

Accademia Nazionale delle Scienze derta dei XI. Merceric di Matematica 105º (1987), Vol. XI, fasc. 3, pagg. 53-63

WOJCIECH ZYGMUNT (*)

On the Scorza-Dragoni's Type Property of the Real Function Semicontinuous to the Second Variable (**)

ABSTRACT. - The equivalence of four properties which can have a real function f(I, N) measurable in / and sentecorinoous in × is proved. They are Scoras-Dragoni's type property, Baire's type property on an approximation of a semicontinuous function and properties Op and CI defined in terms of multifunctions.

Sulla proprietà di Scorza-Dragoni nel caso delle funzioni reali semicontinue rispetto alla seconda variabile

REASSUNTO. - In questa Nota, per le famzioni reali f(t, x) misorabili rispeno a t e semicontinue rispetto a × si dimostra l'equivalenza di quattro proprietà: della proprietà di Scoras-Dragoni; di quella di Baire, sull'approminuzione di una funzione semicontinua; nonché delle qui chianute

1. - INTRODUCTION

As the classical theorem of Scorza-Dragoni has show ([SD]), a function f: 10, 11×R → R satisfying the so-called Caratheodory's conditions, i.e. f is measurable in / for each x and continuous in x for each /, has the following property: « for any $\varepsilon > 0$ there exists a closed set $T_{\varepsilon} \subset [0, 1]$ whose measure is greater then $1 - \epsilon$ such that $f|_{T_0 \times B}$ is continuous with respect to both variables ». However if the continuity of function $f(t, \cdot)$ is substituted by semicontinuity, then the function f may not have the semicontinuous restriction of Scorza-Dragoni's type (cf. 1B, Ex. 2,71; for it is well know that the function f which is only semicontinuous with respect to every variable separately, may be very irregular, cf. [Sie, p. 651, [1-K, Sect. 4]). In the case when such

^(*) Indirimo dell'Autore: Instytut Matematyki, Uniwerytet Marii Curie-Sklodowskiej, pl. Marii Carie-Sklodowskiel 1, 20-031 Lublin (Polonia). (**) Memoria presensata il 23 sectembre 1986 da Giuseppe Scorza Desgoni, uno dei XI...

restriction is possible we shall say that f has property SD_n (for lowersemicontinuity) or property SD^n (for uppersemicontinuity).

Now let A be a subset of R and let us consider the mapping F_a from [0,1] to the family of all subsets of R defined by $F_a(G) = \langle x_i | F_i/\langle x_i \rangle \in A|$, where f is described above. If f is Caratheodony's function, the mapping F_a is weakly measurable for each open or dioised set A (see [11]. Theorem 6.2 by the substitution of the contraction of the A for t

increasing requence). In this paper we show that the previously mentioned properties for function $f : Y : X \to R$ are equivalent under suitable assumptions about T and X to the previously T and T and T are considerable to the form of the form of the following the followi

2. - DEFINITIONS AND PRELIMINARIES

Let Z be a metric space. A function $f\colon Z\to \mathbb{R}$ is called lower semicontinuous (lee) (upper semicontinuous—use), if the set $\{se\ Z: s< f(se)\}$ ($\{se\ Z: f(se)\}$) ($\{se\ Z: f(se)\}$) open for each $a\in \mathbb{R}$; it is equivalent to the condition that the set $\{se\ Z: f(s)< a\}$ ($\{se\ Z: s< f(s)\}$) is closed. The following theorem holds:

THEOREM (Baire, [L], [Ho]): Every lsc (usc) function $f: Z \to \mathbb{R}$ is a limit of a nondecreasing (nonincreasing) sequence of continuous functions $f_{a^{\pm}}Z \to \mathbb{R}$.

Let Y be a topological space. We denote by q(Y) the family of all subsets of Y including the empty set. Let S be an arbitrary set and μ a measure defined on .e-field Z. of whotes of S. By multifunction we mean a mapping from S into q(Y). The set $(Y \circ S \circ F(Y))$ is $q(X) \circ G(Y)$ in calcid the domain of $Y \circ S \circ F(Y) \circ G(Y)$ is weakly prosumetable (in each open subset. B $Y \circ Y \circ G(Y) \circ G(Y)$

(i) $F: S \to F(Y)$ is w. μ -meas iff (= if and only if) the multifunction $F: S \to F(Y)$, defined by $F(\ell) = F(\ell)$, is w. μ -meas,

(ii) if $F \colon S \to \mathcal{G}(Y)$ is w. μ -meas then domain F is a μ -measurable set.

