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Hiy=0 @,

spparengs ai HETU), per wn > 3 8 covasgs sue verkicans . magglacesions fondi-
ek oo

e R R 4 e s gl £,
& mgolrish £ parsial, pr 1 verioes T df sebemionl

e D, Hlel) = 5, D).

1 = IntropucTION |

Let @ be 2 bounded open set In R, 52, let %= (x;, .., x,) denote 2
poin: of 2 40 V> 1 be g, A groerl vocmo of R W dencesd by
P =By s p) where pc RY, We shall denote by &= (5,), ij=1, .t
where 8,6 R¥ & generic clement of R, For a vecwr u: 2 -+ RY we st

Dn =(D,
H(e) = {Dy},

We can ideatify H(s) with DD siace the vector D,Diy i =
dsdyhtbrovnﬁh:rmumﬂ(»v)

-oy#, i3 an macn matrix of N3V matrices, (A} =
de=f£=(? =,y m i an o matrix
vectors £, € RY, we set

an (ABy=F AybusRe.
b

Lo pre

A= [A,,l -nd B= B}, if
ia R, thea

0z ABy=3 A, B =R,
=

y, are m m matrices of clements

| We shall deate by 7 the wNxaN ideatity matsix, Let af, £): 2X R¥"—R*
be a mipping which is measurable in x and of class €1 in &. Suppase that
| alx, 0) = 0 and consider the quasi-basic diffcrential operator

(L3} as, HEY .
| We set
(1.4 %“ - {

o5 h {_
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- that the veetor § -+afx, §) is elliptic; that is,

, we have

[F0].
a0 (G in)ortat o

: know whether the hypothesis that & —= -C&ﬁilsﬂﬁ)ywm

icic: o wh:we shall iy in the fallowin

the hypotchais (16_) that ¥¢ e R*'" and

fe= B <l -

the difirential u,g.mr ((L.3) maps EE(O) — L.

H@) = H'n H}{Q)

1y = o
conmider ‘the Dirichler problen

NeH@), s, HW) =FeLXE)
oo (13 s

s, ) = 5 Aus) D = (AUEE)
) axe % N matriees of class L-m)m A= (.4,,@] s
7, the « canditios of Corder is well known for

€ (0, 1) such that for almost all x€ 2 we have

| 2. o
%’%—;’rsd\'—t‘ apep

is-condition, assures that, Vy'e Z4(&2), the Ditichlet problem (1.10) has

R o, (e B (4] It s also knawn that, if the condition (1.12)
 satisfied then the Dirichlet problem (1.10) may not have a unique sofu-

ton (ses (3], Appendis).

theze exist two
and v, M55 0, such that, for almost all xeQ, usnﬂf VpeR*
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In analogy with this, we can introduce 3 « scelisssr condition of Corder » Also
for operators al, F(n).

For cach 5, 76 R and for almost all x & & we define rwo Vx N and
RN wN matrices, respectively, s follows:

o Mend “w

A, [ )
and we define the function S(x, 5. v), which is measurable in x and continuous

in g, 7 21 follows
(na(a, n2) ,)

(1:15) Bl 1) = I— 5

In wiew of the ellipticity condition the funcrion # s bounded in QxR %
*R™ and strictly positive

116 w Siepsict.

wmnu..r that the aperator (1.3) (as well as the vector afx, &) satisfes the
mon linr ewdition of Cordes 1§ 3K, 0 < K < VITL such that, ¥g, ve R and
for almose all xe @ we have

117 Blemm) )>-_ K.

W shall show that the pointwise condition of Cordes (1,17) asures that the
; i(m L&) is mear the linear operstor Au which is
jection H(2) — £(4).

Tt now follows, by a general sesult on muppings between Hilbert spaces,
thae a(, H(a)) i also  bijection F(2) — LX)

We observe that, while for non variational linear systems proving the fact,
that the condition of Condes implics the nearness of these operators t A,
s an Intesesting optional choice but not really necessary, for non variational
zon linear operatoss it is, however, an evseatial fact because we do ot kaow
sy oiber way 2 prove the caience and ualqocoess beceen n s o

it i aleo possible to prove that for the Selue
tion .cm(u) e il erion

118) sy H@)=0 a2




-3 -
fisdasental interior enimate holds (sce section 3) and maze over,
s F'(@) of the system {1,18) seally belangs to H(2) for ¢
2 fsee section 5).
umm@mmmwmmm&m
‘basic variational syseem
diva(Di)=0 a2
s stiely monotane in p (sce (41
onwards onc can proceed with the study of £ regulasity,
. partial- %1 regulasity, of the vector Dr for solutions we FA(2) of
non varhational system
4l m, Dy H(m) = bl n, D)

was done for quasi Hnear systems (1.19) in [3].

