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of these results a5 well s for many conjectures conceming further develop
ments and related open problems,

In this paper we first study & class of integral funcrionals strictly tied to
the tol variation measure of 4 (veetorvalued) function of bounded varia-
tion and some relaed propenics of BV functions (Scction 2); shen we prove

GBV classes were defined by means of o variational condition (cf. Defini-
tion 3.1): we shorw that ebq may be chamcierized by a distribusional propesty
{sec Theorem 3.5) wehich could be useful in their handling.
Subsequently (Seetfon 4), we introduce the chisses BRI/, whose members
are bounded fancrions of baunded variation (on a bounded set with finitc
pecctee), sae the elied el LAV s GAV' ard smdy sorse ebross
between theon and the spaces B and GBI'; the most interesting sesult seems
to be Theorem 4,16, wheze & cannection berween LEL and AV s shown.
The main rcsults contained in this paper have been announced without
proof in [PD]. 1 wish to thank E. De Giorgi nd L. Ambrosia far many
helpful conversations.

1. - NOTATIONS AND PRELIMINARIES

I this papes 2 always indicate an open subsct of Re, 3 1 morcaver we
adope the following standsrd nottion:

Be(x) = [yeRs [v—a] <) Be=B(0), S =28,

-] the scalac product in an euclidean space,

(¢) an onhonuemal basis of R

(R, R = {wr: R =R, w linear), endowed with the norm

#0) the class of all open seis ACL2,

#(2) the class of all Borel ses Be 2,

Acc® means that Ae #/(1), Ais compact and Ac 2,
 the chamctesistic funcrion of a sex B,

T4 the identiey function, 1d (¥) =~ Yo,

18] the Lebesgue measure of a measuable set BIR®,
, the bdimensional Hausdooff measure in R~ 45 [0,4],
R = R* (oo} the one-point compactification of RY,

1] the toral variation measure of & measure .
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. Dersmos 11 (cf [DGAD): Let a2 @ R be 2 Borel function, For
2, 6, we set ¢ = aplimu(y) (approxinae kit of » 3t %) if

0= -u-w.r"[s(-ex-r B

ss (hence bounded) fuaction

=.g¢in.me|=.mmdmh.ppmml,ma..mnx,
er, the et

Su= fve 0 aplimi(y) does ot exie]
set, negligible with respect to the Lebesgue measure: one ean thus
: 1o # which s approximasely continuons
WM;uvmbc&:wwd by &
Al): Let s 2 —+R* be 3 Borel function, snd
we 5ot g — - (x, # ¥) (outer trace in x along ¥) if
s =limzat L o+ )6
o
B =R (see [VA] for an equivalent defini-
flos)

) = O )

it the fallowlag stassménns woe eqivaleines

Moreoser, if both the inner and the cuter tzice exist in x5, along two
08 v, v then necessarily v
i Let w: Q- l‘beal!oulruluuvn For
that u is approximaicly diffcrentisble at
2 (nccessatily )I.lnwopemu%{x)em'l‘)(wr
dllwmdllaflm;‘}wr.bh

.EE,.MF;__’E;{!{HLL—J‘H“ 0.

w6 G then the appeoximate differential coincides with the classical dif-




2. - SOME REMARKS ON FUNCTIONS OF NOUNDED VAXIATION
This section is devoted to paint out same propertics of functions of bounded

variation which are partially seaticred in the lisersture (see r.g. [AMT], [DGA],
(GEL [MMJ, [VA], [ZW]) and tould hopefully pave the way o the sub-
sequent penerlizations.

Dersron 2.1: We shall indieste by CN the elass of all eonvex functions
@ Z(RY Y = [0, 4 o0) such that

Bim) = M) VA0, we PSR,
o) =0 i r=0.

In particalar, for every such fonction 9, there exist positive constunts , i
such thar

1) afe <B(e)<ple]
for every wa #(RYRY,

Throsgiont 1hir section 1be ltior w wi alwys indicate an B salned Borel fone-
tHion defined i an spen set QCRY,

Derrximion 2.2: Let » be as above, and ¢ €N for every A= (1)
we st

J#(.')u)-ini{ﬁf_lijf BT v ()C G A byew ae. in A}.
Rexcang 231 1F [0(Ds) < + oo, then we LL(0), and we have:
23 Io(u.] - lnfllilmnljﬂ("n.)lx. (RICCUAY ;= win u,w)}

i i

for every A #0).

