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A Note on Composition Operators in Sobolev Spaces
and an Extension of the Chain Rule (%)
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Sull'operatore di composizione negll spasi di Sobolev

eperiore T deinino da TL, () = L) wa specil sl i
:(r-(n,y-;.wm: Sidann coaiish vplicies et 7' sis coosinge ¢ ik

TS sl =Sl fEW(E), ge (P,

9, ﬂ.mopalsubomail',g(ﬂjtﬂ.uldvinu () and P (2)

ate Sobolev of cxponcrts m, p und m, g respectively (cf, Adsmi.

) ‘Operators such as 7" oceur in the stady of nanlincar differential equa-

and are well-known in the lirerature, We mension the work of Marcus

Mircl (1972:79), Adams (1976}, Saigeti (1983, 1985), Valear (1952, 1985).

e references we tefer to Appel (1957) and to Appel and Zabrejko

The author was motivited to prove 3 part of the statements con-

d in this work to support the analysis of Lanza (1991). In the present

e i no oy spuon on the foscion . 8 rormally dooe
lireratire, This of course requires some exphanation conossnifig

 meant by the composirion of an equivilence s of fusctions of v‘-»w.)

) T s Diin s oo Al Ui b
f"}.ll-nupmm. il 30 aobee 1990 da Giumeppe Sourzs Dragood, weo dei X1

e
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with an equivalence class of functions of (IP=4(2))%. Our methods are novel,
but apply only when mg>m, g is one-to-one, and the determinant of the
gmdmm;dg.," dmmn-mmmam.mmmpm
faz some 0< We consider the operator T from special subsets of
(g )x(r--'(m)- 1o w-ﬂ(a) (f. (29), (2.12)) and give caplicit condi-
tions on m, p, 4, 7, 7, #, 2, 9, in order o 7 maps bounded scs into bounded
sets and is continuous,. We also peoduce mwmele 10 show haw some
of these conditions arc siarp.

2. - PRELARIES AND NOTATION

We denote the nor on a Bunach spaee T, by |- :T]. Let I, ¥ be
Banach spaces. We exip the product space 34 with the norm 1+ E>xY] =
‘Ml We say that  is embedded in W provided that there

mous injective map of I into W The inverse function of a fane-

tion ¢ is indicated £~ 13 opposed to the recipronal of 4 real valued fonc-
tion /, which it deaored f% Let we L/(1. Alosgh (fle(e)( d5)"" in st
2 norm on L(@) when 0 < y< 1, w write Ju: (@] = U[a(x)\'a’:)"’ Let

'be an openvubiot of R, The spacs of meiines continuoosly difircntiable
fanctions on 2, is denoted with ©*(Q). The space of those funetions of

C=(2) which have compact support conmined in 2 Is denoted (D).
) B, Por(0), denotes

us
2. of real-valued funcions in L), all of whase dinributional decivatives
up to oxder w ate in LM, The space W=*{2) is cquipped with the nom
lan U] = B (Dl L) Let £ (5 or 30, 7 U o 1) R

We set 3.y ia 35,7, Throughout the paper, we agree that 1r =0, if r = o=,

L4 0b e npss wubbvec: o . TG acdoph.the couvemmicns the; wheievec
£ belongs to (W=A())", my >, it is 1aken ta be the continuous represents-
tive of its equivalence elass.. The existence of such 1 represeammtive is ensured
by the Sobolev Imbedding Theorem.

Ous fimt gaal is 1o clasify the meaning of the composition in (L1) and
our stanting point is. the following simpliied version of a Theorem due 10
Marcus and Mizel (1973, pp. 791-792);

Tocones 212 Let £ be & bowmiie spon st of W, Lot g em, Lot
X:(w-cu;)- e .-ymmmdm SDC R Let 2 p(0) =R ke

Ak et of G0, fffr‘l'md)L e f (g +))| det D ))\
& LM(A) poi
@2 qum = [ fCata)] e D) .

o 2
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dr of £(g(-)) et D JIGL'(rU f‘v'.’!b‘t!(/ll) and (2.2) dolds. Far-
"3 maps eis of mesture 3ers fnto sets

