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IvrmopucTion.

Butler studied in [B1] the class of pure subgroups of finite direer sums
of rank ane wrsion-ree abelian groups; these groups are now generally referred
10 2 & Butler groups », In parsieular, he showed that every Butler group is
generated by finitely many rank one (pure) subgroups or, equivalently, that
it is a pure quotiens of a finite direet sum of rank ne ron-free groups;
conversely, he showed that every such group it a Butler group.

The class of Butler geoups is one of the most investigared classes of torsion-
free abelian groups of finitc rank: sce the papers by Amald [A1], Amold and
Vigsoatsler [AV] and references there.

Recently, in the suthoss’ paper (B3], Butler groups have been genesalized
10 the infinite sank case; this subject teceived relevant contelbutions by many
st 166 (BSS], [A2], [DR], (D}, [AFT] aod [DHR]
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Oue goal in this paper is to generalize Butler geoups in a completely dif-
ferent direction. A very natural setting to generalize Butler groups is that of
hereditary tormsian theories 7 over asbitrary associative rings with identity K
such that there exist r-cocritical R-modulcs. Recall that an R-modale 3 s

s-cocelcical If It is vtomsion-free, and every PP quoticnt of M is v-tonfan;
-or-eo«umlm&uum-gma nenalszation of torsion-free abelian groups
of rank ane

sl modules were introduced by Goldman |GutL |GD..] in mn
 gencralize simple modules and modules with compositi
h7en the heseioac, somica iy, ® Mo, Gotdime Jefmed  metss
positien series for a module in the obvious way in terms of r-cocritical mod-
ules; he also showed that for modules with finite r-composition sceles. the
wlength of the secies is well defined. Hence the vtomsion-free modules of
finite r-length ate & good guﬂllinnm of twmien-free groups of fnite rmk

We will use also some of v-semicocritical modules (i
IS o e et Wit o S modules), investigated by Tau [I.]
and Teply [T], as develaped by Golan in [G].

T this context it is narural to define 1 7- Mhmbﬂnmlesubnwduk
of & finite direct sum. of vcocritical modules, We. give sufficient co
for & v-Burler module 1o be genesated by finkely many (r-puse) B
submodules, and for the converse.

As applications of these results, we show that in two particular and very
different situatians the.two classes of v-pure submodules and 1-purc quoticats
respectively, of finice dicect sums of r-cocritieal modules coincide, a3 in 1
e of abelian groups.

First we deal with the Dickson (semisimple) torsion theory over an asso-
ciative ring & sarisfying the following condition: every maxinal left ideal P
of R s left and right singly generalized by the same clement: P = ,uz Rp
Tn order hat s-cocritical modules do exist, i i alse requited that
rannion. Some arithmerical properties of these tings are pnllmllm?y inves-
tigated.

Then we deal with the uswal rarsion theory on a Prifer domain (which
coincides both with Lambek and Goldic torsion theories). In this case the
Incilication technique, used by Buter for abelinn groups, works nicely by
vintu of some sepulis on finite diece sums of uniserial modules over valus-
tion domaine obtained by Puchs and the second suthor in [FS1]. Butler
himsclf obrained in [B2] part of our resalte: in fact, an immediate conscquence
of {B2, Prop. 5] and of the fact that the larice of idesls of a Prifee donuin &
i disceibutive, s that the elass of torsion-free Romodules gencrited by fni-
tely many ank one submodules is closed under raking pure submoghles. From
the point of view of the present investigation, the most interesting result
in [B2] is Theorem 3, which thows that the equality of the two clisses of
modules, holding in the two panicular sitiations described sbove, does not
hold in general.
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1. = e-BUTLER MODULES

Let B be an associmtive ring with identity. category of unital left
Remodules is denoted by £-Mod. We follow by {G] for terminology and
notarion on torsion theories in R-Mod. In particular, & tomsion theory 7. will
be hereditacy ; 4 submodule N of an R-module M is v-dense (respee-
ey i) NNV S i (gl il The euretn
submodule of 10 Rmodule M is denoted by T+(M); the Gabeiel filter of left
rdease e of 21 denoted by #(R) (or simply by %), An Rmodule A
s seritical if it is noa-zero Ttorsion every ponero
of A is v-dense. A retomsion-free module Af bas & m-,um.-mﬂru
4 finite chain of submodules: 0= My< M, < ...< M, = M, such that AL,/
I r-coctitical for cach i #; evidently, each M, is v-pure in M. Any twn
tion series of Af have. the same lengih, which s called the rlength
of M and is denoted by lens M. Characterizations of modules of finte rlength
<an be found in (G]. [B<). [N] and [T]. .

