

Resdicoesi Accademia Nazionale delle Scienze detta dei XL Monario di Matomatico

105° (1987), Vol. XI, fac. 16, pagg. 243-252

GIUSEPPE ZAMPIERI /

Local Existence at the Boundary of Analytic Solutions of P.D.E. with Analytic Coefficients (**)

Esistenza locale di soluzioni al bordo per equazioni a derivate parziali con coefficienti analitici

Scivro. — Si usa la teoria della microlocalizzazione al bordo di [5], nei raci mberiori rvilaggi di [7] e [9], per trabilite cristri di esistenza di sobazioni di aquazioni a derivate parziali con coefficienti analitici.

ABSTRACT

Let M be a real analytic manifold, X a complexification of M, D an open subsect of M with smooth boundary, (D on one side of D), $A = A_0$ the thest of analytic functions on M, P = P(v, D) a germ of differential operators $A_0 = P(V_0, D)$ a germ of differential operators $A_0 = P(V_0, D)$ a germ of differential operators $A_0 = P(V_0, D)$ and $A_0 = P(V_0, D)$ a germ of differential operators $A_0 = P(V_0, D)$ and $A_0 = P(V_0, D)$ are one introduction attribution $A_0 = P(V_0, D)$. In some case we even show that for the equation $P(V_0, D)$ and $A_0 = P(V_0, D)$ for arbitrarily small $A_0 = P(V_0, D)$ and A_0

^(*) Diperimento di Manmatica - Università, Via Belroci, 7, 35131 Padova, Italy.

(**) Memoria presentata il 1º giugno 1987 da Giuseppe Scorra Dragoni, uso dei XI...

The frame of the paper is the theory developped in [2]; many tools used in the proofs are also related to [6], [8].

I like to express my gratitude to prof. P. Schapira for frequent and useful discussions.

1. - REVIEW ON MICROLOCALIZATION

Let X be a real C-manifold, $\pi: F^X - X'$ the cottagent bundle, ω_x the cointention Such . Let D(X) (resp D(X)) be the prival category of the energed category of the energed of complexes (reity lower bounded complexes), of sheares of shelian groups on X. For $A \in X$ locally closed and for $F \in O(D(X))$ a complex $\mu(F)$ is defined in [3]. We recall its main resource F is the first of F is the first of F in F in

$$R\pi_* \mu_s(\mathcal{F}) = R\Gamma_s(\mathcal{F}),$$

(1.2)
$$\operatorname{supp} \mu_{A}(\mathcal{F}) \subset SS \mathcal{F} \cap SS \mathbb{Z}_{A}$$
,

(1.3)
$$SS \mu_s(\mathcal{F}) \subset C(SS \mathcal{F}, SS \mathbf{Z}_s)$$
,

(cf [2] for the definition of microsupport SS and of normal cone $C(\cdot, \cdot)$). Let $M \subset X$ be a real C-submanifold of codimension s, $T_s X$ the conormal boundle to M, ω_{self} the relative orientation sheaf. Nor $S \in D^*(X)$ we set $S = R \times \infty_{self} (S, Z_i)$. We will often consider the case A = Q or A = B, where B is an open subset of M such that:

(1.4) Z_0 is c.c. (cohomologically constructible) and $Z_0^* = Z_0 \otimes \omega_{MR}[-n]$,

(cf [2], Section 5, for the definition of c.c.). We recall that for \mathcal{F} c.c. in $\mathcal{D}^b(X)$, \mathcal{F}^a is also e.e. and $\mathcal{F} = \mathcal{F}^{aa}$. Thus (1.4) is equivalent to:

$$Z_0 \text{ is c.c. and } Z_0^* = Z_0 \otimes \omega_{s/t}[-s].$$

Easily to see all C^k -convex Ω and all open Ω such that $M \setminus \Omega$ is C^k -convex and $M \setminus \Omega = \overline{\text{Int } M \setminus \Omega}$, satisfy (1.4). (C^k -convex means convex at any point in some local C^k -chart.)