We note that in geaeal, even though ge (W"(nj)' g = ny £(0) 5 0,

sy{o),[-,’, ae. in £y, we cannoe canchude f(s()) = A(CY) Py
However, we have the following

Less 231 Let Neasl, ge(l, oo), > wig. Let @ be o boided opon
v, Lot 3= (WR(@)" be injecive, det DE( A0 as. de Q. Thes the
bold

(i) g(@) ir apen amd gV p(9) =D ir continmont.
s () = 43 maps sats of seamre qero buio iz

Qi) If £ fis L2(G), f = fy ae. in B, tbon [(20)) = fi(5()) as. in O |

() A ribuat A of i meserabie if and owly if §CA) is mesaneable. |

(v) A fusstion [; 5(3) R iz meoswable if wnd valy if fogs @ =R ir
nasurable,

Proor: (i) is 2 well known fact, cf. e.g. Deimling (1980, p. 23).
£ be a subset of g{i2) of messure zero, mxh‘mmmnu(m
messure sero such that HC B, Then Theorem 21 implies that fdy —

| {det Dglal] e = 0. Since [der Dg(e)) > 0 ae. in 2, we have

j 0-zmmens (gl (H) <oneas (£11() = 0.

nent (iii) is a teividl conscquence of (i), Since every measursble set can
mmnhmnllmlum;mn‘mm and
£ onts G Hlows

the s port of Theomem 2.1, smun(v)ﬁ:\lmﬂnnﬂyﬁnm(h)- N
W can now intmoduce the following definition.

24, Devsironss Lat 2 nd 2, be aped snbicts of W, me N, 1<psss.

£ be ax dn Lomma 2.3, [0 Wmr(,). We lnalcate by fog or 711, 2] the class
tinns of £ ut-n,.fum.;mrmmwn-umm_.;;

it the continaess ropreientafive of . We sey that fog saticie thn chul rue,

wbided that for all 1 <in, 2 iyt J)(?s.ti.v,: it i LL(0) and ix the
(B -deiative of fog i b of dtribatini:

To shoren nomtion, we write

‘@9 riige = (r[Ldw), o TUAsE = Pise o,
des Dglx) = G3) .




ek
The following Theorem due to Valeat (1985, p. 64) is also impormant in our
analysis. (For similar zesults of. Grisvasd (1985, p. 28).)

26 Turonests Lot p>1, g> 1, 5 1. Avnews #hit 9 bis e s frop-
orty, and that por, g7,

@n

Tihon, if we WH{Q) and & W), we heve o Wr(Q) and rhers exicts a
positive wrmier ¢ > O indpesdent of u and  such. tha

@8 T W) <efw: WPma()] [ W@

Since IF%"(2) is mbodd»d in W=s(22) i is ensily seen thar in the ‘The-
orem sbove, we can choose p gm0

We now inteoduce the fol notstion. Lei @, £, be open subsers
of R", 2 bounded. Let fc IP%#(0)), 1<p < oo, g a8 in Lemma 23, 0 < rc oo,
0<y< 0. Under these conditioas £ i continuous, [ajective and apen, Thea
we can define the following

@9) Sy () = (U 20 g (W=a(@), g is injective, G(x) &0, n.c. in ©:
G L@), |Glay L(Q)] <, fe Fmr(g(a)] .

e i) i clacly asubtetof (L) =0} x WPnag@, 1), which is ot
 Banach spice. We then introduc the notic of bosadediess in 1, ., (@)

2,10, Deiysirion: A sdset © is said to be downded i f,, .. (Q) provided
that

@i a5, {hae (W@ e o)) < e,

Lt WE 0 (2), Tet ¥ b a Banich space and let D: AL V. We
a7 tha @ in Bounded i€ 9 taps boded subets of L. s bonded sub-
sets of .

(Bel2d) ¥y (0 ) 5 [, ) e W (0, (P H(ED) "2 2 s infective,
D, G0, we in 8, Gl L), |G L@ <},

G2 Xy AR 0) = (LS B Yoy, 2 =8,




- Tt COMPOSITION THEDREMS $OK THE OPERATOR T
The following imbedding will be considered in the sequel
CHeli2) is densely included in WA(2,),

Pl o).