A resemicecritital module s a submodule of  finite direct sum of r-cocritical
modules; the class of r-scmicocritical modules is conteined (in genera progerly)
in the class of modules of finite T-length, and it is closed under taking r-orsion-
free quotients. For these notions and sesults see (L], [T] and (G},

Our goal is to cxtend the norion of Butler groups o the general coniext
of a tonsion theory ¢ over an arbitrary assocative ting K. So we defioe a
+-Bualer module M a5 & 7-pure submadule of & fnite direct sum of r-cocsitical
Rmodules. The class of 1-Butler R-modules is denored by #(R), or more
simply by #, if there is no dasger of confusion.

Dually, we define @ =-purely. firifely goneroted Rmodule as 4 s-torsioa-free

modules is denated by #,(£), or more simply by #,.

Modules in #, ire_obviously caicocritical; the face that also modules
in #, are r-semicocritical follows by the quoted result that the class of t-semi-
cocritical modules s closed under r-tomion-fice quoticats

We are interested in the matual inclusions of the two classes % and #7;
if they :nmclﬂ=, then #, = #, is the minimal class of r-torsion-frec A-modules
containing the r-cocritical modules and closed wnder v-pure submodules and
rtomsion-free quoticnts.

In this section we give two suficient conditions in order that & module
in #, (cespectively in #7) belongs to & (respectively 10 ).

We fix some noration, Let A = @4, be a finke direct sum of R-mod-
ules, and B a submodule of A. For each fx we set:

A=A, wd B=BnA.
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Lenes 11 f[.m Ay it vetoiritical and leoy B2, ibon for sach <u the
Jolluwicg. statements boid

a) B i momgzre wad v-puee i B, axd BB in either gore or v-rwritials
) dhere exinre'a j b rhat BY(R + BY) ix e-torsise.

Phooe: a) BB = (B 4 AYA'< ALA < A, shows that B s vpure in B}
since leny A, = | <lea, B, it follows that %0, and tha cither B' = B,
of BB is rcocritical.

8) It Is enough to show that there exises x / such thar & & & Assume
that BloB for all /i then B/~ B for all j, since B'< ' implics BB
vaomsion, absurd by ). But B = B' foe all j gives 0 Bl= ] 8=
absurd. -] '

The preceding lemma shows, hat che quotient B[S B i
0
aoesion. Tt is of central impoteance to know whethes this factor module s
zex0.

parsicu

Paosonmion 12: Lir B bt o vpire M.;A.-@A,, with A,
vorriticel for each b, 1f B = gm thn Be .

Proor: We induct on x, which can be sssumed to be linger than 2 (for
w =2, B is cither equal to A or v-coeritical, hence B¢ #, trivially), We can
also assume lene 822, 50 Lemma 1.1 applics. B s r-pure in A, henee in A%
but lea, A'<len, A, henoe B'e %, by induction. Since %, is closed wnder
taking finite direce sums and r-torsion-free quotieats, B¢ ..

Lt now € = Cy+ .. 4 Cy be a v-tomion.froe mum of r-cocriticil mad-
ules €, that we assume to be different. We set, for cach iz m: €, = CJC,;
et x: €+ (B, be the disgonal map of the canonical surjections, L¢, () —

-z(nw:) e

Leanaa
Y w2 miraw

Proot: (€, + C)C, = C/(C;N €) Is & submodule of CIC,, which is
Taoesion-free; 0 the fact thar C it veneritical shows dut €\, = 0.

tach G ds vpiwe in € and i, thow €,0 C; = 0; besre,

The last clim 1 obvious, since kera=(1C,. T
Puorosition 141 Let €om €+ o 4 G Bt @ 1-torsion-free uu-j pm
e-cviritical differest sabvmsdnies €. J,r-.cqurpmm@ thew €.