Under assumption (1.4) we have, by Proposition 5.6.3 of [2] (and by (1.4), (1.5)):

(1.6) $R\Gamma_{T_{2}^{*}X}\mu_{0}(\mathcal{F}) = \mathcal{F}_{5} \odot \omega_{\pi/x}[-\pi]; R\Gamma_{T_{2}^{*}X}\mu_{0}(\mathcal{F}) = \mathcal{F}_{0} \odot \omega_{\pi/x}[-\pi].$

We suppose now that $\Omega \subset M$ is C^2 -convex. For a sheaf \mathcal{F} on X a new sheaf $\overline{\Gamma}_{\theta}(\mathcal{F})$ on M is defined in [8]. This is a subsheaf of $\Gamma_{\theta}(\mathcal{F})$ which coincides with \mathcal{F} over Ω and whose stalk at x_{θ} , $x_{\theta} \in \Omega$ is, in local coordinates (x, y)

at x. (with M = (r = 0)):

(1.7) $\widetilde{\Gamma}_0(\mathcal{F})_{s_0} = \lim_{V \to 0} \Gamma(U, \mathcal{F})$, for $U \supset \{(x, y); x \in \Omega, |y| < \epsilon \text{ dist } (x, \partial \Omega)\} \cap W$ for some $\varepsilon < 0$ and some neighborhood W of x_0 .

Let $R \widetilde{\Gamma}_0(\cdot)$ denote the derived functor; in [8] we prove that:

(1.8) $R\Gamma_{T,X}(\mu_0(\mathcal{F}))_{T,X} = R\widetilde{\Gamma}_0(\mathcal{F}) \otimes \omega_{M,T}[-\pi]$

On the other hand, since $\pi(\operatorname{supp}(\mu_0(\mathcal{F}))) \subset \pi(T_M^*X) = M$, then:

(1.9)
$$R\pi_{\mathfrak{a}}((\mu_{\mathfrak{Q}}(\mathcal{F}))_{T_{\mathfrak{a}}^{*}X}) = R\Gamma_{\mathfrak{b}}(\mathcal{F})$$
.

Combining (1.8) and (1.9) (resp (1.1) and (1.6)), one obtains the fundamental Sato's triangles for $(\mu_0(\mathcal{F}))_{T_0,K}$ (resp $\mu_0(\mathcal{F})$ or $\mu_0(\mathcal{F})$), which are the main tools of the present paper.

2. - MICROLOCALIZATION OF θ_x

Let M be a real analytic manifold of dimension π , X a complexification of M, D cM and open subset with analytic boundary, M = D Ω (0 on one of B, CM) M = D M and M analytic boundary, M = D M and M are fixed of B, M and M analytic boundary M and M and M are M and M and M analytic boundary in the subsets of holomorphic functions on X, analytic functions on M, begin tions on M respectively; let $\overline{A}_0 = \overline{B}_0(Q_0)$. For $A \subset M$ locally closed, especially for d = D, and A = D, we call the G d = D and A = D, we call

(2.1)
$$C_{x,y} = \mu_x(\theta_x) \otimes \omega_{x,y}[e]$$
.

We recall that for any closed cone $Z \subset T^*X$ and for any $\mathfrak{A} \in Ob (D^+_{cont}(T^*X))$, we have a distinguished triangle:

$$(2.2) \qquad R\Gamma_{T_{\sigma}^{*}X}(G) \rightarrow R\pi_{\sigma}R\Gamma_{\sigma}(G) \rightarrow R\dot{\pi}_{\sigma}R\Gamma_{\sigma}^{*}(G) \stackrel{\circ 1}{\rightarrow} ,$$

(where $Z=Z\setminus T_x^*X$). In particular for $Z=T^*X$ and $9=C_{0|X}$ (resp $9=C_{0|X}$), and by (1.1), (1.6), we obtain an exact sequence:

$$(2.3) 0 \rightarrow A_0 \rightarrow \Gamma_0(3_n) \rightarrow H^0(R_{-n} C_{0|X}) \rightarrow 0 ,$$

(resp:

$$0 \rightarrow A_0 \rightarrow \Gamma_0(\mathcal{B}_0) \rightarrow \dot{\pi}_0 \cdot C_{0,v} \rightarrow 0$$
.)

$$(2.5) 0 \rightarrow A_{5} \rightarrow \Gamma_{0}(A_{N}) \rightarrow H^{0}(R_{2}R\Gamma_{k-1N-20}(C_{0}x)) \rightarrow 0,$$

which is a consequence of (2.2) for $Z = \pi^{-1}(M \setminus \Omega) \cup T_X^*X$.

We note now that ? D being analytic, then (cf [5]):

In the above assumption we recall two other statements whose proof can be found in [7].