T fact, let Bec 2 be & sphire; from the wellknown Poincart-Wirtinger
incquality (see #g. [ZW, 3.11.2]), we readily deduce (for suitable constints ¢
and )

@3 j'i-—-lﬁ-vja(m) "

whenee #e LL(@); equality (22) follows at once.  m
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that &--WJOM) is LY, lower sensicontinuous; mose-
'J'da}-)<+-|.uus far some 9= CN, then from (21) it follows
holds for every function in €N

241 For ewery 0 CN and evecy w we bave:
Jron - Jﬂm.Aaﬂ},

The incquiliy
w[f’(ﬂd-duﬂi'-f‘(m)

To prove the other one, suppose fist [§(D4) < o= Atguing as
mmt!],bya.l}wxq

Joa< oo fcon<fowon 414

Acc. Given & >0, choose A, aum.w.rn-.ﬂm«m.
Ace2; we obain

Ja(m:j'o(mu s

yields j{o(.b-) <sup] 1«&), Acco).
m)-+emmJ\D-\-+qmmhhmvl>ﬂm
cc & such rhu‘nDtb Mz, whm‘]‘qmpmi this completes
-

‘into account Propasition 5.5 and Théortme 5.6 of [DGL] we can
following result.
o 2.5: .l}';l(l)-)<+-=;ll-.fb-r[—1‘-
A»_[i(m. Ae(0)

Mo}‘-anw Marterer, it ean be mmigarly ectesded bs @ regatar
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Resank 2.6: For  given function % the messures defincd in Proposi-
tion 2.5 for every 0.¢ CV are all mutually absolurely continuous, in view of
ouz cocrcivity @i

The nest results provide some other: characterizations of the fonctionsl
we ase dealing with:

Tosons 275 Lot we Li(0) and O O thes Hhe falowing eqaities botd:
@ froa- s j(.{g?ﬂ».)af. 22 CXE, #R R, 9461 = [.}4

where #*(g) = sup [(leﬁou).)n (R, RY), and v bave st
with (&) the comonizal

i) for every ye C3(RY) uch shar v>l‘.‘£w- 1, st ) = (afe)

Jﬂfml=ﬂm[hl[\{:|p’l.0(f(nlp))dk.A.’ a|,

Proor: See for every ve LL(0)
Gl »'!)=!l=p“.(v|’:§-1 ,r,)a. PECHA PR RY), #(a) -o};

let us cheek that Gy, ) -[n(\'v}m for every ve C1(A). To this end, we
first remark that #* is the mﬂlﬁhﬂ function of the bounded set

B g 20, B): Cyl <l Yr smch thas d(z)< 1], and that 87t
“Then, by well-kaown measurable sekection theorems (scé ¢, [RT, Corollary 1C])
for every re €3(A) there exists 3 messurable function »: A4 — SR, RY) such
that:

I-’("ﬂlx: o (7o) | — 07—

{mpkwnm ey ’f\fvcxn»mm

On the ather hand, #(x] & B for aa. xe A, hence we £5(A, #(R%RY). A
standasd on argument and iniegniion by pusts hes gve Gl )=
-jom)&: for cvery ve C1(A), as chimed. Mareover, the fonctonal G i

LY, lower semi-continuous, bence (s, /)< [0(Dx). Asguing s in [AG) (ec
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the Appendix in [AMTI) we obiain for evesy A ex 01
r::-,m;-umpf'(w-r- o)
4 slso, sioee wnp, +n in Lt
".L""PJ.'”"“‘” ¢>j'n(m; 5
the supremum for Acc @ the thesis follows,
Rewans 28: 16 2 =R, then another chasceiston of [8(00) simiss
Mmaz.vanhcﬁm. Indeed, let we LNRY); 1 <pss, 0 CNG
A>0:

il = WHJ“;!#O)GF ==l

Jon = ko by
result is: well-known when a(-)=[-| and p=| {see [DG1]). Our
| statement, may be by adaping the classical proof.
Wu: Lat (n) b o sequence of CHQ) fmcrins swch thors
e @ (e suakiy in the sese of distributives),
ﬁg'_wf'wr.)<+m;
AELL(0) esd mervorer.
: !P(WJ =M{n;3hr6[-<v~.:d=. e, nuin 2.
ncquality (ck (23) he sequence
the same

Wintinger
compact, whence 46 L1(2).
minienzing the right-haod side of (24) shaws

J'O(D-)dnl[mufwma. WA, w2 (@)

&wmuﬁm .




— 302 —
Fram our Proposition 2.5 and Theotem 3 in [RY] we can deduce

Tusossn 210 Ler & CN and bet 9 be strictly consesc (. tbe ieve ess of
den's cuntain’ ay segrent): et () be a sogiover in CQ) comverging to W w03 if

lim [am.)-ﬁv- 0c00)

tim fr(smyds = [rom)

Jfor srery va TN

Conouany 2415 Let by, 0, be in €N, and det 0= 8, + by Hhen for every
A oA(0), ond for every

j'n(D.: -Ia,(m: +_|o.(m) %

The following definitions: contain some generalizations of the measures
fo(pn). D¢ CN, which, in view of the results just prescared, scem to be very

narural,

Durumion 2.12: Let ¢ be a non-negative Borel function defined in 2,
and let 1,,, be the measure defined in Proposition 25. We set:

jv'(D-)-j}(x)qu.m for wvery Bas(0).
:

Dernserios 213: Let 222 +R be  Borel function. 1 [fp0(Du) <+ o=
we sets

[roton) =j’:-r\-u)o(m—jl(—nwwwu}
foc every Be@(id).