S e



Proor: We induct an m, the cace =1 bmg(n\nli For cach icm
{mr22) we ave the nuunl pimorphism 3.€, ;5 let € be the r-pure
closure of the isomorphic copy of C in c. then €7 is r-pure in €, md
r-coeritical, by [G, 14.3], so €€ #, by the inductive hypothesis,

claim follows, since #, i closed undes v-pure submodules and fnite i
. O

The fact dhat the suffiient conditions of Propositions 12 and 14 come
true scems o depend on arithmetical properties of the fing R with respect 1o
the torsion theoey . In the next sections we will show thar these conditions
are satisfed in two particular and very diffcrent situations.

We close this section by sexting some problems. The first one has its
motivation in & cmcesizaion of Builes groups by means of bakaced exac
sequences (s¢c [B] and [BS]. We aced 0 Gloviog daiokica ghvhe
torsion. theory 1 in R-Mod and the exacr sequence of R-modules.

0sA=B2C50

with € r-torsion-free, we say that the sequence is thuland if every homo-
morphism f: A — C. with M. v-cocrirical, lifts through = o B,
Puomst 1 Investigare the class i, of rorsionfree R-modules nrﬁm

Tlength C, such that every vbalanced esict tequence 0= A — B € 0
i A v-torsion spli; 1n parvicular, invenijate connections between l, #o
£

Provues 2: Find torsion theories v over suitable rings &, such that
PR # FAR).

An cxampie of a commutative integral dormin R such that #,() is not
closed under taking r-pure submodules {whese © denotes the vsaal tomion
theary), hence ‘()% #(K), i given in [B2].

Prosusae 31 Aro the sufficent conditions of Propositions 1.2 ssd 14, in
onder that #,<; and <P, respectively, alio necessary conditions?

2. - RenG§ ALs WHOSE AAXIMAL LEFT IDEALS ARK TW0-SIDED PRINGIPAL TDRALS

The rings considered in this and in the next section sre associative rings R
with ideatity, which are not division rings, such that every maximal left ideal /*
is & two-sided ideal singly genersted, on the lefs snd an the right, by the sate
clemeat p, L. P pR = Rp.

Aritimetical properties of R.
We develope hete some arithmerical properties of the rings described abave,
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Liaan 20: Lot Pos Bp = pR be ' musimal ideal of R, Thes:
@ F ed P, B¢ P, thou sy P;

P2 for cvery N and every mascmal it idsel Jop P

if af P, rbes Rat Ry = R for avh ge N,

Proor: (i) There are clements r, o # with ra -+ p =1 and 3o rab 4
yields be P wheneves abe 2,

(li) Obviously, p¢J. 16 w2 is the smallest integer for which p= & f,
then p-19 f and y of*} + f= 1 for suisable ckments & R and
6 this yields a contradicti =pept iy =gt pie ] (FeR).

(i} TF, for some we N, it it Ka+ Rg"< R, then there is a maximal
Teft ideal J of R such thac Ra - Rp*< /o4 P, which contradicts (i), D

Liia 22: Lot P Rp = pR W & masimad bft idost of R inch thot
PP for cach ne N, Ther

) i prx = x'ph, o' c B, them e Rp if and ssly if '€ Rp;
() f e P aad be PRI for some £, e, thn abe PR
L,

Proor:

(i) Suppose that x¢ Bp and X'~ ;pe Bp. Then rx+ fp=1 for
some 7, ¢€ R and 50 p* v prrx - pEip == (r's  1'p**1 which yields 2 contra-
diction: Rp* = Rp*. The rest is similar.

(i) Let o rpt, b= sp?, where 7, s ¢ P. Then ab = rs/p*s and 5'¢ P
by (i) Denote s = k- b and suppase that b = 51 for some 1 K. Since
/¢ P by Lemma 2.1 (i), there are #,ve £ such thit sy} sp =1 and we
et the conteadiction s p™ = ur'p® | gl e (ur £ F)p, o

We give now a sufficicnt candition in arder that our rings & have non zero
divisors.