Lemma 2.1. For any $x \in \partial \Omega$ and for a suitable mighborhood X' of x, we have:

(2.7)
$$H^i(U, \mathcal{C}_{y;z}) = 0$$
 $\forall U \in \hat{T}_x^* X^i, \forall j \ge 1$.

THEOREM 2.2. $(C_{0(X)}T_{0X}$ is conically flabby (i.e. its image in $T_{N}^{*}X|R^{+}$ is flabby).

If we let now $0 = (C_{0,Z})_{T_0^*Z}$ and $Z = T^*X$ (resp $Z = \dot{\pi}^{-1}(M \setminus \Omega) \cup T_1^*X$) in (2.2), we obtain by the aid of (1.8), (1.9) (and also by Theorem 2.2), exact sequences:

$$(2.8) \quad 0 \rightarrow \tilde{A}_0 \rightarrow \Gamma_0(\mathfrak{S}_N) \rightarrow \hat{\pi}_{\mathfrak{a}}(C_{0|X})_{T_0^*X} \rightarrow 0 ,$$

(resp:

 $(2.9) 0 \rightarrow \tilde{A}_{\theta} \rightarrow \Gamma_{\theta}(A_{H}) \rightarrow \hat{\pi}_{\theta} \Gamma_{\tilde{h}^{-1}(H \setminus \Theta)}((C_{u:X})_{T_{\theta}^{*}X}) \rightarrow 0.$

More generally we know that for any closed cone $Z \in T_N^*X$, $R\pi_s \cdot R\Gamma_t(C_{o,x})_{T_o,x}$ is concentrated in degree θ and that:

$$(2.10) \quad H^{0}(R\pi_{\sigma}R\Gamma_{Z}(C_{\Omega:X})_{T_{\sigma}X})_{z} = \{ f \in \Gamma_{\theta}(\mathfrak{A}_{H})_{z} \operatorname{SS}_{\theta}(f) \subset Z \}, \quad \kappa \in M,$$

where SS₀ is the microsupport at the boundary defined in [5]. (When $\Omega \times Z \subset T_X^*X$, then $f \in \Gamma_{\mathfrak{g}}(A_{\mathfrak{g}})_s$ in the right of (2.10).)

This gives a large class of exact sequences extending (2.8), (2.9).

3. - Existence of analytic solutions at the boundary

Let M be a real analytic manifold of dimension w and X a complexification of M. Let $p \in T_w^*X$ and $x \mapsto \pi(p)$; using the natural embeddings:

$$T_N^*X \times T^*M \hookrightarrow T^*X \times T^*X \hookrightarrow T^*T^*X$$
,

 T_p^*M is identified to a submanifold of $T_p^*T^*X$. T^*T^*X is in turns identified to TT^*X by means of -H, H being the Hamiltonian isomorphism.

Let Ω be an open subset of M with analytic boundary (Ω on one side of $\partial \Omega$), let $n \in \Omega$, and let θ be the exterior conormal to Ω as n. Let P = P(n, D) be a germ of (micro)differential operator at p, $p \in \pi^{-1}(s)$, with holomorphic coefficients, and let char P denote its characteristic variety. In [6] (and [8])

the following result was stated:

LEMMA 3.1. Accume that:

$$(3.1) -H(\theta) \notin C_{\theta}(\operatorname{char} P, \widetilde{\Omega} \times T_{H}^{*}X).$$

Then P is an isomorphism of $R\Gamma_{n=NN\setminus D}$, C_{DEX} in a neighborhood of p.

Let Z be a closed cone of $\Omega \times T_M^n X$ with $Z \times \Omega \subset T_M^n X$. By (2.2) and by the results of § 2, we have an exact sequence:

$$(3.2) \quad 0 \rightarrow \tilde{A}_0 \rightarrow \pi_* \Gamma_s ((C_{\Omega|x})_{\Gamma_w^* x}) \rightarrow \hat{\pi}_* \Gamma_{\tilde{s}} ((C_{\Omega|x})_{\Gamma_w^* x}) \rightarrow 0.$$

We also have:

$$\Gamma_{\hat{x}}((C_{0|x})r_{x}^{*}x) = \Gamma_{\hat{x}}(\Gamma_{x^{-1}(M\setminus O)}(C_{0|x})r_{x}^{*}x) = \Gamma_{\hat{x}}((\Gamma_{x^{-1}(M\setminus O)}C_{0|x})r_{x}^{*}x),$$
(3.3)

due to supp $e_{wx} \in \pi^{-1}(M \setminus \Omega) \cup T_M^*X$.