Dermrrios 241 Let dy, 0y be in G, and & = bty for cvery Be (D)
such that [0 D)< 4 o, i 1,2, we set:

jam.) = !o‘ (Dn)—| i[g,(n.;».

otce thns s dofinion, accoein; 0 Corlary 211, dot not dpend on
the decomposition of 0.
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pacticular cases in Definition 2.14 we may rake the functions v, () =

|¢ m(:, (lmp. (40} s an orthonormal basis in Y. (resp. BY;
‘given function

) = [rulDr) .
given 1 €N, the Radon-Nikodym derivative of o, with rcapect
mx._,(litnmmludwnwumb&ﬂﬁhﬂlﬂ)bﬂﬁﬂl
Borel function which will be denoted da"f(!(bm

whose entrics are the functions r, (i =1,

(Pu/(@(Da))

ate now 10 define integrals involving De in 4 quite general

215: Let i @ PR RY) R be 3 Borel function such
) = Iy, #), VA= 0, ¥e 2, we PELRY), For evay Bes()

j'v{ﬁm)-jr( ,ﬁ%)aw-:.
e ot gl s depnden of e purin chckce of 9&CN.
the homogencity of

‘main préperties of functions of
a mm!] [GE] WLI‘”HVHHZWI
say thae s LO) s of bounded

_[|o.|<+w:

e will aay thar we BVL(0, RY) i e BV(A,R) for every
and ser BY(@) — BV(@,R), The space BU/(2,R) of all fusctions
af bounded vasiation, endowed with the norm Irlm-JH#+jW4-
0 be 4 Banch space. According o Proposition 25, .-BV{.or)a
i iny distributional derfvative Da s & (R, R'j-valued) Radon
We wh..mn.zmﬂv‘m.nl)
BV funcsions.

F ECR* s » Borel set we define its perimcter relative to 2 as follows:
gﬁ.m-.nnm and e say that £ has finire perimeter in £ if P(E, L)<
<+ oo Notice that if ¥ BI/(2) then for a.a, 1o R the set e 21 a() <4}

pemencs in 2 ([FHL 4590120 éashesmore, 1w BT, Kin
| L2, RY) and P(E, 2) < 0o then yyne BV{2,RY). I P(E, )<+ o= then




Py e

P(E, 1) = o _(@*En ), where #*E is the reduced boundary of %, ir.
the set of the points x & R™ such thats

J'|Dz.\>u for all g>0,
i
.
stim [ [100l)" [Draf=st) and =1,
LW
Let 0 socall also the wares formads (sce o5, [GE, 123], [FH, 45 5013}), [ZW,
S44]):
@6 iD= [IPrfis=[#ostin By
P S
where U, = (e 4 n(x) < #) and Be @),
Rewank 2.16: If we BY(0, RY) dhen fts bebaviour near the singular set
5, can be well precised: in particular
() the set 5, is countably (., n— lyrectifiable, i it can be covs
cted fup 1o an 2, ,negligible set) by 4 sequence of € hypersurfices (.
[DG2], [FH, 45.9(16)], [VAD
) #, .Hx:lfimntr}— m}]-n (<. [FH, 45901
(i) for 2, de %55, there exiots €5 such that both the inner

and the outer twace along v exist ([FH, $5.9(17), (22)]); benceforth we shall
-m ) (resp. r(.w)) instead Of tr* (x, ) (resp. b (x,u,¥)) Whenever

The following theorern yickds 4 slighe genenalization of the searva firmna
(cf. ¢4 |DM, Lemma 24]).

Tewomest 217; Lot u: & =R and [0{Da)<+ e, Then for ey Be (D)
i flhwing graafcod cousen Formale datss

.J‘aw«: -_j_ j (Do)t

wlore Uy = [ree 01 a(3) < 1)

‘Taking into account Theorem 2.17 and Remark 2.6, some of the results
proved in [ALI, Section 3] concerning the decomposition of the distibutlanal
decivative of 1 BV function can be gencralized as follows, by repeating cssen-
dally the same proof
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ml!!: Let N, and (0(Du)<< + va. Thew, there excisis a Borel
G 0 with |G| =0 yach that for wmery Bee #(Q):
H Byt il [MDA)=0
LRT)

oo = (e [aete—ribe. 4 [400.

, for every Be W(2) the following equaiiy boids :
_[O(V-)émsnf{‘lxa(u.): K comact, [K]=0}.

Theorem 2.18 shows that the meisure iy, splits into theee parss: the first

the mndmluwrsgbomé-idmfa.n wanish.
W ate aow in & position to define integrals with respect to the Canter pert
of the desivative of 3 B function.