Prorosmion 23 Lat P = Rp—pR be u maximal ift ideci of R If
(1P~ =0 and R coatains a waximal i ideal [op P, then R is 2 dosmain,

Proor: By Lemma 2.1 (i), g for every we N and so £p*+ 0 and
Rpri< Rp. Thuws, if 4, b R are non-zero clements of &, then an Rp™, Rp™*1,
b RpP Rp fur some b, be N, 50 ab 0 by Lemma 22 O

Tie Dikses rorsina tbeory in R-Mod,

In the rese of this section we will cansider the Dikson forsion theory v
in R-Mod; recall that the r-wision modules are those with the property that
each noneaero quotient has non-zero socle; and the r-torsion-free modules are
thosc with 2ef0 socle.
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Prorostrios 24: s that P == Rp= pR for. vich maximal hft. idesl
Wz..manpmo 1f either R is not -darsion, or it oalains at least w0 dif-

ot meimal ft ideal, thon Rt u v-torivfre sl

Paoor: If R s not v-torsion, then obviously 27y 0 for esich we N w0
Pt P* and R s 2 domain by Lemma 22 (i), The i
fize, for otherwise 0% 2 T(R) gives (0:
If R containg two maximal left ideals, then it
and §f R Is not rtorsion-free, then 0 a ¢ Soc & has zero annihilator ideal
which i3 the only maximal left ideal of R, agaifs & contradiction. O

If 1 is 4 lefe ideal of R, we denote (/% by 1=,

Lastea 251 Let R be a vetorsivasfree ring mch that P s Bp = pR for cach
maxcimal ieft ideal P of R. Thee RIP= is v-torsion-free.

Assume, by way of contradiction, that () x + P= € Soc(R(P=).
Then there is & maxioal left ideal Rp of & with gxe P=. If ¢ Bp then, by
Femma 2.1 (i), for every e N it isz rg 4 9% = 1 for suitable r, 7 B, and
50 % = rgec 4 fp. But e P gives gx , which yields ¥ = rep*+
A4 = (g A £)pt (€ B) and consoquently x £ P, a comrdiction. 1If
g = p. then for cach ae N it is px = prige P Then ,_y\t. R being
Torsion-iee, and so x € P* gives a contradiction agein.

Proor:

The following proposition characterizes, among the rings considered in
thiy section, thuse which are r-cocritical

Provosrrion 261 Let R v  s-lorsionsfrie riag sich that P o= Bpo=s pR for
aarh macimol eft ideal P of R, Thow R is s-socricical if and only f P= =0 for
e wacisead Jeft ideal P. T thid case R it 4 dosmain.

Proor: If R is v-coeritieal, thea P= = 0 by Lemma 2.5, Conversely, let
the condition be satisfied and let Z. 10 be any proper left ideal of R. Then
L.<P for some maximal lefe ideal P of K. By the hypothesis, the
(L.73 Py teads 10 0, and so L P4> L Pt for come ke N. Taking
x6 L Pl P we have x = pb, 2 RP. Consequently there i
Vcheck such that phy s s for a 3¢ L and pre L. la this case (Lis}= £
and £+ L is » simple submodule of RIL; thesefore R is v-cacritical. R is
2 domain by Proposition 2.4 o
Pbeight nd v-escrtiasl wodiles.

Let R be a rtomsionfrce ring, P = Rp = pR » maximal left ideal of R;
et A be 2 vomiondree Rmodule, where v denotes the Dickson tossion
theory, a5 before. We definc, 15 usual, the Pbeight of an clement a€ A st

bifo) = sup [he Nt P w ais solvable in ).




Obviously, we set bufa) = == if phs = u is solvable in A, for cach £eN,
and oo m o0 4 00— ook, for each ke N.

Losaia 271 Lei A be a v-torsionfre module and it a€ A and yc R. Then
) o) 4 e

: We can clearly restrice ousselves o the case byla) = b < o0 and.
J,,(,) o e Px=a (x2A) a0d promr (1 ) with hix)=
= bp{r) = 0. Thus, i = paph = p*+¥'se, whene by{s') = 0, by Lemnma 2.2 (i),
Denote m w b+ k and suppose that p*y=ra for some y€ A,
#r=+'%, A being r-tonsion-frec, and from w4 pp = 1 for suiable u,re £
we get the contradiction: % — ar'% -+ s = pa'y +4'x) (@ywe k). O

We colleet i the nest lermma some properties of the P-height in T-cocrit-
ieal modules,
Lessia 28: Lot A be a veeneritival wodnle.
() If i, b&.A are pow-gere. lemests, sben shere ere dhments 1, 1€ R ik
Hhat b w22 0,
(if) If A comtiinr an chowent of fuite Pobeight, then sll won-gers viewents
of A ture fiite P-bight
Gy 17 -‘he.»i ¢ s vhmets b that ba) =0, 't e e
chmists 1, 4 R ik thot byle) = O and. b 13 h