Thus if P is a differential operator at x which induces an isomorphism of $\Gamma_{x''(N',0)}C_{D|X}$ in a neighborhood of $Z \cap \pi^{-1}(x)$, we deduce from (3.2) and (3.3) that P is an isomorphism of $\left(\pi_n \Gamma_x((C_{0|x})_{T_n^*X})\right) \widetilde{A_0}_{x^*}$. On the other hand we note that:

(3.4)
$$\pi_{\bullet} \Gamma_{\bullet}((C_{o(x)})_{T_{o}X})_{\bullet} = \{ f \in \Gamma_{o}(A_{w})_{\bullet} : SS_{o}(f) \in Z \}$$
.

On account of (3.4) and Lemma 3.1 we have then established the following:

Theorem 3.2. Let Ω be an open set of M with analytic boundary, x a point of $\partial\Omega$, θ be exterior conserved to Ω at x, P(x, D) a differential operator at x, Z a cloud cone of $\widetilde{\Omega} \times T_m^n X$ verifying $\Omega \times Z \subset T_m^n X$. Assume that (3.1) is fulfilled by $\Omega = Z \cap T_n^n X$. Then P is an isomorphism of $\{(e, T_n(A_n), S_n(f) \subset Z)(\widetilde{A_n}), S_n(f) \subset Z(f)(\widetilde{A_n})\}$.

To get good existence criteria we need now:

(3.5) char
$$P \cap (SS Z_0 \setminus T_*^*X) \cap (U \times T_*^*X) \subset T_*^*X$$
.

$$(3.6) P((\widetilde{A}_{\theta})_{\theta}) = (\widetilde{A}_{\theta})_{\theta}.$$

PROOF. Let $N^*(\Omega)$ be the conormal cone to Ω ; we recall that:

supp
$$C_{0|X} \subset SS \mathbb{Z}_2 = T_M^* X \oplus N^*(\Omega)^*$$
,

(where $\epsilon a*$ denotes the antipodal). Let $L=\operatorname{SS} \mathbf{Z} a \diagdown T_H^* X$ and consider the triangle:

$$(C_{\wp;\chi})_L \rightarrow C_{\wp;\chi} \rightarrow (C_{\wp;\chi})_{F_{\wp}^*\chi} \stackrel{i.i.}{\rightarrow} .$$

Applying the functor
$$R\pi_a(\cdot)$$
 to (3.7), and using (1.1) and (1.9) we obtain:

(3.8)
$$R\pi_{\bullet}(C_{D,X})_L = 0$$
.

On account of the triangle:

$$(3.9) \qquad R\Gamma_{\tau_{x}^{+}x}(C_{\rho(x})_{z} \rightarrow R\pi_{+}(C_{\rho(x})_{z} \rightarrow R\pi_{+}(C_{\rho(x})_{z} \stackrel{+}{\rightarrow},$$

we then obtain from (3.8):

(3.10)
$$R\Gamma_{r_{\sigma}^{*}X}(C_{\nu;\chi})_{L} = R\dot{\tau}_{\phi}(C_{\nu;\chi})_{L}[-1]$$
.

Finally applying $R\Gamma_{723}(\cdot)$ to (3.7) and using (1.6), (1.8), (3.10), we obtain an exact sequence:

(3.11)
$$0 \to A_0 \to \widetilde{A}_0 \to H^0(\Re \pi_0(\mathfrak{C}_{0(X)_0}) \to 0 \ .$$
We take now full advantage of the language of derived categories. We denote

by \mathfrak{D}_2 the sheaf of differential operators with holomorphic coefficients, set $\mathfrak{A}_n = \mathfrak{D}_2(\mathfrak{D}_2 P_n$ and apply the functor $R \otimes \mathfrak{O}_{\mathfrak{D}_{2R}}(\mathfrak{A}_n \cdot)$ to (3.11).

We first note that Y (the complexification of $N = \ell D$) is non-characteristic for \mathfrak{A}_n due to (3.5). It follows: $\operatorname{\&xr}_{\mathfrak{D}_2}(\mathfrak{A}_n \cdot \mathfrak{A}_0) = 0$. Therefore (3.6) will be a consequence of:

(3.12)
$$H^{1}(R_{x_{+}}(R \times om_{D_{x}}(A_{x}, C_{p(x)}))_{x}) = 0$$
.