A function $f: S \times X \to \mathbb{R}$, where X is a topological space, will be called C (resp. C_* , C^*) type, if $f(t, \cdot)$ is continuous (lsc, use) for each $t \in S$ and $f(\cdot, x)$ is s-measurable for each $x \in X$.

Now we assume that S is a compact Hausdorff topological space and a Borel, σ -finite, regular and complete measure. We say that $f \colon S \times X \to \mathbb{R}$ has

 property SD(SD₄, SD⁴), if for every e > 0 there exists a closed subset S_s of S_s with μ(S\S_s) < e, such that f|_{S_s, k, X} is continuous (lsc, usc),

 property Op, if a multifunction F_s: S → f(X), defined by F_s(t) = {x ∈ X: f(t, x) ∈ A},

is w. u-meas for each open subset A of R,

 property CI, if a multifunction F_A: S → f(X), defined as above, is w. μ-meas for each closed subset A of R,

property B_n (B*), if there exists a nondecreasing (nonincreasing) sequence of C-type functions f_n: S×X→R, which converges to f.

Recently, in [R-V], the classical result of Scorza-Dragoni has been extended. We give it in the form appropriate for our considerations.

Theorem (Scorza-Dragoni): Let S and μ satisfy the same assumptions as before and let X be a separable metric space. Then every C-type function $f \colon S \times X \to \mathbb{R}$ has property SD.

Lemma 1: Let I be the homeomorphic transformation of R onto I=(0,1) which preserves the order. Then

 (i) f: S×X→R is C_r (C_n)-type function iff the composition g = sof: S×X→I is C, (C_n)-type function,

 (ii) f: S×X→R has property Op iff the composition g = sof: S×X→I has property Op.

PROOF: Follows from the equalities given below (see e.g. [Sik, p. 58]):

 $(i) \ \{t \in \mathcal{S} \colon f(t, \varkappa) > a\} = \{t \in \mathcal{S} \colon I\big(f(t, \varkappa)\big) > I(a)\}\;,$

 $\langle \mathbf{x} \in \mathcal{X} : f(t, \mathbf{x}) > a \rangle = \langle \mathbf{x} \in \mathcal{X} : s(f(t, \mathbf{x})) > t(a) \rangle,$ $\langle t \in \mathcal{S} : s(f(t, \mathbf{x})) > a \rangle = \begin{cases} e \\ f(t \in \mathcal{S} : f(t, \mathbf{x}) > s^{-1}(a)) \\ f(t \in \mathcal{S} : f(t, \mathbf{x}) > s^{-1}(a)) \end{cases},$ $\langle t \in \mathcal{S} : s(f(t, \mathbf{x})) > a \rangle = \begin{cases} e \\ f(t, \mathbf{x}) > s^{-1}(a) \\ f(t, \mathbf{x}) > s^{-1}(a) \end{cases},$ $\langle t \in \mathcal{S} : s(f(t, \mathbf{x})) > a \rangle = \begin{cases} e \\ f(t, \mathbf{x}) > s^{-1}(a) \\ f(t, \mathbf{x}) > s^{-1}(a) \end{cases},$ $\langle t \in \mathcal{S} : s(f(t, \mathbf{x})) > a \rangle = \begin{cases} e \\ f(t, \mathbf{x}) > s^{-1}(a) \\ f(t, \mathbf{x}) > s^{-1}(a) \end{cases},$ $\langle t \in \mathcal{S} : s(f(t, \mathbf{x})) > a \rangle = \begin{cases} e \\ f(t, \mathbf{x}) > s^{-1}(a) \\ f(t, \mathbf{x}) > s^{-1}(a) \end{cases},$ $\langle t \in \mathcal{S} : s(f(t, \mathbf{x})) > a \rangle = \begin{cases} e \\ f(t, \mathbf{x}) > s^{-1}(a) \\ f(t, \mathbf{x}) > s^{-1}(a) \end{cases},$ $\langle t \in \mathcal{S} : s(f(t, \mathbf{x})) > a \rangle = \begin{cases} e \\ f(t, \mathbf{x}) > s^{-1}(a) \\ f(t, \mathbf{x}) > s^{-1}(a) \end{cases},$ $\langle t \in \mathcal{S} : s(f(t, \mathbf{x})) > a \rangle = \begin{cases} e \\ f(t, \mathbf{x}) > s^{-1}(a) \\ f(t, \mathbf{x}) > s^{-1}(a) \end{cases},$