+ (3) Aféa) is vtassion, s0 f = (ca) 1é) € Zu(R), snd x..(u )¢
u’.{m Henee /5K and for some 7 [ K we have 1 = s 2 0,

{l) For an clement a¢ A of finite P-height, comider the natural map-
-+ RafP=a. For reRerg' =, r is of finite Pbeight und the same
plupﬂvhllkh, Lemma 2. Then rag s and 50 Kery = P, Thus
RP= = RelP=a is rtonsion-fiee by Lemma 25 and so Pra =0, Be
r-cocritieal a5 2 submodule of A. Now let 0o ke A be arbitrry. By (i),

are elements 7, 7& R with rb = 4a % 0. But then r¢ P gives thae b,
and consequently b, is of finite P-height,

(ili) By (i) we have riv= s % 0 for some r, s R, By (i) b it nfﬁum
Pubelght and so, by Leaima 27, we kave dp(r) = bulss) = br(rd) s bolf) = b
l'kua r—y‘; PERp =P, = P2 and Ph=1'a s 0. A being vomion-

3, = Burien MoDeLEs 1N Tie DICKSON TORSION THEGRY

Throughout all this section & will denote, = in the preecding section, an
assoclative ting with 1, such that every maximal lef ideal  is singly generated
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on the left and o the right by the same element; 7 will denote the Dickson
tasion theory. In order to guarntee the existence of rcocritical R-modules,
we shall also assume. that & s ot r-twonion. The goal of this section is o
sk e #(8) = (R the first step is to reduce the investigation o the
case of B v on-free.

e riorson voboudobe TiLR) of R s n Two-skded Meals bt us Genove
by S the factor ring I To(£). Itis clese that, if A is u r-torsion-free
then it is & rtorsion-frec S-module in the muwral way: o .+ every
Somosue i an Romodble via the cancnical projecton of & oo 5. “The proof
af the following lemma s seraightforward and it is lefs to the seader.

Lemma 3.1z Let A e an Romvdle. Then

(3 A s wtwionjis of fut Jgth a on Remmae 3 9 oy if # 1
wtarsiondfree of the same vlougth s ay S-mod

Auy-um-uuRﬂMdnﬂwb;fﬂur—M‘mﬂnIﬁf-
o

i
Using Lessta 3.1t is immediate 10 prove the following
Prorosrion 32: Jf #(RITH(R)) = Fo(RITR), dien

P R) = FR). o

In view of Proposition 32 we shall always assume, in the rest of this
section, that R is vterdienfre.

Lossia 33: Lot A be o v-sorsion-free Romodule of the forw A= A+ ..
vk A with the A's veowiticnl vpare swbuidles. Sapgese that o€ Ay,
=1, ey, are elemants sach et byla) = oo = bay) = oo and Bylayay) = .

=bya) = 0 for a k. Thon for each s A thore s an r& RNP sch thai
= e R P - rut for midiable clewents £, A, and ry€ R.

Proor:: By hypothesis, @ s by by b Ay =y ey By Leme
ma 2,8 (i) there are fe R5P and 5 ¢ R such that f,by =ty 0d 30

= Folby s ) rute. Similasly, there ace 4 1€ R\ Pand 7o B
ich that

st = T iy

o =ty e b ) B it

Contintuing in 1his way, after w— £ steps we get the desired expression, with
# the product of the +7, which #s aot in £ by Lewma 21G). D
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We o naw proe the fise Iicuson SA(D)C #4(R); by showing et
the hypothesis in Proposition 1.2 is satisfied. Noration Is an in Section 1.

ovostrion 3.4 Lat B be & vpeire sibmedule of A0 AL, where each
Ay i vacritial, If lone B2, they B = S8,

Paoor: Feom Lemma 1.1 there follows that the quotient B/5 A s rtor-
sion. Assume, by way of contradicon, that 3 B'< B; then there cxisss
bR E BT B (e A) 1ud|ﬁmp;ezs' where plt= Rp= P
i & maximal It ideal of B. Tuke elements 6,64, d = 1, oy, such. that,
palslbir‘lﬁz!lpﬂmmmonnfllx A,:. By

by its definition, s the r-torsion-freeness of B pives be ¥ B which is a

contradiction. Now we shall show that far some i = 1, ., » these is an cle-
ent 044 #'e BN (A .16 A).. I not, then cleadly .25 I contained Into