To prove (3.12) we notice that because of (1.2) and (3.5) we have:

$$\operatorname{supp}\left((R\operatorname{Xom}_{\mathfrak{D}_{\mathcal{S}}}(A,\mathfrak{C}_{\mathcal{S}(X)})_{t}\right)\cap(U\underset{\mathcal{H}}{\times}\mathcal{T}_{\mathcal{H}}^{s}X)=\emptyset,$$

and therefore:

(3.13)
$$R\hat{\pi}_{a}((R \operatorname{Xom}_{\mathfrak{D}_{x}}(\mathcal{M}, C_{\wp(x)})_{a})_{s} = R(\hat{\pi}|_{a})_{a}(R \operatorname{Xom}_{\mathfrak{D}_{x}}(\mathcal{M}, C_{\wp(x)})|_{a})_{s}$$
.

We also notice that $R(A|_{A})_{\bullet}(C_{OUT}|_{A})$ is concentrated in degree -1 since

$$C_{u(\mathbf{x})_L} = C_{v(\mathbf{x})}[+1]$$
 and $H^i(U \times L, C_{v(\mathbf{x})}) = 0$ $\forall j \ge 1$ (by Theorem 2.2).

This gives (3.12) and completes the proof of the theorem,

Corollary 3.4. Let P verify (3.5), let $f \in \Gamma_B(A_B)_s$, and assume (3.1) fulfilled $\forall p \in Z = SS_D(f) \cap A^{-1}(x)$. Then there is a substine $u \in \Gamma_D(A_B)_s$, with $SS_D(u) \subset SS_D(f)$, of the spatish Pu = f. Such u is unique module (A_B) .

We note now that if (3.1) holds $\forall p \in \hat{Z} = \pi^{-1}(x) \cap T_M^*X$, then (3.5) is automatically fulfilled. We have therefore:

Corollary 3.5. Let P verify (3.1) $\forall p \in \hat{Z} = \hat{\pi}^{-1}(x) \cap T^{\pm}X$. Then:

$$P(\Gamma_{\theta}(A_{\aleph})_{\alpha}) = \Gamma_{\theta}(A_{\aleph})_{\varphi}.$$
(3.14)

REMARKS 3.6. a) The conclusion of Corollary 3.4 holds, without the additional hypothesis (3.5), when P has constant coefficients and D is convex in R*. In fact owing to the existence theorem on convex regions by Ehrenpreis-Malgrange, (3.6) is automatically verified in such situation.

b) When $\mathcal{X}^{-1}(x) \cap T_{M}^{n}X \cap \text{char } P = \emptyset$, then Corollary 3.5 is equivalent to the well-known theorem of existence of analytic solutions to elliptic equations.

c) Let .6. be a soberent D₂-module (i.e. a differential system with holomorphic coefficients) and assume Y con-characteristic for .6. Let 4 be the length of a free projective resolution of .6. If we suppose that .6. verifies (3.1) ∀p ∈ 3"(c) ∩ T_m^{*}X, then we obtain, by adapting the proofs of Theorems 3.2 and 3.3:

(3.15)
$$R \times \operatorname{Com}_{\mathfrak{g}_{x}}(A, \widetilde{A}_{\theta})_{x} \simeq R \times \operatorname{Com}_{\mathfrak{g}_{x}}(A, \Gamma_{\theta}(A_{\theta}))_{x};$$

 $\operatorname{Ext}_{\mathfrak{D}_{\mathcal{S}}}^{1}(\mathcal{M},\,\mathcal{A}_{\widetilde{\mathfrak{D}}})_{a} \to \operatorname{Ext}_{\mathfrak{D}_{\mathcal{S}}}^{1}(\mathcal{M},\,\widetilde{\mathcal{A}}_{\theta})_{a} \text{ surjective }.$

In particular we have $\delta x t_{0k}^k (\mathcal{A}_n, \widetilde{A}_0)_n = 0$ when k = n, due to the Cauchy-Kowalewsky-Kashiwara theorem. However, apart from the constant coefficients case, the cohomology of the system \mathcal{A}_n with values in \widetilde{A}_0 does not vanish, generally, in any degree j, $1 \le j \le n$.

Example. Let $M = (\mathbb{C}^n)^K \cong \mathbb{R}^{kn}$, let M, be the Cauchy-Riemann system $O_{\mathbb{R}^n}$ on M, and let $\Omega = M \setminus \Omega'$ for $\Omega' \in M$ strictly pseudoconvex and with analytic boundary.