X, for a < 0,

(ii) $F_s(t) = \{x \in X : f(t, x) \in A\} = \{x \in X : s(f(t, x)) \in s(A)\} = G_{s(s)}(t),$

$$G_s(t) = \{x \in X : s(f(t, x)) \in A\} = \{x \in X : f(t, x) \in s^{-1}(A \cap I)\} = F_{d \cap I}(t)$$
, for $A \cap I \neq \emptyset$.

THEOREM 1: Let X be a Polish space (i.e. separable, complete, metric space) and let $f\colon \mathcal{S}\times X\to \mathbb{R}$ be $C_{\mathfrak{a}}$ -type function. If f has property $B_{\mathfrak{a}}$, then f has property Op also.

PROOF: We have

$$f_1(t, x) < ... < f_n(t, x) < f_{n+1}(t, x) < ... < f(t, x) = \lim_{t \to \infty} f_n(t, x)$$
,

where $f_n: X \times X \to \mathbb{R}$ is C-type function, $n = 1, 2, 3, \dots$

First, we prove that a multifunction $F_{(s,\rho)}$ is $w.\ \mu$ -meas for every interval (s,β) $\in \mathbb{R}$. Let us fix (s,β) and consider multifunctions $F_n\colon S \to \mathscr{C}(X)$, defined by

$$F_n(t) = \left\{ x \in X : f_n(t, x) \in \left[\alpha + \frac{1}{n+j}, \beta \right] \right\},$$

where $f \in \mathbb{N}$ is such that $s + 1/f < \beta$. By $\{H, Theorems 6.4 and 3.5\}$ the multifunctions F_a are w. ρ -meas. Since F_a has closed values, then in view of $\{H, Theorem 3.5\}$ for every $s \in \mathbb{N}$ the multifunctions $\bigcap_{i=1}^{n} F_{s+1} : S \rightarrow \sigma(X)$ are w. ρ -meas and hence the multifunction $\bigcup_{i=1}^{n} \bigcap_{i=1}^{n} F_{s+1} : S \rightarrow \sigma(X)$ is w. ρ -meas.

c. μ-meas and nence the multifunction O(1 | Γ = 1 | S → S(A) is w. μ-meas. (The union and intersection of multifunctions are defined in the usual way.) We show that

$$F_{(s,t)} = \bigcup_{a=1}^{\infty} \left(\bigcap_{k=a}^{\infty} F_{\kappa+k} \right).$$

Indeed, we have

$$\begin{split} \times \mathbf{e} \underbrace{\widetilde{\mathbf{U}}_{i}}_{i} \Big(\bigcap_{i=1}^{n} F_{s+i}(t) \Big) &= \mathbb{N} \mathbf{e} \bigcap_{i=1}^{n} F_{s+i}(t) \Leftrightarrow \mathbb{N} \mathbf{e} F_{s}(t) \Leftrightarrow \mathbf{e} > \mathbf{e}_{\beta} \Big) \\ &= \Big[\mathbf{e} + \frac{1}{\mathbf{e}} < \mathbf{e} + \frac{1}{\mathbf{e}_{\alpha}} < f_{\alpha}(t, \mathbf{e}) < f_{s}(t, \mathbf{e}) < \beta \text{ for } \mathbf{e} > \mathbf{e}_{\beta} \Big] \\ &= \big[\mathbf{e} < \mathbf{e} + \frac{1}{\mathbf{e}_{\alpha}} < f_{\alpha}(t, \mathbf{e}) < \beta \Big] \Leftrightarrow \mathbb{N} \in F_{i, \mathcal{G}}(t). \end{split}$$