€ is knawn that the above Jibedding holds if 2, has the scgment propecey
of. Adums (1975, p. 54)).

32, Trowonesss Lot 0, 0, be open rabiets of R*, Lei 2 be bouded und bare
cone property. Lot 1<p< oo, L<meN, 1< <0, 0<p<on Dcicon

> alg. Lot
Py b

i =D,

Hw, py 23 m) =
+ (i)

4 ¥ o dor )= (L 7). The

D) o Y1 ) 10
e tan chouse 7= P(8, Py s B |

I (""U>"M- 'M T a1 Jo () 5 Yy o SO 6 20
th n carer <=| and (i), 7 is bomuded an fﬁmu(“L Y.M,‘.(ﬂ, 2 for all
warmbers ¢ = 0, und the clemnts in the range of T satisfy dbe chein rule. Furtber-

if assmplion (3,1) bolds, ibex Tnmmnl’m 43, 1) for wil
; um..u(.)..wu T cuse (i) Jf 7. o atd (321) Bodde, T i von
: toen if &= oo

Broor: We notice that if {/, £)& V0,5, 0%, B}, then

Ul W=r ()] <1f: W=2(@)) and (o ]upnd)-

_Mm&dmdynmmd. We split the proof in pans A)-E).
) We first considee case (w — 1) < g Clearly, In this case 1<4.< oo,
n<y<-. We will anly consider < oo, Cise y = o= can be handled simi-

induction on #, Lot w — 1. By Theorem 2.1, Lemma 2.3,



i
and Holder inequality, we deduce that
o ([t

(rtre s

- UUUM"-‘“"" G-
o

< J‘J N e

=15 u@(u;;;(!p-a(,;,w-- e

<1 LAY ] |G L) (meas (),
Similarly, we can show that for cach j =

(3 1Tl Lwises @) <
Z: v@|ie: Loy

Next we show that T5[£.2] is acually the (3 -derivarive of T/ gl The
following argument applies when 3= o (If = o, we just consider the
imbedding £7(0) € L) with f large enough,) Since |r'---(g(,)))nc-mu))
s dense in I722(5(2)) there cxists u sequence (] in 77 (2(2)) which con-
vuguwf By assumption K1, p, 4, 7. w)> | we have iy + 1)> 1. Then
() converges to fin L} (50)) by boundedness of g(62). FPurthermore,
.! [cc-mun i rv"»v(n) = the chain rule Holds (ct Mascus m&hlud
jon f1G~(x)|" d < =, and. by Theorem.
I-m \n-‘(j [ ))\FI‘ r(‘ru)) Furthermore (qmy)ul ey e f—c;(ﬂ})
Thea, by using repeaiediy Theorem 2.1, we have

() _[fﬁ:(x)) k= J’m'iu’ NGt dy =

= —tim [ ) 22 (- )IG o)y

= — tim [ e 32 e =

2yt e =

; (2 NG (e oy
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now observe. thak QUERIEIC ) € Lo (R, Ao, LAE), and ot
.ﬂ A e

‘(ﬂ&}"i “m—m j'lc-w.«-.....,,.a)w--am...“‘

by assumption A(1, p, 4,7 #) = 1, we have G~1a L0} C L0 0g)
d the hast limic in (3.6) equals

ﬂ[,g 2 3) 5 oD NI oD~
%
= & Liseh E e

4 and (3.5), T
e oo Wew'lhﬂﬂumndqufi"mu‘(!l}huindr(n
it (/i £)) be 8 sequence in ¥, ., {8, ) converging to

(£ Yyl )

0 and 5= €Y (el Q) be such dut |f—||lW(ﬂ,)|<r By the same
nt used to prove inequality (33), we have 1

9) I.ﬁ(g.czn—gm:))::,w-m*
A [

28 ) — 21 (o)
Ul A L

A [T

e uum
i

+ |§ vca.)l G Lxg@yve.