EXISTENCE AND UNIQUENESS THEGKEM TOR QUASHRASIC STSTEMS

¢ that the bounded open sct 2 is conves and is of class C% Then,
o Missnda s Fueast (6] [T]) we e the following

21 Far ay wetor wc H(D) the folowing estimate boids
AT} ey = T A L -
¢ can easily prove the following

22: If the vector s, §) satisfies the ceaditicn (1.17) then Yo, v e R
MJ{-D:Q&&%M;-«M-«:“” 5

o N Ene e et s+ )= et i< Kisl

Tr= @0
st )t = (He )

e
09 L atd ] are el i 1,14
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‘we obtain
@3 [ Zru— ity n, Pl v )=l ) =
= l(l—ﬂ(x, ) e 1) !]l H |r S,

£

On the other hand, it follows, from the definition (1.15) of the function
v, y,7) and from the condition (1.17), that

Ll = Ff[’—ﬂ(x.q.v)(lp‘g;"—')llk K

Il—ﬂ[x.». D)
The estimate (2.2) s thus proved.
We shall list 3 fow facts concerning Hilbert
Tia o i M, B s geah St b, raamely of ki tsmifons:
Let A and B be two mappings My — Hy.

Daroserion 2.1: We ssy that A is monsiuse with rspeet to B if thre exiot
twe pusitive constants M*>v* >0 such that Vo, ve i, we

@4 V(e — ALy, < M B(8)—Ble)ln, o
@5 (Al — Ale) B{r)— B(3))a, > "] Blw)— Ble}, -

Dirpsirios 22: W sgp that A e assr B if there exier 1m0 paitive cosstonss
= and K with 0< K< 1, b that Vo, ve H, we

@6) 1B BE)—af AW — A g, <KI B)— BE), -

It is easy 1o show the following proposition
() 4 is manctone with respect fo B if and smiy if A is nesr B.
and the following exisime asd anigammess dboorese cars also be proved easily

Tueonese 242 If B: H, = H, is Wjective aid A: F, — Ty i near B with
caustants & and K, then A ir alw o Wjwction; that ir, ¥fe H, Jve Hy meb that

@n Alwy=f
i e bese s follwing estimats

@8 1B)— B0,

We present here a proof for the convenience of the reader,




—m—
pe Since B is & bljection, we ean define n metsic an H, by
(e #) = | Ba)— B,

(6, ) becoms 3 complste metic tpie. More o, soving the
(27) I cquivalent to finding & #e H, such

B B} —aAG0) + af = F).
e H,, Fisye Hy and hence, since 8 is a bijection, 3, = Gla) e H,

Bn=F=).

define 3 mapping T: Hy —» Hy which is 3 conmmaction. Infict, if
and 1= G(e), then

BU)— BV = Bla)— B(r) ~ 2| A — A

by the assumpiion that A s near B, we hive

18(U)— B g, < Ki B — D1},

eans, by (2.9, that

AU V) <Kdlos),  Nmwe,.

e H, which solves (2.10), aad hence 3jee Hy chich solves (27).
cstzuate (26) follows from the assumption dhat A is near .

| sow prove the following lemm

Linnia 231 If the sector afx, & it m«mwm:un
RO - HIG LN o g, 4 ax FH(@) -

o md o it K 0,1) ek thet
'uﬂomusn
{a— #)—sfat, Hal) —al, ) s < K4 a— )«
Paoar: Tn view of the Proposition (s) it is suficlent 1o shaw that the
a{, H{w)) is monotone with respect to the operator A(s) and this s an
Wufﬂuwmmwhm2] and of the lemma of Mirands

Talenti 2.
hmnmmnWm)mmur’*mr_m




all xedr we have
P 7)ol v i) —afx )l < K] +H;=4.|I..
Nt v+ ) —alv me<frh + H%'(rl',—
Henee, by the Lemma 2.1, we have, Yo, v Hf

@12 el ) el HED o= EE D e
D,

Ir follows from (2.2) that Y, e R and for almost all xg &

el | v Bl Wt v+ ) — oo 3>
P Evli—2lotos v )=l IZ v
from which we get

IZnd g
@13) ot 7+ ) u)l;:n.J» S B,

Now it follows, from (213) and oace agiin usint the Lemma 2.1, that
i v € H(Q)

@ (et ) — ol HE s =3 (5 L=
und bere IJL — K3/ 0 because of the bound (2.2) on K.