Droirion 249 Let  be as in Defiition 215, 05 CN, Ia(bi)<+ o
sers

Joocon = [ gtepn)  vBema),

ot e C. 1 deocd 52 Theorn 218

We ¢od this section by recalling the clussical defsition of fuaction of
variation on an open subset of the real line, in oxder 1o show how

 one characeerize fiunctions in B1/(2), 26 Re, through their one-dimen-

Vo= mp {3 ot —stt ] <5< < mp;]:

exs V() = ind (Vi(e): pm m m in J] o
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ess-T0u) = X {¥{n), / connected component of 0],
one has the equality:
Jipu = en-vit),
heace we BV(G) if and oaly If #6. LH2) and ess-Ve) <+ o,
THEOREM 2201 Lef QT R* be a opes s, and s LND). Set fir asy v $=
fraRr: Gwfny =0)
and for X,
8, =(reR:ix+iwed},
) = b he)
Tie following conditions are equinaient:
(i) we BV,
i) for eery o5 it bobde:
!&quﬁl’..,< oz,
-
Marssrer, we bure. il foliowing inegualifier:

JosValudde, < [iDs]  ¥rost
. i

an:‘ 5 Jevaser,,

Jor coery orthonarmel baris (e,). Finally, ave cas compate tbe tofol variation of u from
#he wariation of ihe sliver as follawr:

[ipal = 5 fosttusterir..).
: o)

wberd. Hhe ixpeessiom is takan among alf the comiabie Borel partitions (5) of 2 asd
amang all the choices of (v in S*5,




3. - ON GENERALIZLD FUNCTIONS OF BOUNDED VARIATION

&mmmmmmammavw«m
2wdnkll§mm“pmnlhﬁmumd distributional
. on of GAV functions

g XK' = [0, - o) be & cominuows functions following [DGA],
F,(u,nj-a[‘(y, B[Vl
FECUO,RY, and

Fn )= w{iy.ﬂ.(n.m. (ECULRY, n—=wac. in 0}
messumble function #: £ -+ R,
nnmmn 31 (cf. [DGA[) Let w be as sbove, and A € #/(2xRY); we
s 2 generaiieed foaction of bownded

Rl o (LR SNV )
B}<+wfmauymn¢pdumdmnﬁn&dm com

supputt sts & sequence () c €
PR muv,( ) F\fis )3 %6t 5, = (1d, ), It holds

Fitn <ot mo) *+Jl(«*--.€¥))\7~.!#<wnﬂ<+ =
(i, ), ) = + oo

Iy, let (Id.-]scavrn 23 A), mke 3 continuous function g1

£ -+ R be a cut-aff func-

= (ibays 00 has

PM-Q)CPM.Q’}<WI<+¢=‘

hence By 0)< 4 o=,
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Resarx 3:3: It can be cusily scon that if A is  eastesian produc, say

A =QxE, for some He o(R"), Definition 3.1 can Nphﬂ:ed as follows:

e GBU(Q, @) T Fls, )<+ oa for every continuous function

£ R 1}, 4 =) with compact support conmined in £ and for every
Qe

Mose of the propesties of GAV/(8, A) we are going to present rely on the
duain ule for compasition of A1 functions with Lipschitz continuous fune-
tions s recently established by L. Ambrosio and G, Dal Maso (see [ADM]).
For reader’s convenience, we recall & statement comtuined in [ADM] which
is sufficient for our purposes.

Tueonest 341 Let e BV, RY) and ¢t B =R be Lipachirg_ comsivmonn
et v pon. Then re BIAL(Q), X, (S)5) =0, and for wery Be (W) i
bl

[iee| <UP(')JED‘!'
[ 1or= [ ptei—p)lir s
e Gk

128y < Lip (5| Dul B
whore we bave ot | Del(B) = | Del{(BS.), |Dl(B) = | DR 5.
We arc aow ready to prove the main sesult of this seciion.

Trmoniat 3.8: Lat i3 QRS mossaradle, ond A% A(QXR), For 2 0%
KR R Lipicits continnons, denote by ¥ gp the_grodient with respect 1o the Jost ke
rarkibler; s we GV, A) if for vy & Lip (R, with spt (%) o=
pect contained iv A, st v o (ld, x), ove bar we BV (0)

Proar: In view of Lemma 3.2, we can suppose without loss of genealizy
that A s  canesian produce, say A = 2x B with Bc /(R
We prove first the only if part,
Ler w6 GBV(D, % E) and fix &cc 2} iake
peLip(@xRY)  with spe(V,g) compact contsined in 235

and set gix, 7)'= V(. 2)]. We have Fi(v, 2)< + ov, hence there calsts 2
Sequsace of Ot functlans converging a.c. 10 i such that Flny, £} <eonst <

<4 oo; since

100 o)l <[Pt mol b+ B, B) < cumst,
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 the lawee semioorinuity of the lefthand vide we infee [|Dgon)i <+ oo
o I3 bounded the shesis follovws.