ot sup {67 L@, G5 LAY 54, i, = o1, Tn
and that lim g = ¢ in L=(2) by Sebolev imbedding and by sseurop-
= nig. Mateaves, fufiz, is niformily <ontimuous on the compact sex
{U5(9)) and meas ()< ox. 1t Follows that the lim sup of ket hand-side
| of (39) s lese or el b 20 e el ke iy i
fx, to 2ggds, in L) we conclude m-mm

!!‘u‘,,&n converges to T'Lf ;] in LAr02 Gy Similady, we can show
sequence {T1fj.5]) converges to T1f.g) in L"""‘""&‘r We
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now prove the sttement for w:>1. By Sobolev imbedding, we have
W) ¢ IS 1w, Since wo g, we have 1-ng) (v (w—T)g) >
Mareover, 2 simple computation shows that the sssursptions 3> 0, (ar, p, 4,
reme (1, g] imply

o a)eft, —2_
n = e (=
Hence, by case w == 1, snd inequality
t{p =iy ) Mo g
we conclude thar T f, £] satisfies the chain rule and that T ix bounded from
(8] into IFER0T000) if oo We now consider the operator T,
WPma() & Pa-tisetn=a(), 1(.4]7(];5‘-., (=
and

m=1.

Purthermaore, assumptions Hm, #, 4, #) g and > nig imply that

Hence, by the inductive hypothesis, we ean conclude that for all

set b=t M)

the nonlinear operator T" s bounded from /., (u; to IP==24(0) if ¢ < os,
Now let re (1, f(ar, p, 9,7, 7). By Lemma he proof is complete if the
following inequality holds

far same u(t. l(m—l.p. ig .y.n]:l.

Ttis easy o dheck that

s 1,,4“(._1_; :)"—r(m.p.qw.nj-‘.




T ] (T o)

comsequently (3.10) holds for some

te(l.!{w—l_p,;—:':;,y. )) |

atly close o #w—1, p, 9l(e—4g), y, n).

2 We comide cc = oy 1< oy | << . The omeponding

iy = o cn e tcued iy, o proced by indcton on mt
be

holds, the
AR o ywwhd‘lw)
La-ms from [ .0} 10
n?m ol
ef. Lemma
onmar) 8 pladiesn
< ¢ < oo, This concludes the proof of H).
C€) We now consider case 1< g o5, 0y 05, 1 <p o5, g1,
i treated.

ingful ‘cnly when
i on m Let o= 2 and pitr+ el gk
-mwm; W(ﬁ,)xw(ﬂ’)c L) W~(0) Rl e e
s bounded

and prove it for m > 2. Since the im-
A -gn;cm-(aiijcmmmmuumw.m
the aperatoe T is bounded from ), . (0) t0 W DIG) if 0 < < om.
We now aote that the imbedding =A(0) CIWP==140), Visg holds. We
choose ¢ such that
L) r>g,  (e=l)rse,  (e—2ina, ,H
| Then 7% s bounded feom () to WM 0) i 0. pax o
“Then, by Lemma 2.6, the proof of C) s complete.
D} We now consider the cate | < g o0, L <y<on, | <p< oo, g,
(@—1)g>n, mg>n The comesponding case with y = o can be treated
similarly. Siace the statement requites >3, we stare by cxaming mr = 3.

s,



— 880 —

By assumption 29> p we kave WHKO)C W (0). Then, by cuse. o
ge=oo, y<os, T'is bounded from [, . () o WA if 0<ow
We now note

(3.124) W) ¢ priistn-eiigy if
(3.928) PO c Wy, Nizg, if

e n.] halds, we have 2(sg/(a — g)) > n, 1(ui(a— g)} >n. Hence, |.,
=0, = 14>, sh:opcnl T is bounded from /,
imilacly we conchode if (3.126)
=+ 1), Lemma 2.6 .um
ul(m if 0<Ceon We
now assame that the statement i1 truc for w— 1 and prove i for w. By
dhe imbedding ww(n,)xw-v(mcwwﬁ,)xw—:m and by case w1,
g=o, T is bounded From oy (@) to WP 0@ if Ogecon
Now, let g< 8. Then Uma(@)c P Hes-9)(eh) and (ag/(a— )} (w—1) =,
(ngi(n—g)}(m—2) = m and ar least ome of the following is inequalities is truc