On the other hand, if $x \in F_{(s,\theta)}(t)$, then $\alpha < f(t,x) = \alpha + \delta < \beta$, where $\delta > 0$. There exists π_0 such that $\pi_0 > 2/\delta$ and $f(t,x) = f_n(t,x) < \delta/2$ for $n > \pi_0$. Then, for $n > \pi_0$,

$$\alpha + \frac{1}{s} \! < \! \alpha + \frac{\delta}{2} \! = \! f(t, x) - \frac{\delta}{2} \! < \! f_{n}(t, x) \! < \! f(t, x) \! < \! \beta$$

and we have

$$x \in \bigcap_{i=1}^{n} F_{\pi_{i+1}}(t)$$
; hence $x \in \bigcup_{i=1}^{n} \left(\bigcap_{i=1}^{n} F_{i+1}(t)\right)$.

Thus $F_{(s,\beta)} = \bigcup_{s=1}^{\infty} \left(\bigcap_{k=0}^{\infty} F_{s+k} \right)$ and therefore $F_{(s,\beta)}$ is w. μ -meas.

$$(\alpha, \beta) = \bigcup_{n=1}^{n} \left(\alpha, \beta - \frac{1}{n+j} \right),$$

where $j \in \mathbb{N}$ is such that $\alpha < \beta - 1/j$, and since the multifunctions $F_{\{s,\beta\}} = \bigcup_{n=1}^{\infty} F_{\{s,\beta-1/(n+\beta)\}}$ is w. μ -meas, we conclude that the multifunctions $F_{\{s,\beta\}} = \bigcup_{n=1}^{\infty} F_{\{s,\beta-1/(n+\beta)\}}$ is

Now, if A is an open set of R, then $A = \bigcup_{n=1}^{\infty} (x_n, \beta_n)$, where x_n , β_n are some rational numbers. Hence $F_A = \bigcup_{n=1}^{\infty} F_{(r,n)}$, is the w. μ -meas multifunction which means that the function f has property Op.

3. - SOME LEMMAS

Henceforth we assume that (T, m) is a measure space, where T is a compact Hausdorff metric space and m a Borel, σ -finite, regular and complete measure. The σ -field of m-measurable sets we denote by A. We also assume that X is a Polish space.

If $S \subset T$ and $S \in \mathcal{K}$, then (S, π_N) is a measure space with the measure $\pi_S = \pi_{1,K_S}$, where $\mathcal{K}_S = \{M \cap S : M \in \mathcal{K}\}$. It is clear that $\mathcal{M}_S \subset \mathcal{K}$ and the measure $\pi_S = \pi_S \subset \mathcal{K}$ are properties as $\pi_S \subset \mathcal{K}$.

Besides, if a multifunction $F \colon T \to \mathcal{F}(X)$ is w. m-meas, then the restriction $F|_{i:i} S \to \mathcal{F}(X)$ is w. m-meas. On the other hand, if a multifunction $G \colon S \to \mathcal{F}(X)$ is w. m-meas, then its s empty s extension $G \colon T \to \mathcal{F}(X)$, defined by G(f) = 0, if $f \notin S$, G(f) = G(f), if $f \in S$, is w. m-meas.

Lemma 2: If a multifunction $F \colon T \to \mathcal{B}(X)$ satisfies the following condition: * for every $\varepsilon > 0$ there exists a closed subset T_* of T_* with $m(T \setminus T_*) < \varepsilon_*$ such that $F|_{T_*}$ is $w_* : m_{T_*}$ -means, then F is $w_* : m_{T_*}$ -means.

Proops: Putting $e_n=1/e_n$ $n\in\mathbb{N}$, we obtain a sequence of closed sets $T_n\subset T$ such that $m(T,T_n)\subset e_n$ and multifunctions $F_n=F_{p_n}$ are w. m_{r_n} -meas. Thus their e entry e extensions $F_n:T-e$ f f and f f f f f f f is w. m-meas. Hence the multifunction $F=\bigcup_{n=1}^{\infty}F_n$ is w. m-meas. Since

$$\{t \in T: F(t) \neq \overline{F}(t)\} \subset T \cup T_n$$
 and $w(T \cup T_n) = 0$,

then the multifunction F is w. m-meas.