Let s now prove the if part.

mmuummmu it will be sufficient to prove the following

o vy v CHR) 1, Vo bt compat gt i E ¥ B D)

f_(.a)<+u,&rmgu-wm_p-m R0, =)
ith rompuet support ceniaimd in  avd for ey Qe 2.

then a fanction ¢ as above be given, and fix 2'cc 2.

e e 14 the piof wil e pagid by the Faligwing Silmatesproved
" (42)), which holds for every we BV(2', RY:

) B 0 [ o) Bt 4 [ 4w s B a¥) ¢
A i

i, in (3.0) is defined fuc every p, g= B as follows:
s -inr{.j‘g(,_m)b‘:mm FECH0 LR, 70 =y =g]

since the support of g is compact, sw{um} ﬁ.ml'}c-t-m 1
Rim {5 AoW 10 construct 3 SEGUENCE.
e, o u, and such thit F(J_‘G’J<oomu<+ u.-l-md.-mruum
‘an obriogs disgonal rgument.
K be the suppont of g, Ke £, and lec U be an open
R"\Dhﬂaﬁnh:anmhﬁu(

toally bounded, there exist a faite number of points 3, € K i n-x |}
})m;).mh.nﬂuyu(us,.u)mhm-ﬁdvmm \

ReE, this gevting {7 s required. Let then be G, the only unbounded
t of RAVD (if k523 the union n(lh: m nbeurded

components of R0 if & = 1), and let &, the other ones,
that, due to the smaothness of 3L (:uw‘}. C.nc‘,-s The next ‘
the peoof of the following |

Cuna: Tiere exist apen sele By, o, B, R sk shat Vi Cic By, B By= 00

=0 .u(rnw,),n) <o Moo, i F= 05 U8, I
zpne BV(E,R). = i

In fict, let v, (im0, ..., v) be € fusctions on R such thar

#e»0, spt(Vw) compact contined in FNK,
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0 on G, and

PO AD N0 AD =0 for i

Tor every i wowe BIAD), heace there exst £, 10,10 such chat
Graari(i.nl) um ruuu 0 i i, 27 e vy B WTUAD e

the requi
rruuny, Rt RN T £ C Ry spt(Vy) compsst contained

in E such that y=Id on ll"\u By; then poue B, R)OL(,RY,
-+

whenee, 13 P(F, )<+ o, 1,{!-)5!’1/(9 R} but ;,c“.)..n,

the Claim is proved. Remark also that arguing as in Theosem 4.6 below-it

is possible to prove that if € F, then

@ aplim z,(7) = 1.

To complete it constauetion, It us show thit (s 4 1) sequences of piece-
wise constant AV functions (va), # = 1, .., v, & N, cxist such that s,
e in @ OB 18 b o F o5, and Falx)e B, for as NENUBIND. To
ehis end, reeall thae every open set in B can be written as a countable wnion
of disjoint boses with sides patallel to the coordinate %63 ; morcover, 10 sim-
plify the notation, let B be ane of the 85, and fix arbitrarily ¢= B, Fix now
a decomponition of B us above, and, using a3 ususl disdic pareitions of exch
P
bk build & sequence &« S, e, (sith A B and D= B0
o) By) of piecewise ‘coastaat mmne functions convesging 1o ¥

s o 00 wlE), Then, lec Ay be open seu such it B¢ Ay wnd
14y < MY, and K A be fnite witoms of boses deduced
tively from parcitions of Ay such that |, AF,| < (W) %, Finally, set

e VP | P RSN [V B

s

and = X g+ egu Since PEL D)< o P(EL 0) < ony the
g

funciions %, belong 10 A2, RY, and 7(x) € B for aa, xe 0 n'(B).

Mocsover, 8, =4, on U (Bun B Bur

@ Ean Boe § (B D,

and the messure of this last set goes 10 0 as b+ so. Then, &, =~ a6, in
i (B. (The peavious consteuction doet aot. work~wrbatin—if 8= By
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1Bl = == ia such o case, & sequence of compact sets invading B,
hmmwm&wmmﬂh]

# aw denote by, the sequences ust coostrucied for 8= 8, and
B 2 (B, and =z, + % pugn the Bist step will be the est-

urr,(u,.u) First of all, ceonark that #,(p, 4>=osrp q= B, (pand ¢
foined by & path which lies emirely in 8, hence docs nor interseer K):
e, the integnl aver 5, in (3.1) (for ¥ = »,) can be estimated as fol-

Lo SN A< [ o (e (YN )
o
+upap) £ PF B <+ =

iategral over 5, 0 ¥ docs make semse beeanse of (33)). Morsove, siace
piecewise constant, [Dm[(2') = | Dyl (2) = | Br|(F) 30 thuat:

v 0) < tap 1B ) 4 JW‘M»rtr))ifﬂM-i-
anr
+apd(p: DEAE D<=

e proof is complete.

