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The main purpose of the present paper is 1o give 8 new contribution to
thtllndyofnpmhlmllﬁ,fn it most gencral form, can be stated a3 follows

sets X, Y and a real function [ defined on X ¥,
iy poull Ak ek wp (4.} <0.

Among the previeus resalis on this problem (for which we reier to
the. hﬂm;:qxhqumdin [3]), we recall hese the following very celebrated
and used theotem by Ky Fan (sce (2], Theorem 1)
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T
camdisions :
1) for ey e
2) for toery y& X, e fiuction (2. 3) It ower semicontizwans i Xy
3) for ewery e X, ene bar fx, x) <0,
Tin there exiss % X sch that sup [(8,7) <0

, e fusction f(, ) it concave in X;

Now, ta give at ouce an ides of the mature of our resuls, we state The-
orem B below (. very special case of Theorem 3.2) which bss to be compared
with Theorem A

Tusonres Br Let X and K be av i Theorew A, nitb,a-ﬂt‘u By X,
and 1t f b o rual fumction v X FF sacofying tbe falinwing condlitions

1) for wery x € X, he function £, ) & concove du E and [(x, @) wm 0

2) for smery e £ the fuwrion £} in dewer soivnsingous in X

3) for anery 306X wed that X | A —X) 2 0 ame har e, %) > 0
on

Tius, tbe conchusion of Theorem A bolds.

Thus, we ean regand Theorem B s a ressonable substitote of Theorem A
in the eases where condition 3) of Theorem A s viokted.

Our main results are Theorems 2.1 and 2.2, Their statements, intentionally
absiract and desailed, have been formulated in such a way fo wm out vir-
tually applicable 0 a large range of possible diffeseat situations. In pasticular,
the celebrated basic exisience results by I, Beésis (1], on s invelving
e of type (Af), are simple consequences of Theorems 21 and 2.2 (sec

Theorems 34, 3.6 and 3.8).

‘The pape is aranged into three sections. Section | contains notations, basic
definitions ond some preliminary resulis, In Seetion 2 we prove Theotems
24 and 22. Fimlly, Section 3 is devoted o various consequences of The-
orems 2.1 and 2.2, amang which, in particalss, we point out: a surjectivity
theoem for nonlineas operators from o seflexive Banach space into che dusl
of it (Theorem 3.22); a fixed point theorem for discontinuous operatars (The-
arem 3.23) ;2 theorem on the solvability of a homwgencous system of countably

aonlinear equations (Theorem 3.24); 3 penemlization of the clasvical
Lax-Milgrm theorem (Thearem 3.25),

1. = NoTATIONS, BASIC DEFINITIONS AND PRELTMINANY RESULTS

Here mod (sl in the soqel, £ i 3,1 v spac V1 . incn
sabspace of £; 17" is the algebraic dusl of non-empty subset of 1
Fo is the Fun.ilv of all finite-dimensional linear I\lhlplizs of I meeting 2;
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Wy s the collection of all families ¥ of fnite-dimensional linear subspaces.

of I mecting D such that & is dicccted by (sestheoretic) inclusin and

DS My is the set of al real foncrions on 1 regaided 3 2 vector space
s

in the usual way; My is the sex of all odd real functions oa 17 Cy is the st

of all pe M, tuch thir p(B<0 (@ i the aull elemear of E), the st

¥ {J0, + cof) is convex and fnitely open (1) and

m\:l (0, wof) Cw (10, + <D
€4 I the set of all concave real funcrions y on 1 such that y(8s) = 0; Oy
is the sct of all concave resl Fancrioas y on I/ such that p(6;)<0 and
Ui+ eol) Sy (10, 4 eof). Observe that &,u (CCr,

‘Now, we introduce theee distinguished families of subsets of Aly. Namdly,
wie denote by #, the family of all sets I'c My for which there existy o I”
such that sup p(x) <0, We denote by 9y the family of all sets J'C My for

)
which theee exists S Fy such thac sup p(x) >0 for all pe I'. Moreover,
o

if T\ is 8 non-cmpty subset of My, we put

R = E Mot Py e AU B, Vpe D)

We denote by 75 the topology on M, generated by the family of sete
mey, P09 < *Hyaw e It i not bhard to check that a net {yu} in My
Tpconverges to pe My if and only if one has lm-.pv. <yl for all
26D Further, we denote by fy the topology on My of pointwise converg-
‘ence. As is knows, (M, #) is a Hausdoni locally convex. topolegical vector

space,
Now, we give the most imporant definition of the paper.