Lemma 3: Let $f: T \times X - R$ be $C_* \text{ type function and have property } O_B$. There is no every multifunction $F_{(0,n)}: T - g(X)$ there exists a nondecreasing sequence of C-type functions $\psi_*^*: T \times X - g(1)$ such that $\lim_{n \to \infty} f(x, x) = g(X)$, f(x, x) = g(X), f(x, x) = g(X), f(x) = g(X),

PROOF: Let $\alpha_n = \alpha + 1/n$, $n \in \mathbb{N}$. We have

$$F_{i-1}(t) \in F_{i-1}(t) \in F_{i-1}(t)$$

Henr

$$F_{(-m,s)}(t) \subset \bigcap_{i=1}^{m} F_{(-m,s_0)}(t) \subset \bigcap_{i=1}^{m} F_{(-m,s_0)}(t) = F_{(-m,s)}(t)$$
,

50

$$F_{(-\infty,v_0)}(t) = \bigcap_{i=1}^{\infty} \overline{F}_{(-\infty,v_0)}(t)$$
.

But the multifunctions $F_{(-\infty, s_0)}$ are w. m-meas (and have closed values), therefore by [H, Theorem 3.5] the multifunction

$$F_{(-\infty, s)} = \bigcap_{i=1}^{\infty} F_{(-\infty, s_0)}$$
 is w. ss-meas.

Now we define functions q" as follows:

$$\varphi_*^*(t, x) = n \cdot \min \left(\frac{1}{n}, d(x, F_{(-\infty, x)}(t)) \right),$$

where d(x,d) denotes the distance of x to A and $d(x,\theta) = +\infty$. For each fixed $l \in T$ the functions $\varphi(t, l)$ are continuous, because the distance of a point from the nonempty set is a continuous function; if $F_{t-x}, g(t) = 0$, then $\varphi(t, l) = 1 = \cos nt$. For each fixed $x \in X$ the functions $\varphi(t, x)$ are means by [H, Theorem 3.3 b], because the multifunctions $F_{t-xy, x}(t) = 0$, are we-mean. Thus $\varphi(t, x) = 0$, then $\varphi(t, x) = 0$, then $\varphi(t, x) = 0$.

Now if $x \in F_{(n,\infty)}(t)$, then $x \notin F_{(-\infty,n]}(t)$. Hence $d(x, F_{(-\infty,n]}(t)) = \eta > 0$ and for $n > 1/\eta$ we have $\varphi_n^*(t, x) = 1$ that is $\lim \varphi_n^*(t, x) = 1$.

If $x \notin F_{(s,w)}(t)$, then $x \in F_{(-w,s)}(t)$. Hence $\varphi_s^s(t,x) = 0$ for each $s \in N$, that is $\lim_{n \to \infty} \varphi_s^s(t,x) = 0$.

Therefore $\lim \varphi_n^*(t, x) = \chi(x; t, x)$.

LEMMA 4: Let $f \colon T \times X \to (0, 1)$ be C_n -type function and have property Op.

Then there exists a nondecreasing sequence of C-type functions $f_n\colon T\times X\to [0,1]$ which converges to f_n

PROOF: Let $a_k^* = i \cdot (\frac{1}{2})^n$, $i = 0, 1, 2, ..., 2^n$. Consider step-functions s_n : $T \times X \rightarrow [0, 1]$ defined by

$$x_s(t, x) = (\frac{1}{2})^n \cdot \sum_{i=1}^{2^n} \chi(x; t, x_i^n).$$

It easily verified that $s_n < s_{n+1}$ and s_n converges (even uniformly) to f. For a moment let us fix $n \in \mathbb{N}$. In view of Lemma 3 for each $i = 1, 2, 3, ..., 2^n$ there exists a nondecreasing (with respect to k) sequence $\varphi_{k,n}^n : T \times X \to \{0, 1\}$ of G-type functions such that

$$\lim q_{i,k}^n(t,x) = \chi(x;t,\alpha_i^n).$$

The functions $q_k^*: T \times X \rightarrow [0, 1]$, defined by

$$g_{k}^{*}(t, x) = (\frac{1}{2})^{*} \sum_{i=1}^{2^{n}} g_{i,k}^{*}(t, x),$$

form a nondecreasing (with respect to k) sequence of C-type functions, which is converging to z_n . Indeed,