Rx 3.6: In the course of the proof of Theorem 3.5 the following I
has been obeined as 3 panieular case:

(2, R if Vs Lip(®9 |
s 3pt (V) ds compat, it holds wenc BVu(@). l

\
I
scalar-valued case, the previous statement can be rephrased as follows: I
|

i
’hmm a7 w KCR® e a clused set wich 2 (KNG} < -+ oo, wid
uem\;g

_[gv.q<+ w  prewy AcO;
K

26 GBV(L, DR).
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Prooe: We adapt the proof of Lemma 2.3 in [DGCL].

For every he N there extsts a locally finite covering of K with balls 83(x)
such that g, < b and T o, (P54 (ed) <o, (KA .02) 1), where ¢ de-
pends only on the space dimension ». Fix v as in Remark 3.6, and set
oyl

w0y for weUBLERD,
nx=19 for xa LB .

Since  is locally bounded, 7, and v arc in LL(2), wnd furthermore using
the (classical) chain rule :

(1D < Lip ()| Pl +clrup p— ) (# s (K0 D) S 1)
i i
for every Acc 2; henee pE BV, () and, from the Jower semicontinuity
af the total variation with respect to the LL(£) convergence, it follows thar
rEBIL(E. [
Provostrron 3.8: If arctan (w)e BV, [Q), fhev we GEV(Q, OxR).

Proows Set ' m () (wid), 0< < o, ‘and b= arcean (#); #n ‘appli-
cation of the chaln sule gives

fiorl<q eI <t o VAccm,
b b

whence s aV,_(m for every 4, and then we GAV(H, O%R), according
w Remaric 3.6

4. - Tue cuasses BAV, LBV, GBV*

This section Is devoted to. definc some new fancrional classes introduced
in [PD] and to study their relutionships with the classes BV and GBV. The
main tesults proved here have boen announced without proof in [PD].

Derosreron 41: Let n: £ =K, and let 552 be such that

(i) diam (B) <+ oo,
(i) PERY<+ o
() e B = aplim g (s} = 13




—aB—
we sct e BEV(E), or equivalently B¢ BBV (u), if, set

W iEeE,
""“""%u i el B,

a0 BV(G, R 0 L*(2, R,
previous definition enables s to gencralize Definition 2.19.

- 4.2 l.nu 0 =R and le gz O3 SR RY [IL+=)L=
« 1-homegeneous with respect t
R Fuﬁsl(l-)w-u

1o the varable in

Jv(ir. €Dy = ﬂp{‘ .J;ﬁx. <), pesBVIW)

the integrals in the ight-hand side have been defined in Definition 2.19.
ven & bounded ‘sct £ with finite perimeter, the duss BEI/(E) has nice
‘properics which cin be easily deduced by the definition. We collect
in the following
scanx 43¢ 1F J satisfies (i), (i), (ii) in Definition 4.1, the class BEV/(E)
a vectar space, dad if 4, e BAV(E) then ar and Ve, wAr ase in
two. Mogeover, given #& BBV/(E), for every y: R+ R*
cantinuous we have youe BAV(E), and fur every B with P8, R%) <
we have ny¢ BBV(E).

L wone 441 Lot ws 9 R and BC.0; we ser Fu LBV{H) if there
3 % sequence (), 45,C 9, such that

(B0 B) =0,
=

SrEm<t e

EeBBV()  WheN.

Ee LB(v) we shall also write a6 LEV(E).
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Tuonnse 461 [f we BV, (0, ) asd K 0 is ompact, v K LEV(3).

Pucoe: As marked i the piscoding Socon, A BV(0. ) i s com-

ponents ae in BV(2), thus we nuy sappose & = 1. To simplify the nota-

tion, choose a nommal field v 10 5, Iulud:unrthx-‘- i~ (whenever they
scc Remark 2.16); then u* and u- are chamcterized by

() = b R themsup 07 B) 3 (p 1) —-o}
i

(o) = sap [ R Himsap - B4 0 31(9) <)l = O

For every £, 46 R set A, = e < (,\)<x'(x)gl) for every xe A,
we may seleet = such thar w°(x) < £ < 7, obeaining:

limsap -~ Bi(o) 1 Ly ) )| <Limsop g~ Bufe) 0 Ly ) ol =
the same argument can be wsed to check that
limesp et Bitm) 0 (r:a0) <)l =

a0 therefore aplim 4, ) = 1 for every 4 A, Let now be K2 com-
pace'and e (T such that K Ace & and PLARY < of i view of
Remark 4.3 it is enough to prove that A= LBV(s). Since ue BV(A), from
the coaren formula (26) ir follows that there exists a sequence f, (€%,
st oo ar bt onand fr— oo 43 b oo, uch thr, st Fie
= {re i/, <a () <H() < foualy T P(Fon A)< o+ oo Set By= ANE,
Eye BBV(s) and moreover =

PE RY<P(F,, A) 4+ #, (@A 0E),
therefore ¥ P(E,,RY) < 4 =; from Remack 216(i) we caninfer that
#, 4 (ANUE) =0, then the thearem s proved.  m

The following definition identifics another elass of functons whose vari-
ation is in some sense control

