE 4

+M'ﬁru (_ _[ Eisa)
=) ’r'fe-(‘rima—w—wmcnw—
- umﬁ‘/ﬁﬁmm —R{e— b3 de.

T e T e ol g




(3:36), (3.37) imply
P
VT R+ R dr<evE.
Now ¢ belongs 10 a bousded set in L=(By) consequently
(438 jwmmw B—r()dr<evi.
From (3.26), 2,0° belongs to & boanded set in L3, T3 H-(B)) then ¢t sat-
lafics thc nequality
239 et + B —e (oo, r-nimsmy <k -
Now the sappiag (¢, ) —~grat I continous from H-(E% (D) to IP1+(B)

with r< § (P-4 Is the dusl of the Soboley space W7E7) with 1jr+1/¢'=1.
Hence adding (3.38), (3.39) we obaain

s
[letr+ iets 48— e O nm o< b
Thanks to the compactness theorem due to J. Simon in (20, the immersion of
=
W s e 22080 s WWHlote-+ Byt < o
i

from LX(B;) in L3(0, T; H-Y(B)) is compact.

theorem and the sbove estimaies imply there exifts 4 subscquence
of (g2, #), still denoted by (g, a¢), such that
(340) g strongly in 230, T; H-Y(E)) .

By vime of (3.32), (340}, we have Vg & CF (Br)
. "
e e o i = [ -

Now it is  standard matier to pass to the limit ¢ =0 in (3.25), (3.26) and ta
prove (4, o) satisfies the integral equation (2.3):
1t remains 1o prove
sap fy@nlaw<c.




fo<red,
a0-[7° #ea,

here 7 shitrary
man(xz;:hyw)udmmmmwm

r ;
A VOB e binds -+ e Eun D, D) [ e )|

Passing to limit in (341) one gets
L"ﬂ:l\‘d(')"(llihcr .

From (3.41) we have (Veifam(t)mo) it a bounded setin Le{0, T); thanks
o (3.22), (3.40) we have

Ve <e.
The proof of Theorem 1 s completed.

4, - Panors or Ttwoness 2 axn 3

we prove Theotem 2. We utlize the resolts in [14], and pact of the
mammaormnal
As in Theorem 1 one obtains & solution (g%, 47 of

:
et + e~ -L @im )
gt 03 G o) o = — (05

BT VR =,

with 0< 1 <g, \.Au-, fm eI, T3 V{Qj) wnh .mnn and # is an
approximation of 4™ by smaoth functions of

.
o+ Vb [ BB <e 4 9520 b+ AV TG .
E
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Furthermore, the following estimates hold

'
[rvarce WEOriol<es

e lw & Jm-il—ma«;
o] Sl Enpepase,

with ¢ 2 constant independeat of .
Conserquently for m — =

a= - weakly in L0, T3 V(@) :
“3) e welkin (D)

Bom g weakly in LX(0, Ti H-(Q) .
Wheace, by the compaeess theorem in (8], p. 58, we have

omvg  steongly in L0, T3 HD) 1
comequently
o™ e g weakly in LND).
Now we aced the estimate
“5) Jernonte+ ) —weepde<evE
We denote by @ the extension by zero for £<0 and /> T. We let
“n= )'hnm 5

We soplace in (41) # by a7, aod we cheain a5 in §3

.
W) | i, R S A (e O <V
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“Thanks to (4.2), (4.6), 23 in § 3, we have

a7 [l m—mmoparcevi s
i

+-j 0= rrimcs. [ras).
Now
i
fﬁl’}-mdmu 2d b—=0 strongly in L2(D),
uniformly with respect 10 . Hence for overy b< K with o suitable fixed §
i
.é'fn-(qaz‘ﬁlc,.

T it by v of 4. sl pogery o 7 bnple she st e in (47
s <r
By vmchnulfq(m)(ﬁé u?; sﬁmm compactness theorem gives
ara g, weakly in £A(0, T3 £A@)) .
Now it remains to prove
MHeClE) Yee @ 7).

From (4.2) and the assumptions on P we have
¢ :
J\(I—P(l))n(fl!’&< i ![urfm)'--mrm
« .
<1m (& ([1sacer—pun mtaea) +‘[ ertat— Fryueioar) =

whence

r
[itr— ooy tatpé=0.

ey A

; il N




— o=
Thea
(U—PO) o) =0 acia (0,T).
From this
HECE) ae a0 D).

Now, by choosing n acbitrary fanction v H'(G), #(f) e C15), snd o(T) w0,
aier some caleslations (see [14]). und passing 1o the lint m — o in (A1),
we obuain the tesult.

Now we prove Theorem 3

TnpvalHl theorem we utilize the proof of Theorem 2. We have 10

we only estimates of the penalty tem.
o Bt bt

w3 J ‘(uf.n.-:-«m,]::.-o;a)«

<Vin3, ~.‘(\(r_ P?}a'{f)\(mf‘;;‘[m'lljw) arcevh.

Now we consider the case b 1fm. Let n(b) > 0 ant integer, depending on 4,
such that (A < b < (a(2) -+ 1))

Beasing in mind (4.2), and ub! W (s}dre €7, we have

TE ]’ (e a-mn.'j;-ma} =
i :

5% T'(cl— ) ﬂq.:f-;'-*w )t

+53 [ (o~ ?T)l'(f:.:r(.l—ﬂ)i‘(x)d)ldc

- %.g-. ]. (f-' Fr)une), JP#‘(A')‘A]‘)1,

(\(I—-t"f)w"({]i(ﬁl‘— Hir(x)\-u.)“}ﬂ_ri-

% .,\/J_gj';‘gf mn-au( -j:\:r— mwuu.)"‘m-—,




— 1 —

feon
<t w‘ﬂ('g' j|(.'—m:-m\-a]'"<r+

I T

+ovi(EE _[\u pramera)+

(334

wuiine

Jire o)< !
qr«}»r,wglzj. $<r+=vﬁ.

2, it is a routine matter 10 prove the

Now, utilising the last part of Theo
existence of a solution of (24).
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