(3:130) By

(3.135) ;g;>n,

1F ngl(s— g)<o, then we can use the inductive hypothesis conclude that 7%
is bounded from , , , (@) to IF=- bt ) [0 < o< o Tn ease (3136)
holds, then we cin use the case discussed in ©) 1o draw the same conchu-
sion. If gee n, then W=s(0) C P*='@), Wrog. By choosing 1 such .m
t{m— 1) > w, i{w—2) > a, r>» and lavoking mm case discussed in
we conclude thar 7° is bounded from @) 1 - uv"r‘mw) if
D<e< o Sinee (-_l)r.-,r‘ vm‘(y F) bald the proof of ease D)
is complete by

£) We now consider the case g >, (= 1)g =, 1<y < o, g < on
Py/(y + 1) > 1. The correspanding case with y = o> can be_treased similaly.
Since 41, w1, we must have w2, nng. Cleatly

@1y WeHQ)E IS IAD), Wy,
By choosing ¢ such that

s B
5 L~ 3 o = 7 Pyt
dud lag o (w1 citideshe ST AR a2
w0 WPAZ(0) iF 0. ¢ < oo, We o consider separstely cases w = 2 and
Let r<s<py(y + 1), @ =2 Then #=g and the imbedding W“cn,)x
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LAY C PR(0)) % IPV(0), Visn = g holds, By arguing as sbove, T is

ﬁl!n}' ) 10 W) I Bz pz oy Sinice 402 gt 43 by

2.6 daplice that 77 is bounded from ., .. () to WH(2) 1E0 < £< on.

This completes the proof in casc m = 2. Now let w>2. We choose / in

(.14 such thac Am—1) >k, H(w—32) >, i>u Then we invoke cusc
=, (1) >, > to conciude that T is bounded from ,

“Resank: To s inneresting to note that if we take ¢ o o5, y <o In The-
32, T might be neither bounded nor cotinuous. In orhee words, we
have
() = () 8 Yo 2 B) T T = e
e thirogh T(Y, ,;.;.o(2, B)) € W(), a5 the following exmple shaws.,
Examie: Lot £ = @, = (0, 1. Let

an (1), g=4a, §>p>$_1. f>3m__"&mly

= A, ) = ), a0 = ([ 2, 53),
4
te i, it defined by

“5)_51_%‘ i gm0, 7]

L, i te (A, ‘
=3 if ee 213

W= yhi P=PARY i pep— g -y

am-,—#j%’. i geli—1A 1]

Tt can be readily checked mlimtf.x.)-(m in ¥,y prn( 0) and

|ttt 71, g 71, g < 00 owerer, (T17..4)) doss not con-
 verge 0 T144) m-«mplm,m TP




e

Resank: We now consider the special case in which s = 1. Let p, ¢> n,
o 8%, p g0, 2 30 open interval of R, r=pgi(p+ g— 1: (Notw
that £ = KL, p, 5, oo,#) = pgl(p + 9)) By Hlder incaualiry, we have

[ifastalt e <L LAQYIIE s Ln(0) frmns (@) =041,
i

Furthermore, by using the same arguments of the proof of (i) of Theorem 3.2,
we can prove that |4 e Lr"(s(2)), and that

|4 i it e montay.

& W(2). This face hay been observed fur /o W (g(9)), pl—1)>
Shickoooe o Wi(5(%)). £ monotone, by Sziged (1985), who emplo
completely different argument.

We obnieve hacin Thooeemn 32, the continuity of 7 was obtained by using
(3.1). We now show that something can sull be said bout the continuity
of T'if (3.1) is ot asunad to hold. To do 50, we introduce the following

lemmas.