Derrsimios: 1.1: Let K be a non-empey subses of £ and .4 be an operator
from K'into Ay . w=uyﬂ=nﬁhﬂvwrwklimoflhmfnllwm
conditions is satisfied

) A(Kye Aot

By thete exins 5, ¥, such that, for cvery $6 F 5, with 5,5, one has
sup A()()> 0 for all xe KNS,
wina

{1) ey chat u see LG i siely open (eap. el closed fmirely commpucs i, for cvery
Bt ismemsioral fivese eubapace § of 5, the set Uy S is open (resp. chised, evempuc) with
Baclidean

gt 1 opology of 5. Libewhe; # IS & an (2, 7) b  sopologieal
o fescicns: i 10 o ey r-commionscn I, 5 an sbove, the fancion Sy
n v<occinaonn v

rexpec 10 th et Euclideus opology on 8715, I ang ex, for & ghven
5 as shoms, n topligieal conceps sltle 10 8 snbnet o £ b rford (6 the Bnclidesn. pology
of s,
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OF course, in the above definition (1nd always in the sequel), A(x)(y) de-
notes the value of the fanctional A()(:) at 3.

The next prpesition is an abvious, but important, conscquence of Defi-
aition 1.1,

Prorosrion 115 1 AUKYE Au\r S, den s Deeggaler in K

Ax present, we do nor know a fall characrerization of the fammily A, U 11,
Meverthelss, the next six propositions show how it is browd.

Proroston 1.2: If V- ir fiire-dimencionsl; then oack best of My bulugs v
U B

Proor: Let I'C.. Suppose I'f Ay Then, foc cvery ya [ one bas
sup y(x) > 0. Sivce, by hypothiesia, 1€ Fu, it follows that £'e G,

Puonciimio 13 The fasely da G b cored ender fisite sion,

Proar: Let Iy, Fye 4wl Ba: Suppose 130 Fyddn: Then, of course,
By Py o, and 50 Ly Ly e 0, Let 5,5, & Fo b such that sup g(x) >0
rbne,
for all e, and sup plx) O fus all ye £y, Liec S be the linear bull of
S0 8. Thus, Jc“l., nnd nupp(x)>(\ for all we W45 Heoee, YU
UTES,

Prorosirion 147 Let Ty0 Ao O, Tye Gy ond P My, I

Rere(Uin)ulyl e e 40,
e

Paoor: IF Fyeds, thes, a8 [,CT, ot bas ' dp. This, suppose
I'yf s, Then, 1ye %, and, lhelcfm, there ate 8y, 5,65, at i
of Proposition 13, Let § be the linear hull of 5,05, Now, let ye T
I yery, then 0< wup y{x)< sup y(x). Orherwie, here ace 4>0 and
. e
yef.mr.h:!u: 36 16 d=0, then "6 s, This, suppose 3> 0, Then,
¥} =3 s0p y ()24 sup 9l 0. Heacs, '€ 0,,
Proceeding 15 In the proof of Brogosition 1.4, 65 <10 obuin alsd the fol-
lawing proposition.

Prososimons 1 Lai
thet D s symmelric and oot 1

Uy, 1 be ar fu Proposition 14, Moreever, sappost
\C Ry If

rere (Hx"")”“" then e 4,08,
Prorosmioss L6s Lut 7%, For saih Se £, pot D= U dye s

VOV 0. Lt 1y b the tepaogy on Al greratd by e fomty Tl - Thes,
tach Tg-campaet subirt of My beloogs fa the faseily Ao By
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Puoar: Let I'be any rp-compact subset of M. Suppose I'¢ &, Then,
sinee DELYS, oae has I'21j 1. Thus, (3] b an open covee of 4} and
g
,udmmsm(a, iy l':u.“,h As the famsily
s directed by Inclasion, there rss.:rmdumu.r:s OF ‘coutke; one
'hli e 1. Since IGe9,, a fortior e G,

Ristan 117 Taking into sccount that, given F Uy, the topology 15

is weaker than fr, we infer, from Proposition 1.6, that any fi-compact subset
of Af, belongs to the family Xy, .

Provosszion 17: Suppone V{80 UAD. Lot 1" be any v empiy e
bt of V7, wieh is ol B 1 Wi Bl sy L' Then, P& %o

Proor:. Fix yeLe and put Iys 'y Suppose fyd o, Then,
B, € Iy, Since Iy is convex and #-closed in Ly, thanks to a sundard
sepasation theorem, we find a ¢, -continuous lioeat functional 7 on Lr such
that Tig) >~ 0 foe all g I Since 17 a0d Ly are paiced in the wival way, the
#{Lr, ¥)1opology being just the relativization of 1, to L, by Theorem 16.2
of [6], there exists & k" {@%) such that T(5) = y(4) for all g & Lr. Now,
lex S 7o be such that £, By hypothesis, there are u> 0 and p D such

pd =g, Therefore, one has #()>0 for all yely. Hesce, Ive B

Now, come back to Proposition 1.1 Let X and A be as In Definiion 1.1,
“The next propasitians provide some sufficient conditions in order thar A(K)e
A G,