Darisa w42 >R messurable, and A ¢ A(@%RY. We sy
that we axv-(u /) i for svery Lipschits contimuous finction g3 A — R
with enmpact support the function = — go(Id, ) beloags 0 DI,
Notice that if A = 2 R* then Definition 4.7 may be rephrased 3 follows
(of. Remark 3.6):
wEGRVH(D, 2 iff for every Lipsehits coninveus funecion 1 R+ R
with compact support the funetion » = yau belongs to AV, ().
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481 As in the GBI case, the follawing equivalence holds ¢
22 GBVA(0, A) 1T () e GHV*(2, 9 4).

e CBY(D, A), and ler p!ﬂxl'xl'4! be & Lipschiiz ‘con-
o !uniﬂn with compact suppart in £ A; sex ylx ) = gl ¥, ),
’ support i A and uhmu-ry sl yold, 1d, n) = wo(ld, )
hmt-rld.ld mye BY(G).
iy, \et (1d, ) & GBU*(2, 0% ), let ¥ %R R be s Lipschirs
funcrion with compact support in £x.A, and let AecD; ser
-gwy(’:ﬂ_m,u.md‘fmu! o sich. that y = 1 fa a
od ‘s compact support in 2 A dnd go(1d, 1, £) = y(1d. v}
m-;(!d.ld #)e BUB).
1 betircen the classes GV and GV s in order,
49: Since for £> 1 and Kc R compact the set R K fus only
conneeted component, Theoren that in the vestor-
rasc a...« classes GBI/(Q, B%RY) and GAV*(2, 2 xR colncide. On
scalar-valued case they ase different. In facr, let

-(:e)—k’"' for Ozt xel.

ey o chck that e GBUND ek bt N4 GBV(D, 0 xR):: Con-
4 ,wmd-snn GBI, QxR GRI™(2, DxR) s

selations between the clanes swu.- QxR and
v.} sufficient for membership In GEV" will be
e (so0 Theorem 4.15); fos the prescae to, v will it Gasslves

 out the following propeny

WeGRU(E, QxR) and u ir bousded from bricw ot from chove sben
(9., QxR); in partiodar if ne GRV*(D, DXR) dew

x| GBV(Q, BxR). H
face, given wc CRI/*(0, 0% R) with, say, #=a, it suffices to show that
# /b BY/, (1) fox every bos, Fix b, and let y & Lip (R) be such that |
o if ¢<.
Wi m| t=b ek,
a b,
sipport, hence a6 GBI/, xR) jmplies wene BVL(2); |
&\i' .D(yaar) uazeﬁm »*nBv,,,( ), too.
we point out that if w—( A
GW-W Dxl‘) md :'.EL(Q}.’\BV[Q) for im . then
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8 FHOIDR ol SR ool i Yot e

ugh one suppases 4, =
)& GBVH(2, 0B does not imply i,
(8, 9:cR), withiout forther mssumptioas;, in. Fit, st & = (—1, 1), s0d
sn(lx)  for —1<x<0,
“"’"{lr for Dex<t,

the fanction #(x) = (f(x), fi=x)) is of class GHV(D, DRl = GHI*
(2, 2x1) but its components. are neither in GBI, 2xR) nor in
GBV*(0, 0xR). Conversely, one: wivially has [GBV*(2, @x W) GBI
(2, DxRY.

The following lemma partially extends 1o GHI™* funcsions some results
which ase. wellknown for BY functions (cf. Remark 2.16), snd has been
provedin [AL2] In the GBI sectiag (see Peopositions 13 and 14 therein).
The same arguments work also in our case;

L 410 Jf we GBV=(2, 0:RY) thea:
(i) # i approxtmaely differmtiable s, fe O
{ii) for #,_jca xaS, there woist ye S, 7,70 b thet g
=t (e, w) ol e (,
Gl S, in eomisbly (I _y,m—1) reiifiaile,

In [DGA] for every w: &2 -~ RY the sets GBIV amb (s) and GHV dom ()
have been defined; GBY amb (v) is the unlan of the open subsets A of 23R
such that #c GBI, A); the ser GBI dom () ks defined by

Gsvaom(u)-{xcu\:,: (% lgl\ma(y})ecﬂl’mbw}.
In the same vein, we sct
GBI amb (x) = | {4 € OxR:: g GBIV, A)) .
in pemea) x4 GAV(0, GBV amb () whereas ne GEV*
0,68V~ amb s) alvars e,
et GBI/Y o (x) we must give the notion of desd appresi-
marr ﬂm‘l

Derrsrron 4.11: Let 7 £ = R* be a measurable function, and ler x= 825
we set

Caplimu(y) = (KR, Kea(n),

where K& 2 () iff K is closed nnd.mncw:(fnl every g ¢ O with com-
pact support in B K it holds (o p) =
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thar C-aplimsaiy) = faplim )] whenever shis bater exie; n view