Indeed (dgb)<)GHx) = L= L(G). Heoce, we conclude thar 7Lf; rjc

316, Lusstas Lot 10, S be apen swbsete sf R, 01, O bomeded.
e continwns and cue o éwe mappings of £ onia L, mé e.socm‘ L”Ml
cumergys wwiformly 10§ i 0, then (§VY donpeges 1o -1
Puoor: Let s 2, snd assume by conteadiction that the sequence (¢~ "(3)
does aok converge w0 #i="(y). ln (#)) ben mhwm of {#-v))
converging to Eecld, §44%3). Let 450 be
BEANBE oL =0, Bl Vo) en.
By injectivity of ¢, we have
BB N 00 N6 (Bl-a), B) =0
By domain invariance, hoth $(B(%, 9N 2) snd $(BE'"y), 8)) are open.
Then
H{BEIOL D) n (e Hr By =0,
Let >0 be such thar Bly, 5) £ ${B(5 (¥}, 8)). Heace,

(AT F¢B(yn2)
for all § such that [@(s)— ] < nf4 for some e BE N L2,




=

let jy= N be such that [ V00— & < 4 sup [gu(e) — =l < it
g:ﬂ W-"wa 7= MM.“(V)J — i(#17MN)| < mi4 and consequendy
e

| 318 Lesnea: Lot {x) be o bonded requescs in o rofiexioe Bamach spate T
el Lat Y be o weakly dm-umqmw:n of T If

(319 i ) =109
s lim (1) = (), Vo't

Vyed,

n that there exists we O, ¢ = 0 and & sub-

Assume by contradicti
eyl i
G2 ) =m0l >e.

Since' (3, s bounded and @ is seflexive, thers exists 8 subsequence ()
of (.} and an element < T sich that

YkeN.

B2 ) =, el

I pacticlas, i () = 9(8), Y€V, Then assumption. (31 fmplics that I
E—x- -0, Ve, Siooe ¥ i gemc 0. we conclude that x= %. Hence, |
Condition (3.21) conteadicrs (3.20).

From Lemma 318 and from a well-known sesult in functional analysis,
(E.=& Drimling (1980, Proposition 12.1, . 12)), we deduce the following.

32 provosion: Ler T b a pefiexier asd ocally unifersmly swarexc Banoch
pate, Lot W bt o snakly dowe sbpore o e dest T of T."Let ) be & segrese

of Ty el df |
i (323 i [ ] = [ 3

e s =), Yol |

bold, 1 the soquenee (s} conrirges fo 3 s T

Nmﬁupsqmdmulnmemu(wmmmm.um
convex Banach space is locally aniformly convex and refiexive, Finally,
well-known that the space LH(u), o qmnb-aofh' 1<,< i
Formly convex (cf. Adams (1975, p. 38, Cor 229)) and

i L#w) and its strang dual, which can be Identificd with :.w‘--'b(.,.)




il
sm Turongse: et 0, 0y, be opik rubiete of B Let 23 be bowwded and
cone progerty. Lat 1 <p< oo, mEN, 1< gon, 0<pen ¢ =0,
~>vt: Lot ()} be 5 soquence comerging 0. (f, ) in X, ) and
satisfying condition
L [ [ e
B25he)  GeCXD), lnG=G i dm@) Y pm oo
and ot B 7 9) < (1) T, s follening i
() 2F w— L <nlg, shon Um TV, ) = TVF 2] dn W0 for il V2 <
<Hmpgpan). If =1, e con chsese £ = N1, p 4,7, 5).
G4 > gy o B TLSp )= TG 4] I Wmimnes,

Proar: We oaly consider case < 2. Case ¢ = oo can be treated sitni-
larly. We proceed by induction on e to prove (). Let a = 1, We must

tim fiog; = fo5 in Linarag),

(3268 lm Ty gl = Tilfg]  in L¥tenneg).

We only consldes (3:264). Tndeed (3.264) follows by the same argument. Since

i%n'a*dm convesges to dg/ix, in LAQ), and prlly - ‘J>NLP. 9 y-*l>'
der'incquality and Proposition 322 imply that (3263) ean

£

G2te)  Nim DL g1 Lo (@] = | DL g): L2y,
aam) li:’-JT‘lfnx.lv(a-lh=f1‘[£,elc(:)k. Vo4 .