A Ay, and s suffices o, show that From this inclusion the inclusion

llows, since in this case the by S e dhe
conrradiction. Bot if there s 4 c& B, ¢ w £ with some ¢, 0
oy, then [ = (3 B BB and K - Q16 2,(R), 10 =
o

£6]K we get e 3B and ref 4,0, 5 Ay, rv, beiog nonzero, By
Lomma 5.3 there is an r& K2 such that

Hmdb b A it Tk (S A, RS R),

and at lesst one of the r)s is zero. Moreover, we can suppose that at least
onc of the £/'s, 1ay 7a, ks not in &, for atherwise we can divide ri’ by p in
T 850 ger an clement with this property. Now, if = 53 ' is the element
above, then all the s are not cio, By Lemma 28 (ii}, there arc re £ P
and s€ R such thar rb, = sroa, v 0, 50 that rb— s e B7, and consequently
rbe T B But w4 gp=1, for some u,ve B, which yiclds b = wb + spbe

€ X5, which ke & conmdicion. O

To prove the inclasion #,(R)< 2,(R), we need some more results and
the following definition: if M is 2 subsct of the rtorsion-free module A,
and P = Rp = pR is o maximal lefe ide, then the Popare dosure of M in A
i the submodule of A:

My (xc Az prxe (M for some AeN] .
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Throughoue the sest of this section, A will always denote 2 r-tomion-irce
Bemodule of the form ol = A+ ..k A, where the A, are v-coeritical
v-puse submodules.

Lasstn 35: [ w6 Ay are chemests of 0 Pobeight for ail i< the

ity coey @i o Ly,

Proor: Let o (ay, vy €20ri then plamers + oo f 7udy (REN, roe B
by Lemma 3.3, there is an se R P such that o= 5,8 + v o+ dubue By
Lemma 21 (i) ar + 5p* = 1 for some 4, v € &, and 30

ok gte = 3 (b IS s O

If A is ns above, then A is rsemioncritical, I:)'[G.Pkplﬁ.lﬂ]. 0 it con-
tiins 2 r-dense submodule # which is 4 finite direct sum of = len.
r-coctitial +-puce submodules of 4; we can assume, without loss of gener-
ality, that B A, A, in this nottion we have the following

Lesia 3,62 If w0 von-gers. ehemmt af A, is of infivite Pbeight for il ixcn,
e LAY DL ALy G DAL 1 boisded by 1 for.same 53N,

Paoos: Select elements a,e A, of 0 Pheight for each i<u; then it is
easy o find elements 4, #-1<j<m, of O Pheight oo, such that pa, =
=Ii,‘a‘fcxdlu+ <j<m, where reN. I ae Ay @@ Ay, then we

can write phe = by + .45, (b A) with £ as small us possible. By Lem-
mas 3.3 and 2.2 (i), there dre clements 7, 7’6 £ P such that ¢/pla = plewe
= S hya,, whero 4,0 R P for some i<, owing to the choice of 43 henee

by Lemma 35, rae ey, - 6,308 G, o ddn= s
ra= B por Soppoing 51 we v

Lo.3 and conzequeatly,

Prra pptra =
=m0, o L T hesatit o+ T Lo

=p(pmt | 3 bt et (it 3 = 24

Comparing the eorrespanding terms we obtaini
A g (puct 3 vih)e

Howerer, since at lest one 7, is 6F 0 ng!.c, from Lemma 2.7 these fol-
tows that £ = 7, 0 the bound is




=5t

Lesnca 375 Jfa, € A, dr an et of O Pobelght for each i<, thes AIP A=
= a Py A3,

Proor Let ae A\ PA; by Lemma 3.3, there exists an re K0P such
that = ryoy oo s (7 B). Then ar 4o = 1 for suitable u, re R,
and comoqnmlr-~na+xp- X s+ po'e

Lesn 38: If w=lene A and e mowgers dlement of e A (< m) ir of
infiite Pduighr, then APA = (RIFY",

Proor: Let 8= A5, A, hr«dﬁ'n:sn(!aud.:hm:‘mlr,
In A, (ce) of 0 Phelght. Supposs that = rysy + - +a fox
some /s, and let p* be the bound of Lemma 3.6, .Tlmnks\

and 5o prxe A®... 8 A, Thus, for some re R\ P we have rptx = i, +
+ e s, by Lemma 33, 1F p’r wrpl, then
PP e BBty i P P gl P

=Pmat ot preaE ot P,

+ biu), Bence 1<s, and consequently e &, =
3. In & suitable cnumenation of Ay, ..., A,, we
<&,; 50 there ase clements X

(] Pragmect B dmy bl

tisa).