$$\varphi_1^q(\ell,x)=(\frac{1}{2})^n\sum_{i=1}^{2^n}\varphi_{i,k}^m(\ell,x)<(\frac{1}{2})^n\sum_{i=1}^{2^n}\varphi_{i,k}^m(\ell,x)=\varphi_{k+1}^n(\ell,x)$$

and

$$\lim_{k\to\infty} g_k^n(t,x) = (\underline{i})^n \sum_{i=1}^n \lim_{k\to\infty} g_{i,k}^n(t,x) = (\underline{i})^n \sum_{i=1}^n \chi(x;t,\alpha_i^n) = \epsilon_n(t,x) \,.$$

Let now $f_n(t, x) = \sup_{t < x, t \le x} \varphi_t^t(t, x)$.

Such defined functions $f_n\colon T\times X\to [0,1]$ are of C-type and obviously form a nondecreasing sequence converging to f. In fact, we have

$$\begin{split} f(t,x) &= \lim_{t\to\infty} f_t(t,x) = \sup_{s\geqslant 0} \ell_t(t,x) = \sup_{s\geqslant 0} \left(\lim_{t\to\infty} q_t^s(t,x)\right) = \\ &= \sup_{s\geqslant 0} \left(\sup_{t\geqslant 0} q_t^s(t,x)\right) = \sup_{s\geqslant 0} \left(\sup_{t\geqslant 0} q_t^s(t,x)\right) = \sup_{s\geqslant 0} f_s(t,x) = \lim_{t\to\infty} f_s(t,x). \end{split}$$

The proof of our lemma is completed.

LEMMA 5: If $f\colon T\times X\to (0,1)$ is C_s -type function and has property Op, then function $f+b\colon T\times X\to \mathbb{R}$, defined by (f+b)(t,x)=f(t,x)+b(x), where $b\colon X\to \mathbb{R}$ is a continuous function, is of C_s -type and has property Op.

PROOF: In virtue of Lemma 4 there exists C-type functions $f_*: T \times X \rightarrow \{0, 1\}$ such that $f_* < f_{*+1}$ and $\lim f_*(t, x) = f(t, x)$.

Then the functions $f_n + b$ are of C-type and form a nondecreasing sequence coverging to f + b. Thus, f + b has property B_n and therefore by Theorem 1 has property Ob.

THEOREM 2: Let $f: T \times X \rightarrow \mathbb{R}$ be C_{\bullet} -type function. Then the following statements are equivalent:

- a) f has property SD.,
 - b) f has property Op,
 - c) f has property CI,
 - d) f has property B.

Photo: a) = b. Let x > 0. There exists a closed subset T_k of T such that $a(T_k, T_k) < a$ and $f_{(k_k, x_k)}$ is b. Then by Blair's between there exists a sequence of continuous functions $f_k^* : T_k \times A = k$ such that $f_k^* \in f_{k_k}^* : a$ and $f_{(k_k, x_k)} = f_{k_k}^* : f_{k_k}^* : a$. The functions $f_k^* : T_k - a(T_k)$, defined by $f_k^* f_k^* : a$ and $f_k^* : a$ substrates on $f_k^* : T_k - a(T_k)$, defined by $f_k^* f_k^* : a$ and a is arbitrary, therefore in view of Lemma 2 the multifunction $f_k^* : T_k - a(T_k)$ is a = a. Also in the same and so f has property $f_k^* : a$.

b)=e). Let $A\in \mathbb{R}$ be a closed set. Then the sets $A_s=K(A,1|s)$, where K(A,r) denotes the open ball with a e center $b \in A$ and radius r, are open. Hence the multifunctions F_{ds} , by assumption, are w, s-meas and also \overline{F}_{ds} . But $F_{ds}(r)=\bigcap_{s\in S}F_{ds}(r)$, because

$$F_{s}(t) \subset F_{ds}(t) \subset F_{ds}(t)$$
 and $\bigcap_{i=1}^{n} F_{Z_{s}}(t) = F_{d}(t)$

and consequently the multifunction F_A is by [H, Theorem 3.5] w. ar-meas.

 e^i) $\Rightarrow b$). We have $F_{(s,s)} = \bigcup_{i=1}^n F_{(s_n,b_n)_i}$ where $s_n = x + 1/(s + f)$, $\beta_n = \beta - 1/(s + f)$ and $j \in \mathbb{N}$ is such that $x + 1/j < \beta - 1/f$.