We first consider 0<y < oo By the same asgoment wsed in the proof of
Theorem 32, we deduce that

02 |[L s Lmmrenaf | L e Lo

gl%’:—g‘: uwglicw: Lt

+& ] i]\ct'wum-v- e[ G-yt )




=k
b 72 s 1) Ml 7 1 =-1) St the e (s
= 10 iffy i £2(02). and sup 1G] L)) < o condition
frum
lim (G (4 ) = (G (@),
h is clearly cquivalent 1o
lim |GG = GG i L@,

e now tmn 10 prove. (Note that the corresponding wrgument does
apply if p = =) Bwapq-Hnn!ﬂndmd.nmyd-l)l it suf-
shaw that

-i,-jan;'w'wrma-‘[ (SR OTIES
A .

Vo & D)

”_{1¢'m"’o:)|"'¢= _pcr':a.
on (331a) follows from assumption (3.25). Now, note that
_gcr'w'"(:))\vmo-j‘-u.c:»é.
L} converges 10 g mm;;-. then () ““’ﬁ"éﬁ;‘f,".ﬂ

o mzhepmurnr(um) We now consider (3.276). By Theo-
‘nh 2.1, (3278) Follows from the following condition

NG 00 =
= EOHEANGAGEIN] i LG

P iatwise multiplication is continuus from L7(0,) x LI thirte= =0y
Cto L0700, and from L0 X LPY(R,) to L&), and since

limfidr=2fid In 2%,
UG O =1G 0] e LA,




all we nesd to shav is that
B Mgl =g Lol

By Proposition 3.22, condition (3.33) follows from

(3344) iimﬁg(y-mnm. rr——. ..J’lp&l—uu));m- T
a &

(3.34) Fi:"ﬂ"ﬁ(.!i"“(.v)h'(v}d! =[pEvdy  YreD(Dy).

By Thearem 2.1, we have
J’wwnmnmum.fn,.w_!W,Hw..M.‘.‘...,,‘G‘(,)i,,
a

Since lim g, = Gg/o, in L), then lim G, = G in L8, which i
imbedded in LM, Then (3.344) follows by ye D(2). Since lm G, = G
in Z4{2), and lim g, = ¢ unifocoily in 0, und ye DY), we conchude that
the sequence ($(2) v (£,(=))|C/(A)]} o converges o ¢(x) v (3(0)|Clx)] in LXO).
Then (3.345) follows by Theorem 2.1 and the proof in cuse wre= 1,0 <y < o
is complete. We now consider As sbove, we must prove (3.27x),
(3:27#). To prove (327a) with 3= o=, we obiain a5 above the following
inequality

039 L vl | Lo o)<

Sinee lim3ffer, = 2y in L(Q). wp |G} LG)] < oo (B273) ean be
deduced from the Lebesgue Dominated Convergence and from the following

(3.36) Hm |GGl =GN N)l e in e
which we 0w tum to prove. Note that

@37 (G (= G (o <G G POnI— 6 G+
g Lo L)) B Lol el [ B
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aa, there cxists & subset '€ 8 of messite zeto such that G{qgu.
G, By asmptian (3258, we conclude that G-te CXRN).
i of Marcus snd Ml (1973, Conllry 1, p. 791, the st Mu,(mu
J£(1V) bas messuiie zero. Then we have
‘i"ﬂ\lﬂ“fs"”m]lklﬁ“‘&““b).'lli' 0, yelpndl.
we can deduce (3.36) by wsing condition (3.25) and the following inc-

tim p essaup G- (g )] =GR 0| =
= lim sup.ess sup || G7(8)]— |G| <
<timsup (1G5 L2 G L)) |GG L@ =0

e now examine (3.275), -Nd:v!ln!mm(.‘mu:hwm Siace lim iy, =
= &y, in L2{2), it suffices 1o prove that