Prorosiios 18 Suppose dhet Alere exiat F €Wy amd 4 sopolegy ou K, with
redpect o which K. ir compart, such dbl, for reecy S 3, ibe ool

Mk A=

i gpen. Thon, A(K} e o'V e

Proor: For cach §' , lec I’ be as in Proposition 1.6, OF course, onc
Yag AT L) e K AQ7)-0). Since ek noo-ewpty, propee s
tyopen subser of My it the union of finite intersections of members of
(Teliass I rwjm that the operator A s Ta-condnoous.  Heace, A(K) is
ty-compree. Thea, the concusion follows dircerly from Peoposition 1.6,

Reviank 1.2: I the case whiere' I is the lineas hull of & counsable set,
the condition expeessed in Proposition 18 Is also necessary in ouder that
AK)e s 8. Indeed, in this- case, it is possible 0 find F 291, in soch
& way thar each member of Ay B, in Tpcompact. - Therefore, if A(K)=
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€ AgU Uy, thea K turns out to be compact with respest 1o the topology on K
s:nmh:d by the family (A4 2w
naw some comequences. of Proposition 1.8,

Propostriose 1.9: Let K e o compact sopeiogical spoce swch shat, for svery,
7 D, ibe functivn A(I(3) it lower semicourivmoss. Thn, ACKYE Ko s .

Paoor: Let peMy. By hypothesis, for every yo D, the set fxa K:
(A@)— v)() >0} is opea. 'ﬂtetd’nu. for mq.':e!. the et u (xeK:
(AG)—¥)(1) > 0} s apen too. ‘Then, thanks o Proposition 1%, ome Tas
AR)— pe AU B, Hence, A(K)EXpw,

Prozosrros: 1.10: JWMDAMMMA(K}CR,
e, et K bo u compoct topoiegical space sk that, for mver) D(wﬁr
7€ D and every reR), she sef (x6 K: A(x)(5) =0} (m}- {xex A =71)
s viosnd. Thow, AK€ Ao 0y (resp. AK€ Xy p,)-

Pacor: Fies, dssuie that, for every v D, the set ("x A(:—]b}— a)
is closed. For every 5& ¥, thanks to oac
) {xeK: AR <0} = ) (w6 XKz A} =0} .
wnes vbe

Thezefore, the set | (x& Ki A()(s)=0} is open. Then, by Proposition 1.8,
one bas A(K)e AuU 9. The respective pare of the proposition follows at
once by fixing ye M, and then by applying to the operator A{-)— v what
proved above.

Provostiion L11: Swgpese it 2 is the lincar ball of & commiable et Y'G 1/
end that ACKYE V. Morsarr, det K be s compust fspoieioel space i that, for
eery y€ Y (resp. for every ye X and avery »enmm(xex Ap(s) =0}
(respe (e Kz A{I(3) = 1)) ir chrd Thw, ACK) e Ao By (rup. A(K) e
X e).

Paoor: Aerange ¥ into a sequence (7,). For each ne N, denote by 5, the
. Put F = (8,1 we N). Plainly, 7 . It is casily
bas

N fwve K: AR <0] = e Ks AWr)=0).
L

Now, the proof goes on as that of Proposition 1.10,

Progosition 1.1 provides o first natural way for proving the Deregularity
of a given operator. Another way is provided by Proposition 112 below,
where we use the classical notion of an opesator of type (M) [1]. Now, for
the reader’s convenience, we recall it




e

Let 6 b¢ & réal voctor spice which i in duality with 1/ by means of 3
bilincar form ¢, 5: G V'~ R. Suppose that the paiting (G, ) is sepa-
rated in the sense of [6], p. 138, Let 1 be equipped with 4 vector topology
seronger than the #{1”, Gl-topology and let G be equipped with the #(G, 17)-
topology. Then, an operatar ®: 17—+ Gl::ndmhcufmu(.ﬂﬂlfﬂﬂm

i i satisfied: a) B is #) for every com-
B bt RV, oy 30Kl sriey s (o) In K smevaget o5 § 20
such that the net {#(x.)} converges in G to a ¢ for which

longlp () < ey 85, ome has B(8)

Now, let 1°* be the topological dual of #” and let Ae: 1~ 1" bethe
operator defined by putting A(x)(s) = (), 7> for all x,ye

Trorostmion: 112: Let 1 V+.G de an aperater. of type (M). Thou, for
avnry comport it K= and every v V¥, the reriction f the sperater Aol Yy
by sty