BV dom () = [0 20 Caplim (7 NGBV mb ).
e 13, If we GBY(D, A) thon for eomy compoct et Kc 2 ve dase
K[) GBV* dom (u) = LEV(x) .
We cin supposc. without loss of geaenlity that A = GBV*
=05 Tox some. 16 SR (cF Remark 48, Take 3 compas 3
sequence (#,) of bounded open sets such that U B, = B,
2 cominuons faoctions vy R R with compast support_con.
hammur.b)-;ﬁx;-a. At this point an srgument similar
ane ia the proof of Thoorem 4.6 can be used to achieve the result.
Notice that if we GEV4(2, 2R then
LGBV dom (4] = [x2 0: e Caplimatn)}.
following theorem shows that, under suitable ennditions,
A (T GBV* dom () = 0.
4145 If ue GEVH(O, xR asd
J""“ +flCD 4 (S < o
Foi(fre 2: cos Caplima( f) = 0.
partilar, wader. the frevions iypathees, ¢ LRV s).

ﬁ-mkun and 0. -n_q..-p), i e ~C GBIV, DXR),
,mf L o

0. (u) s empty, wl
" of Lemma 4.10(ii), and [FH, 3. 3.!3 aad 3.2.26], ., (Q.(6) ﬂ.'»'.] -
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24 pare. . (B.0008) =0,

Set B S, and, for any e N, By fve B d—1 < i) <b); fom
the eoarea formala (2.6), it Eollaws that for sny & N there exista ¢ (h— 1, )

sach that oF,_ (PH{u<< 1) P\ B) <IDwi(B). Since [Da(B)= E [Bul(B), we nfer
Jim o (7l ] 0 8) <t

Arguing as in [FH, 45.9(3)] and localizing we obuain that for o=y Ae o)y

P A)‘r.n’,_,ﬂ 1 A), where « depends only on the space dimca-

sion u; therefore 8,) =0 and the theorem i proved. W

The previous result enables us 1o eshibite some further conneetions be-
tween the functional classes we are dealing with.

Tueonrse 4153 [ ue GBY*(@ DXR) and
i[w-ue +J ||+ 2,450 < 4 00,
ihon e GEV(2, DXR).
Pacor. From Theosem 4.14 it follows thar
(e wecupimicn]) =0,
e fo exey =0 st o= (= )Vl 8] =0, B a0
and Acc (2 let p be 3 Liphite continuous fanction with compacz
conttined in £ R and 4(x,7) = 7 in am@whmnhnmiof.‘lx(— 5], Let w*
be as above, and == g (id, 5); we tave wo BV(Q)
JiDu1< [0 + 20 a5 < o,

wheace 1= BI{A); in view of Remark 3.6 the proof is complee. W

The following theorems conmin intcresting links between the lasses LBV,
GBV* and the classical spaces BV,

Treonms 4.16: Let w: 2 =R we LBV i

@3 10} +[[Fuldb + 2 1(5) +({CDaL< 4

shew arctan (s) & BIAD).
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mmmnnwﬁnuﬁlthmﬂm
wvﬁhlxhﬂehsh:inmdmd For clarity's sake, we divide the

1. Lot GCR and ws LBV(Q); if (4.3) belds tien arctan (v) € BI(L).
RQLBV(J)\R}W!-D-UE-. where each B, satisfies (i), (i),

of Definition 4.1, hmmryﬂ,huﬁ.lgm bounded open in

e [VA]); moseover for every §, u;.,(s)=.(;r)i(xe5.,u.m=u
e have ng,e BV(2) 0 L7(4), h«u,bf'hmm

Farthermore, arctan (i) — atctan () in £4(@), and

faectan G vy <3491 + J el o i) +Jncb-\ ;
areran (s) € BV(Q).
now come back to the geaczal case, € RY, 132

2. Lat na LBVD) and srifis (43), Lot ve 5", ad 7, = [ye R
O}; thew for O,  NExe the fuvetion (1) = n(x 4 #v) belongs 10

hence for #,_yaa. X6, the bt Emm; 0: G ()
— 1) for every 451 and they cover 2,
“prove that ((n)g) = BVR) 0 L(R) for X_yaa Nem. e
ey LR, for every, -1, thi follows from Theosem 2.20 and
o ()t (oaid wEm)

by sup & ne LAV wd
), by Théorem 220

<2 !eu- Vo (arctan () <

z ﬁj {[fiwadir+ wmia05) +I»CD~.5} Fea
.

<-[ I | e (5 +J|cm-i}< eos

wl,{;,) an ‘osthonormal basis of RY). Therslore tince |9] < + o=
et (1) s bomaded, the hedi follows,
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1 is easy to adape the previods proof 1o get the following result (cf. also
Theorem 4.6).

Tumonsss 4.17: Lot w: @ = RY. Then ne BV(Q, BY i ne LBV(D) and
jn-: 1T f— e (| CDU < -

“The following resalt appears 1o be a partial converse of Proposition 3.5,
and follows immediately fram Theosems 4.14 and 4.15.

Prowostmiont 418, if e GBY*(G, 2 R) and

[IvHlie + oS+ [iCDH < + o=

then arctan (x) 0 BVL(2).
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