Further we have also

$$F_s = \overline{\bigcup} F_{(s_s,b_s)}$$
 where $A = \overline{\bigcup} (\sigma_s,b_s)$

is an open subset of R. From these equalities the w. ss-measurability of multifunction $F_{\mathbb{A}}$ follows.

 $b_i = d_i$. In view of Lemma 1 it is sufficient to prove that a function $g_i = of_i$ where r is as in assumption of Lemma 1, is the limit of a nondecreasting sequence of G-type functions $g_i = r^{-1}og_i$: $T \times X \to 0$, 1). Then the functions $f_i = r^{-1}og_i$: $T \times X \to 0$, are of G-type and nondecreastingly converge to $f = r^{-1}og_i$:

Consider the functions q_n : $T \times X \times X \rightarrow \mathbb{R}$ and g_n : $T \times X \rightarrow \mathbb{R}$ defined by $q_n(t, x, a) = g(t, a) + nd(a, x)$,

$$g_s(t, x) = \inf_{s \in X} g_s(t, x, s), \quad s = 1, 2, ...,$$

Obviously $g_s(t, s) \circ \chi_{m(s)}(t, s)$. Furthermore for a fixed s we have; $g_{s'_s}(x, s) \circ s$ is s-meanmable for each $x, s \in X$, $g_s(t, s, s)$ is continuous for each $t \in T$, as $t \in X$ we observe that for fixed $t \in T$ the functions $g_s(t, s, s)$ are the family of equicontinuous functions with respect to the parameter $s \in X$), $g_s(t, s, s)$ is lower-emicontinuous for each $t \in T$, $t \in X$. By the same argument as in $[1, p, s, t] \{ c, d, s \in S$, then $[1, p, t] \{ c, d, s \in S$, then [1, p

$$0 < g(t, x) < 1$$
 and $\lim_{x \to \infty} g_x(t, x) = g(t, x)$, $(t, x) \in T \times X$.

Now it remains us show that χ_{i} is a Cuppe function. For each $v \in T_i$ $\xi_i(f_i, \hat{s})$ is continuous as an infimum of the family of equicontinuous $p(x_i, s_i)$ (cf. ξ_i), $g(x_i, s_i)$ (cf. ξ_i), $g(x_i)$. Further, we observe that if x is food, then $\psi_i(x_i, s_i)$ is the sum of the function ξ_i which is of C_i -cypic, and the continuous function $\delta_i = a(t_i, s_i)$. Since g has property O_i , in view of Lemma $S_i \neq \delta$ has property one. It means that multifunctions $\Phi_i^{(i)}(x_i) = G_i + \delta_i$ and $G_i = G_i + \delta_i$ is given by $G_i = G_i + \delta_i$. It is considered by $G_i = G_i + \delta_i$ and consequently their domains are π -measurable sets, that is $(G_i = T_i, \Phi_i^{(i)}) = 0$ and $G_i = G_i + \delta_i$.

Now consider a multifunction $\Psi_n^{(s)}: T \to \mathfrak{F}(\mathbb{R})$ defined by

$$\Psi_{s}^{(a)}(t) = \{ \varphi_{s}(t, x, a) : a \in X \}.$$

We claim that $\Psi_n^{(s)}$ is w. m-measurable. Indeed, for each open set $A \in \mathbb{R}$ we have

$$\{t \in T : \Psi_{s}^{(s)}(t) \cap A \neq \emptyset\} = \{t \in T : \varphi_{s}(t, x, s) \in A \text{ for some } s \in X\} = \{t \in T : \Phi_{s}^{(s)}(t) \neq \emptyset\} \in X.$$