Firse we shovw that @0, & PAYC AIPA. Let 3y, = p for some xc A
Thea & -2

Pt Zprifat F 0

IF /¢ P, then by Lemma 2.1 (iii) it *=1 for some clements

w0e R So we get

PR

(o' 4+ 1'a) =, nay

which contradicts the choice of &,; hence, by Lemma 2.2 (i), r, = pr, € Rp.
Now we can continue similarly for plx—7,%,)= 3 roe, and afier o steps
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e clearly get v« Rp for each icn, To finish the proof it suffices to show
that AIPA = @ (x4 Pebs Let we A PA; from Lemma 3.3 it easily fol-

o the exlstents oF FE RAP 1k thar PPAs = £ody + wet Fuda Taz SomE
£a1. Using the cqualies (5 we cvily g hut pion = 3, v

from a-e preceding part of the preof it immedistely Follows’ dhat'st; =pa,
{F<w), and consequently .-‘u{E.n.:r., A being rwonionfree. Now wr

Fapl (uxnunh](l 2E R, 50 that 4 = wre = spa = T afl,x;+ o, and
we are through. L0}

We can now prove that #,(%)C #(K), by showing that the hypothesis
in Proposition 14 is stisfied.

Provasmion 39: Lat A = Ay + i 4 A be o vtorsion.free o of vopire
oueritical difirmt obmedaies A, Thea 2(A) b v-pure in G A,

Proors 1 Tma is not epure in (A, then there 1 an clement

b g4 Ay b+ A e DANImE

vuch that phos (a4 Ay, vy a2, Whete by, o, by, 45 A t0d P Rp= pR
s & maxioal left ideal of R. So we have, for cich 7.ca, #— pb, = w, (s, & A).
16, for some <, 4,c PA,<PA, then o,w py (7e.4), 10d 50

M) =g xe ),

In this case it is
= (bt Ay oy Pt )
= (o A

A= px
and <0 i = (), (A4, being riomionree. This comndiction shows that
i § PA, fur esch i<, and consequently mM o (RIFy: by Lo 38
On the other hand, by Lemma 3.7 and the e : <m),
E hevs ATPA S (o b Poh s oA Py = B F M;- AP i s
that len, A = 1, which is clearly a contradiction.

The main thearem of this sction i3 now an immediate: conscquence of
Propositions 1.2, 1.4, 3.2, 34 and 3.9,

Tueonese 310: Let B be o ring which is not v-torsion, where ¢ desstes e
Dickesn torsin thoory in R-Mod, awd ot Pom Bp w pR for & pe B, for esib
maximal ift ideal P of R. Then B{R)= Fi(R). O




4. - BUTLER MODULES OVER PRUTER DOMAINE

Let R be s commutative integral domain and 9% R its field of quotients;
# will denote, from now on, the useal tonsion theory in R-Mad, which coin-
cides both with the Lambek and the Goldie tonsion theories. An A-module
r-cocritical exactly if it is isomorphic 1o a submodule of 0, and an 2 -module
retorsion-free of finite vlengal exactly if it is tonion-free of finite rank in
the usual seose. A submodule A of a toesion-free module A is v-pure if It
i m;m ive..if rMLN m N for cach rg R (see [FSZ]).

The first result in this section shows that the suffcient conditions of
Proj ns 1.2 and 1.4 can be tested in the local case; we Jeave ro the reader
dsumiuhrﬁv-ud proof, just recalling thar, if Af is a torsion-free R-module,
then A = ) My, where 2 ranges over the masiml specrrum Mis £ of £,
and M, d.mm-hlmum of M at the maximal ldeal P.
is a5 in Sccrion 1

Lesowia £.1: Lot R be a commutative inicgral dessain, Then
1 U B ic RDopore e G Ay b sach iy 4 randesse: riionfre
B, then B o< 3B if end only if Be = X (B for poch PaMiz B

D Cm Gyt o Co s o rcionfeve s of renkene RDopare snbe
modeie, tben 3(C) br RD-pore n ac if and suly if 3Cy) ir RD-pore in
etc.),fu-i:psm.xn o

In the preceding lemna . obviously denotes the unique extenion of &
to the localizatinn ar P,