The estimates (212) and (244) prove the ‘monotonicity, and hence the
ncammes, of the operator s ) withrspcs 0 the opeicn 10}

In victwe of Theorem 2.1 we can conclude with the following it and
wnignestst thirem,

Tonones 2.2: If the wctor a(s, £) i aliptic and. sotisier the conditivs (117)
thes vst'(n) the Diriehlet preblem

@5 v @), s HW)=f =08
bar & waigue solwtion w amd the following extimate bolds
@1 1H0 < L i

L atd K being e sonstants which over i (1.16) aad (1.17).
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in the estimate (2.16)
wﬁemkndl..mfmd.ﬁ.imwhhm

@-Ammu.mvnmh TSTIMATE
‘bounded open set In R* and a(, ) be a vector QxR —« R¥,
jnxminfdusom; Smol:d-u(lrv}nﬂmﬂ

£ s elliptic and condition (117):

a.mcmp(x,, t)lnn(llsjndsﬁ hmm«tm
Bl t)=p00,7).
s feom the. pointwisc crtimate (2.2) that, Yr& R and for almos: all

|;v~—l(ﬁﬂ'(-ﬂﬁ|.<xlfl
(0,1). We denote by B(s) = A% ) tho ball of center s and I
@ H3(@) be a solotion o the guus-busc systecn

% s HE) =0 i@
all prove the Following fumdamestal inferior stimats for the wector H(s).

345 I me @) is u svltivn of the e basic grivm (33), Hen
a comtant +(K) & (0, 1) awh fhor, YB(s) T 2 and V4 (0, 1), we duve

Jup a1
iy
re ¢ does mot depend on 38, ¢ and 0.

i Letus fix B(o)ce 0. Tn Bs)n = v+ w where » is the solution I
Disichlet problem

we H(Ble),  dws dn—flx, H)e(x Hiw) 1o B() ()
26 H(B(s) is a solution of the basic linear system

dp=0 in Bo). |

5 %0 ot ch i g ikl o (3.5) b & vecion of R of cas EACS0Y) sd Hernce »
o g
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It is well known that, ¥i € (0, 1), the following fundamental estimate holds
fur the vector ».

(3.7) H{) | dx<r | H{p)}
o7 _J} o) :I‘E e

(see (1] and the (3.1) in [S]). In view of the pointwisc estimate (3.2), we have
the following esti the yectar i

68 [IHE) < [0~ o, H)ae, H) i;‘dr<ﬁ:![ (O
0 aie a

Finally,

ince 4 = # <+ in Bu), it follows feom (3.7) and (3.8) that Veo (0, 1)

I ( J1tana
i

1+ Kray m(‘[lﬂw!'ﬁ‘bf
3

| The: claim (3.4) follows from this last estimate and the Lemma 1.V, p. 2 of [1]. |

Resanx: In contrast with the variationsl case, we have proved the fanda-
mental estimate for the second derivatives for solutions of & quasi-basic system
instead of for those of a basic system.

This is duc to the fact that in the variational case we start with solutions
I in HM@) and bence, we should obuain the existence before gening the eati-
I mate (3.4). In the non varistional case, we instcad start with solutions which
I ase .tmdy in F*(0) and we have only to obiain the estimare (34).
| e kaown Poincaré type estimates, it follows from (3.4) dhat, if
I keh"ﬂ)) is & solution in 0 of the quasi-basic

sysiem i, H(n)) = 0, then

| D thiv@)
| and
I e C L
I f Hence

| (39) Dx s Hilder continuous in 0 if am2

and
} (310) # Is Holder contingons in @ if n< .
I,I “This resule i in accordance with the result that onc has for the solations

#6 F{@) of 2 basic variational system,
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4. - Ax £ KEGULARITY RESULT

hyporhesis o 0 aad on the vector a(s, §) made In the

wad e 147 bold £ 7.7 @ R then ey el o
ith v, £, re
R be a vector of class D(ﬂ)udkuzﬂl(m be 2 solution

A HO) =] i f. I
she fallowing Temma |

41z For any ball Bio) w Bt o) cC 2 and W (0, 1) we bave he
[ deco e [1H@ b+ o [ L1108
»an e
the eousianis ey and ey do wad depend on 3, ¢ ami .