Thus by [H, Theorem 6.6] the function $\epsilon t \rightarrow \inf \Psi_n^{(s)}(t) s$ is so-measurable. But $\inf \Psi_n^{(s)}(t) = \inf_{\epsilon \in X} q_n(t, x, a) = g_n(t, x)$ which completes the proof of the so-measurability of function $g_n(\cdot, x)$. Therefore g_n is the C-type function. a) > a). Let $f_n: T \times X \to \mathbb{R}$ be C-type, $f_n < f_{n+1}$, n = 1, 2, ... and

$$\lim f_n(t,x) = f(t,x).$$

Let us choose an arbitrary $\varepsilon > 0$. Then in virtue of Scorza-Dragoni's theorem we can obtain of close sets T_e such that $T_e \subset T_{e-1}$, where $T_e = T_e$

 $m(T_{n-1} \setminus T_n) < (1)^n \varepsilon$ and $f_n|_{T_n \setminus T_n}$ is continuous, $n=1,2,\dots$. Let $T_n = \bigcap_{i=1}^n T_n \cdot T_n$ is closed and $T_n \subset T$. The functions $f_n|_{T_n \setminus T_n}$ are continuous and form a non-decreasing sequence converging to the function $f_n|_{T_n \setminus T_n}$ which is lowersemicontinuous with respect to both variables.

Furthermore

$$m(T \setminus T_s) = m\left(T \setminus \bigcap_{n=1}^{\infty} T_n\right) = m\left(\bigcup_{n=1}^{\infty} (T \setminus T_s)\right) =$$

$$= n \Big(\bigcup_{s=1}^n \langle T_{s-1} \diagdown T_s \rangle \Big) = \sum_{s=1}^n m \langle T_{s-1} \diagdown T_s \rangle < \sum_{s=1}^n \langle \underline{t} \rangle^s \, \epsilon = \epsilon \; .$$

Thus $f: T \times X \rightarrow \mathbb{R}$ has property SD_* . The proof of Theorem 2 is completed.

It is easily observed that $f\colon T\times X\to \mathbb{R}$ is C_{\bullet} -type function iff (-f) is C^{\bullet} -type function, f has property SD_{\bullet} iff (-f) has property SD^{\bullet} , f has property F has the same property and finally f has property F. Hence we have the following theorem

THEOREM 3: Let $f\colon T\times X\to \mathbb{R}$ be C^* -type function. Then the following statements are equivalent:

- a) f has property SD*,
- b) f has property Op.
- c) f has property Cl,
- d) f has property B*.

the past that will depth in this section in 128 has made it

PREFERENCES

- [B] P. BRUNGVERT, Surga-Dregoni's theorem for inhounded set raised functions and its applications of
- routre/ problem, Maximutički j Čaropin, 20 (1970), pp. 205-213.
 [H] C. J. HEMMERSHER, Measurable relation, Fund. Math. 87 (1975), pp. 53-71.
- [Ho] E. W. Hobson, The theory of functions of a real variable and the theory of Paurier's series, Dover Publ., New York, 1957.
- [J-K] J. JANNE J. KURWELL, On conditions for right-hand sides of differential relations, Can. Pear. Mat., 102 (1977), pp. 334-349.

- [L] S. Lojaszewicz, Witep do teerii funkții rejecțivisțeh (in Polish), PWN, Wanszawa, 1973.
 [R-V] B. Raccaza A. VILLOR, Separability and Storya-Deagon's property, Le Matematiche, 37 (1982).
- [SD] G. Sconza-Doacoos, Un terrons salls funcioni continue rispette ad one e minerabili rispette ad on della escription, Rocol. Sem. Max. Univ. Padova, 17 (1948), pp. 102-108.
 [Sie] W. Sarany-Sax, Wing de teory funding genome geographic (in Polishik, Kaiginlea-Atlas, Luchus-
- Warmawa, 1932.

 [Sik] R. Segonice, Funkyle sprograviste, t.l. (in Polish), PWN, Warmawa, 1958.

On an impulity Assertable with Stationery Plants

A property of the propagations related the second statement

In Changes where these process for Congress on to the sales in regarding Territories, Agriculture Ad Service sections on a subsection of September 200

is the party or business we would be prove county or the fillers as becomes position

22 ----

Alleged stern for all steen fallow a far attall. That