(g DG N = S ONIGA ) T Ltz
Proposition 322 the convergence in (3.40) is a consequence of the fol-

o

un(.!'uw-*ww--"w*www iy
(jmrm)w—»\c“er e

s [ oG o) =
i = [#t NG Kl e D).
T prove (3.412) we u‘hs:w that
B qu—‘m)\w DGR ()
(j’w—-m)\m-»w e

etk

< JHG}-“""IIE.“I"" o) <

.;.-[b[\ﬁal-—"ﬂaw-—:m“l"'"'dt)“'"' :
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Since g & (), lim G; ~ G in L) it follows thar (3414) holds. Sioce
J'dts' NG "'J‘ SN n) dy = FE)na,) 4, wnd limg, ~ g uniformly in
D we conclade that (3.415) helds. Ih inductive arguments needed t com-

plete the proof are completely analogous 1o those used to prove the bound-
edness of T in Theorem 3.2 and are accordingly omiticd. ~ ®

Resunx: We note that in generl, even in a onedimensional seing, con-
vergence of 4 sequence of fanctions | £} in, sy L7{0, l}mjdmmn.nnply
the convegence of dhe sequcnc (1) of recpoatle 10 117 cven though
o e e
=(f+1) {0, 14, fi(=) Ilf;s(lf,l) S=1if xe{0,1). Clearly
lim f, =  in L0, 13, s 1 90, 1] = s o 1 e 230, )] = 1

X eslghabscinsd wppliiiva. o B toaqaliéy iede he Following.

7o Lt 0 boon e st of R

2 Ler1<sgeo, 0
in 0 T!w

343 Lewu
Lt 5 %8, [/,

o4 [ife— @i o

([umterra)™ ' firsera)™ "1 Lapmem.

We pow deduce the following from Theorem 3.2 and Theorem 3.24.

345, Twonssi: Lot 9, 0, be open sbvets of R, Let £ be bowndd and hore
thecons property. Lot 1< pzoo, wENy 1 <gon, 0y bmy Derton,
wnlg. Let

QA46)  FHmpodpy8)

:p-+-)[~—<-— e E ey Y e-h<dn
T+ @ i (wr—1)=ulg
and fer F{m, po gy ) € (1, 9] Thea

() I (w—1)<nlg, the Tis contizmons from X, (.} 2) 4o W(@),
ot all 1< r P, puguya)e (w1, we on T L s
(OR/ (W—I))my. dhn T i contimonis” from X




T
 Paoars Lex ((fy 20he be in Xy pul®, 2. 1 (m—1) <
ot :"{ﬂ%;ﬁ"?"“’:‘w Hene, by Hilder i-qudiw-)
ka6,~G i LigG),
by applying Lemma 343, we deduce that

tin (|G e s
;
By considering separately case

R .
B = GRS A B i e P
1t I8 easy to see that (347) implies

tim !\q-wd--n---m-».«.- I.cr-i..muy..z.,..n.,_
that

AT TR
e

i by Theorem 345 T is continuous from X, ;.. (5 20 w0 W00, I

l<r<;(1\p.;. RS e

i | 2y
Fi—tm—Dg R
Iimj|q'|>ﬂn = !(c—vpv-a.
Then by Theorem 345 7 is continuous from XL, (% B) 10
] et ) o WA )
(m— 1) = alg, then [FA(0)C WI4(Q), ¥r-g and we deduce
s i qu"ﬂh: Jf,c..‘q«,.r-)k‘ Vesg.
Then by Theorem 345 T is eontinuous from X, (2, 2;) to I

or all 1-<r-< P(m, , 4.9y & 20, 1). By ublerciocss of 49, ¢ can be
“taken in (1, P(w, p, 4, 7/2, %). This completes the proof. W




==

S5t Tumonsis Lt 21, 1 b opes b of R, Lt 2 by s i e
e e iy Ec f e 12 0 1 (1) ula,
1A T s ot S X e (8, D) 8 WS, I pthntr, i 7
Hivwens 0a X, o0 (2, 0] for a5 0.

Proor: Observe that if li‘m &)= 0in X, 4ual® D), then
lim G, = G in B7=5(f1) and consequensly (3.258), (325) hold. Moreover
e notce thae i G-o o), m G, = G in L&), thea

P G  LA(D)] < o0,

and Theorem 324 applics.
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