 Pacors In B(s) we have # = # — » whete & is the solution of the Dirichlet

e H(BE)) . aln Hw) 4 H) =als H)~f in Blo)
: v e F¥(B(a)) is & solution of the system

ale HE) =0 in Bo):
e that  exists and is unique in view of the remark made in the beginning
soction and of the fact thut alx, H()— fLHQ). We have the fol-
estimate for »
1 < g 1 e

. it fallows, from the pointwise cstimate (22), that we have

<hetm— s H(0), Hw) oo H) + H) — al, HE) 4
10, H Qo) () [o(e, H(8) + FHG) —alee, GO < KLHG + LT
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and hence (4:5) follows in virtue of Lemma 2.1, We bave the following fun-
damental estimate (3.4) for the vector #

@6 HO oy < e V€O

Since # = £ —# In B(o), the crtimate (4.2) follows from. (u.) sd (4.
The following 0 regularity thearem follows from. the

Tuwaness If e e (), 0<cd<en and w5 HNO) is a solusion of sbe
spstem
(] s HE)=f
then
“8 Hiw) 6 630
and fir erery apen sbset % cc 0 we have the estimatt
“0 T o < LA i+ L]
where ¢ depends alse vn the disionce of 2% from 0.

Paoor: Tt follows, from (42) and the hypothesis that /& €42), thit
YB(a)cc @ and ¥ro (0, 1) we have

[1H@P <o [ 1HEP & +aL b
iy e

From this the assersion follows in view of the Lemma 1.1, p. 7 of [1}
We sematk that, from (48), we have the following corollary

*10) Diefi(0) and  wetht¥a)
and hence we sgain bave

Da is Holdes continuous in & i n=2,

« in Holder continuons in 2 if g<4,

5.- A S AUGULARITY RESULT WIrH § Nian 2
Let we HY(@) be a solution of the system

fe2)) {nH@)=0 in2.
W deaote by A, (x, ¥) and by A(x, z) respectively the Nx and aNxcaNN




L ) =20 it s ) = L) e
system (5.1) can also be written in the form

oo ) = 5 A0, HOO) Do = (Ao, HENIHW) =0 i 2

near 2.
o betion § o 2]
& ball Bi2a) ce 2 Iet #(x) be a G (R)a function with the fol-

0<i<l, @=1 inB(), Om0 .inR™BEs), ‘|‘
| Do for cach i ndes «,

P = (P, ., P) the polynomial vector of degree <1 such that
JE’(H—HA’-D. Vai laf<1.
— B). Us Hi(B(2) and is a solurion of the system 1
“2.4.;(». H@) Dyl =
-gfﬁu(& HY) + Ay, FGa)) D 6D (a—~ Py +
B Ao O D 0s— B) = Flo— ).
we have the estinate (see (216 of Theorem 23)
JIH@I e <ol B [ LFta— P |
2in i
the other hand, by the well known Poincart inequality we have
‘LIFW—P:I'#«M.W" 10— (D) ex
s

ere we have set, a5 usal, vy, = fridk:
aiin
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Thesetore, if we HH) is'n solution of the system (5.1) then YB(2a)cc
we have the Caceioppoli type estimate

MJ:-\!I(:)"‘!Q![L. ME, n:("!];‘ Hi| W'”'lx)

From this and by the lenicai of Gehitlng - Giiquiata -'G. Modicx (see, for
instance, Lemma 101, p. 100 of [1]) it follows that 3g= 2 such thar H{s)e
£ L4(0) and
6 ( iiﬂ(.)y-ée)“qc(‘ i ;m.;:uax)'"
=
whese ¢ doss aat depend on @ ol .
Resane; The undancnal cimte (1) an sl be bied i s

e if we H(2) is a salution uf |h= system (5.1) then (5.6) holds and
hence YBlo)cc @ and e (0, §) we

ek} ui;u:.)_a.u;,l,;(‘_f';n(.;_-.f\}“:-u-me=.“---='-=B:£iymygx .

Finally the estimate (5.7) is teivially true for f<s<l.
s there are two ways of expressing the exponeat en Which appea in
(Ji)mdvhmmn-u ways 1o justify the m.m(w}(am)
iy remarked in the introduction, one can proceed with the study
of o0 regularity or of the parsial t*regulasity, of the vecios D fos the
solution we A(G) of & complste aon-viriational system

(58 al,w, Din, H(w) == G, w, Do)

exactly in the same vy s was done in (3] for the system (5.8) of quask-linexs
fype.
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