W it vt B Piats docatg & charseriitic popany for
R is that R, is a viluation domals for each Po Max B. RD-puity is
valent to the putity in the sense of Cohn. We will show that the v silicea

malns ace wniserial moduler, fe. modles with lacarly ordered set of sub
modules.

h‘.\umi!' Lt KﬁtuMﬂb_ﬂ'aﬂHﬂpﬂMg"mﬁ >2
of A= @A, where euch A, ir rovkone terionfres, Thus B = @a, where
sach B is s rank o submedi of rowe A Hows B 3B




— 58—

Proor: In view of Lemma 1.1, we bave Bl o0, so we can chogie B,
£ be a rankone pure whmodule of B, It is evidently pore in A, hence it
it sumaasd of A by [PS2.IX 561 Apply e Eastango Piopesy of 5,
to conclude that A = By® Ay AL with A} a summand of A, As
each A, is of rank one, the enmparison of ranks dhows that some 4], say A
equis 0, while 4] =1, rmm, Theselore A = B A' for some J which
s evidently # 1. Now with B'= By A If ke B 1, we
are done; otberwise 4 simple ;udumm concludes the proof, O

Leana 4.3: Lat R be o raluation dimain Jf © = Cy+ ook Co dr a dirsiene

free irredamdont ram of rak-sne fure sobssodies €, (i 1, vy 8], ther € = BC
i

Pagor: Cl)mqwt;m‘euﬁhﬁ&mﬁhﬁ c. o

The kernel i pure, and 0 4 summand of

soty O K piekls A
then € =C, ...,

YC G
+ and Irncdundsncy implies 4

Lok 44; Lot B be o volustion dosmaln aid € =
Jfree xase of ramh-one pure smbedles €, with £k o2

Q;JC,.

Proor: Without loss of gencaality we can wssume vhas the sum of the
Cis it ievedundast, with, w32, By, Lemom 43, C=@C, so.mt €0,
Induces an fromorphism bevween & and ¥ for each {<. The'proof that
2(C) is pure in (?Jc a @c‘ is casy and it is left to the reader. O

Tram Propositions 1.2 and 1.4 and feom the preceding leminas we deduce the

Tobontic A5 o DY s, ol 3 oy i b ot
thoacy,cuiniides with the clas of proly finitly geneeated forsia-free. mocuies

1§ we look at the Dickson tardon theory over Profer domains, we must
preliminarily take care of the existence of r-coctitical modules. In the local
case we have the following

Prorosirion 4.65. Let R b a veluation dossaln ind ot v be sbe Dicksen iorsion
dbeory im R-Moxds: Tl there exist v-vserivics! B-meduts if and sty if tbe massinial
el P of R i privcipel, {n 1hie caue, u'v-cocritcal Reswodale ic, . tbe watwal way,
a rawkane rrddos-free RIP=-modie.

Proor: If P is not peincipal, then Rir® has zeo socle for cach r& < K,
beace Rif is not r-cocritical for each idenl J < P Thus there are no v-cocrit-




ieal Remociules, by (G, 143 Convensely, if P-
el Rmodule,

T

(= is obviously

it has rank-one, orherwise Af has n pon-acro lwmqaumnm BiP~- 5
module, which is & r-torsion-free quotient o5 an R-module. O

We leave the global cuse 85 an open

Characterize Prifer domains R such that there exisr r-cocrit-

Quastion
ical R-modules, where © denotes the Dickson tomsion theory.

A finst relevant consequence of Propasition 4.6 is that the study of Butler
modules in the Dickson tossion theory over a valation domain can be reduced
o that of Butler modules in the usual torsion theory over & ditcrete rank-one
valuation domain, which are, 23 fs well known, dircct sums of rank-one madules.

A second remak following from Proposition

6 i that the condition imposed

to the ringy in Sections 2 and 3, namely that the maximal leftideals aze principal,

i & necessary candicion fos & valuation domain for the

stence of r-cocritical

modules in the Dickson tossion theory.
On the orber hand, we must remark that in the global case the :ben con

dition in o more necessary: in fact, aay Dedekind dormain which

givesa
coincides with the usoal one.

the Dickson torsion lb:nq'

. The proofs of Lemmas 4.2 10d 43 in the present version
uchs..

Ackmawdedgmrat.
of this paper ate due to. Laszlo F
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