Thus the hypotheses of Corollary 3.5 are falfilled (as \mathcal{M} is elliptic), but we do not have $\operatorname{Ext}_{D_n}^i\left(\mathcal{M}, \Gamma_D(\mathcal{M}_n)\right)_s = 0, \ \forall j \geq 1, \ x \in \partial D$.

Singless you of to endown

4. - Applications

We choose local coordinates $(z, \zeta) \in T^*X$, z = x + iy, $\zeta = \xi + iy$, and

$$X = C \times X'$$
, $M = R \times M'$, $\Omega = R' \times M'$.

We also write $\xi = (\xi_1, \xi')$, $\zeta = (\zeta_1, \zeta')$. We note that the exterior conormal to Ω is $\theta = -kc_1$ and that $-H(-kc_1) = -\tilde{c}/\tilde{c}\tilde{s}_1$. Let $P = P(x_1, D)$ be a differential operator at x_s , let $P_s = (kc_1, kc_1) = (kc_2, kc_1) = (kc_3, kc_1) = (kc_4, kc_1) = ($

Then (3.1) is equivalent to:

$$(4.1) \qquad P_{m} \neq 0 \text{ if } \xi_{1} < -d((|y| + Y(-\varkappa_{1})|\varkappa_{1}|)|\eta| + |\mathcal{E}|], \ |(\xi, \xi/|\xi|) - \rho| < \epsilon,$$

for suitable $\epsilon > 0$, $\epsilon > 0$. (Here Y denotes the Heaviside function.) In particular (4.1) holds $\forall \phi \in \tilde{\pi}^{-1}(x_0) \cap T_{\phi}^{\bullet}X$ iff for suitable $\epsilon, \epsilon', \epsilon$:

$$(4.2) \qquad P_{ii} \neq 0 \text{ for } -\epsilon' |\eta| < \xi_1 < -\epsilon \left[(|y| + Y(-x_i)|x_i|)|\eta| + |\xi'| \right],$$

 $|z-x_0| < \varepsilon$

On the other hand (3.5) is equivalent to:

(4.3)
$$P_m \neq 0$$
 for $-\epsilon' |\eta| < \xi_1 < 0$, $x_1 = y = \xi' = 0$, $|x' - x_n| < \epsilon$.

for suitable c. s.

assume:

By applying the Bochner's local tube theorem to $1/P_m$ one immediately proves that (4.3) is equivalent to:

$$(4.4) \quad P_m \neq 0 \ \, \text{for} \ \, -\varepsilon' |\eta| < \xi_1 < -\varepsilon \big[|y'| |\eta| + |\xi'| \big] \, , \quad x_1 = y_1 = 0 \, , \ \, |\xi - x_0| < \varepsilon \, ,$$

with new e, e', e.

By similar argument one also obtains the following refinement of Proposition 5.3 of [6]:

Proposition 4.1. Let $P_a(\xi_1,\xi';\zeta)=f(\xi_1^k,\xi';\zeta)$ $(k\geq 1$ integer) for f bolomorphic at p and verifying:

(4.5)
$$f \neq 0$$
 for $\xi_1 < 0$, $y = \xi' = 0$, $|(z, \xi) - p| < \varepsilon$, $x_1 \ge 0$.

Then for a new a and c:

 $(4.6) \quad P_n \neq 0 \quad \text{for } \xi_1 < -d \big((|y_1|^{3/2} + Y(x_1) \inf \big(1, |x_1|^{(3-2\delta)^2} \big) |y_1| + \dots \big)$

 $+\left.Y(-x_i)[x_i]^{0.2}+[y']\right)[\eta]+[\mathcal{E}']\right],\qquad \left|\left(\chi,\zeta||\mathcal{E}|\right)-\rho\right|<\epsilon\,.$

(Note that (4.6) obviously implies (4.1) when $k \ge 2$.)

Example (cf [6]). Let:

get:

$$M = R^* \ni (x_1, x')$$
, $\Omega = R^+ \times R^{*-1}$, $P_m = D_1^2 - (x_1^2 + x'^{\otimes 2}) D^{-2}$,

 $k \ge 2$, $k \ge 0$. By Proposition 4.1, (4.2) is fulfilled at $x_n = 0$ and then by Corollary 3.5 we

$$P(\Gamma_0(A_w))_+ = \Gamma_0(A_w)_+$$

One can then prove the following variant of the results of [1] (cf [9]):

Proposition 4.2. In the above situation, assume:

$$(4.7) \qquad P(\Gamma_0(A_N)_{x_i} = \Gamma_0(A_N)_{x_i}.$$

Then $\forall i \eta \in V \cap T_M^n X$ and $\forall t$, $0 < t \le 1$, there exist a compact connect subset $K \subset \Omega$ and constants δ , r_0 and c such that $\forall r \le r_0$ the following implication holds on the class of weakly plurisobbarmonic functions φ on V:

(4.8)	$\varphi(\zeta) \le H_R(\text{Re }\zeta) + \delta r$	YteVar.	
	$\varphi(\zeta) \leq H_{K(t)}(\text{Re }\zeta)$	VieVas.	
implies:			
(4.9)	u(t)≤H(Ret)	V: 6 V	

We say that P is microhyperbolic at $i\eta$ to $\pm w$ dx iff $\pm w(\partial/\partial \xi) \notin C_{i\eta}(V, iR^n)$; we say that it is non-unicrocharacteristic iff $\pm w(\partial/\partial \xi) \notin C_{i\eta}(V, \{i\eta\})$. THEOREM 4.3. Let $\Omega = (x \cdot w < 0)$, let $\kappa_0 \in \partial \Omega$, and assume P non-microcharacteristic to $\pm w$ dx at a characteristic in of multiplicity ≤ 2 . If (4.7) holds then P is microhyperbolic to $\pm w$ dx.

PROOF. If (4.7) is fulfilled then we know that Vt, 0 < t < 1, and for a suitable $K = K'_t$ the implication $(4.8) \Rightarrow (4.9)$ is satisfied. Then reasoning as in (9) we can see that for a suitably small $t \neq 0$ we have $0 < H_E(-\pi)$ which is a contradiction due to $K'_t \subset \Omega$.

EXAMPLE, Let

 $M = \mathbb{R}^{n}$, $\Omega = \{x_{1} < 0\}$, $x_{0} = 0$, s = (1, 0, ...), $\eta = (0, ..., 0, 1)$,

 $\zeta = (\zeta_1, C, C, \zeta_2) \in C \times C' \times C' \times C = C^*, \quad r \neq 0, r \neq 0.$

Then for any one of the polynomials P(D):

 $D_1^4 + D^{\prime 4}$, $D_1^4 - D^{\prime 2} + D^{\prime 2}$, $(D_1^2 - D^{\prime 4})D_4^2 + D^{\prime 4}$,

we know, on account of Theorem 4.3, that (4.7) is not fulfilled.

REFERENCES

- BÖRMANDER, L., On the excitance of analytic relations of partial differential equations with sourcest exofficients, Invents. Math., 21 (1978), 151-182.
 KARIVERAR, M. and P. GERMANN, Microlland shalp of chooses, Astringon, 128 (1985).
- [3] KAYAORA, K., Microbial theory of boundary value problems 1 and 11, 3, Fuc. Sci., Univ. Tokyo Sect. IA Math., 27 (1980), 355-399, and 28 (1981), 31-56.
- [4] Saro, M., Kahuwana, M. and T. Kawai, Hyperfunction and pseudofferential equations, Lecture Notes in Math., Springer-Verlag, 287 (1973), 265-529.
- [5] SCHAYINA, P., Front d'ende analytique av bord I and II, C.R. Acad. Sci., 302 n. 10 (1986), and Sem. H.D.P. Book Polynochnique Exp. 13 (1986).
 [6] SCHAYINA, P. and G. ZAMERKI, Englishiy at the boundary for extrem of microfilleration agastion.
- Proc. Coll. 4 Hyperbolic Equations s, Padova (1983).

 [7] SCHAPERS, P. and G. ZESSPEREL, Mirrefunctions at the boundary and mild mirrefunction, to appear.
- ZAMPERES, G., On the existence of analytic solutions of differential systems at the boundary of convex sets, to appear.
- [9] ZAMPIGER, G., Propagation of singularity and existence of real analytic solutions of locally hyperbolic equations, J. Fac. Sci. Univ. Tokyo, Sect. 1 A Math., 31 n. 2 (1984), 373-390.

Diretter responsibile: Prof. A. Batano - Autorine Trib. di Roma n. 7260 dell'8-12-1959 a Monografi » - Via Collamanini, 5 - Bologna