Pagor: Suppose that condition §) of Definition 1.1, applied, taking D=1/, to
the sestriction of the operatos Ap(+) — v 10 K, does not hold. are,
fose, a farnily ¥ Uy and 4 net (¥ ghocr fuch I!utx.fxnfmdl.[.ﬁ)b]

= y(y) for all Se5, yef. Siace K i compact, there is a sabnet
{¥Jons CONvergent to te K. OF course, the nct (A.(x-_)].u #-converges
0y and lim Aefx, }oe) = w(8). Since the functional y is #{V, G)-con-
timsous, by Theorem 16:2 of [6], there is 2o G such that (8,59 = y(3) for
all y£ 1. Thus, as @ is of type (M), one has ®(#)=r. Hence, one has
Aslf) = ¥, and w0 As(K)— ye .. This completes the proof.

Rustane: 1  thar, in the proof of Proposition 112, we hive
used only condition §) of the definition of an operator of wype (Af). However,
there are even norm continuous operators ¥ acting in 1% 3 Hilbere space,
which are not of type (M), with respeer 10 the weak topology, but are such
that, for every weakly compact set K< 1Y, the conelusion of Proposition 1.12
holds. Indeed, consides the following example.

Exusar 112 Let (¥, (¢, +3) be an infinite-dimensigoal Hilbert space. Let
Go= 1 and G,y = (x9) for all x,ye I Fix any x,6 V(@) and, for
every xe V, put @x) = (1 — [x{)xy— {xfx. Let us show thar the norm
‘caatinucus opesator B is ot of type (M) with respoct tothe: weak topology
on V. Indeed, let B be the closed uait ball of 17, Let {x.] be any sequence.
in 2B which converges weakly to 8. Siice (P(x.), ) = — (x.. ) for all
#e N, ge . it follows that akio the sequence (#(x,)} converges weakly
© 8y, On the other hand, one has (P(x,). x,) = — 1 for all ¥eN. How-
ever, () = vy By, This proves our chaim. Let us show, on the con-
trary, that, for every weakly compuct set K< 1* and every ye 1%, the eestric-




i

ook At dew to K b Vot ERalibemckisien v~
= (@) fox Al ye V. As in of Proposition 1,12, snppose. tha
the aze 5 e, md-m{x.).,, ok ot 5, K5 sl Aol OrorC)
far all § %, €5, Let ()00 be & subset which converges weakly to 8¢ K.
OF course, we cin suppose that alsa the aec {1, | ey I8 convergent in R,
say to. i For every xe 1, ane has

(B (iad—5 £ = (1= Fovaa 16y ) — I G 81— (0 8+
This, passing to the limit and taking into sccount that lim ((x,) — 5, £)=0,
i s
(=D, £) = A12P+ (0, %)«
On the ather hand, for all x€.4, one bas alio
0= (P(xa) =2 ¥5) = (1= I Doy o) — 13, ' — (0 %) -
Passing to the limit again, we get
(1= A)xg &) = 20 (2, 4) .
Hence, )% = 2, Taking into scoount that [£] <i. we then infer that
2= |#]. Hence, the net [x, )., converges strongly o £, But then the nc
E:fiin'“ comverges strongly to (%), This implice that #(f) =z, and
—v e,

Betoee kg s secion, w Intesdude tie fother nomiont: Nkl

If X Y, Z are theee non-cmpey subscts of £, we pt

Ly ={xe X r:‘L_Li.@:‘z)}.

Morcaver, if I'c My, we denote by (17, the closure of I' with respect to
the topology vo. Fimall, we pain: out that in the prof of Theatem 2.1 we f
will have to consider a suitable multifunction. ‘Thus, for the basic notions k
on maliifanctions we refer, for instanee, w0 [10]. .

2= Tum A EzsucTs

Our first main result is the following thearem.

Toeones 202 et F 6 Usy i) Vo |5, and fei A b o apeestsr from {

X B inte o Moreores, for sach S , I Ko and X be 1o oempty ibsets
of XS, with K, © Xy, safiying e follwing sonditions:

1) Ky it compact in S, und Xy is convese am chsed du 85
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Koy the s {se € Xar AGYI)<0) b clored i 53
ane b s AGH(x— ) > 0,
pe s

2) for arey 3 € Xeme
3 for wory w6 Xy, o

Unnder such bypetiviee, e following comcinsions. boid:
b s,,z(k{'&];k;] 5
mprwmxm\',mnu’x,sx,mmm.mAhmww

in K, one by A(K) € A5
i) if Fa sy nu-nizl('gh’.:\:.‘: then 1" & Ao

Proor: We proceed a3 in the proof of Theorem 1 of [B). Fix Se #.
Denote by L, the affine hull of Xy, Let T be o conves and subset
intr,(T) % 0 (of course, Jne, (T) denotes the interior of 1"
Such a set T exists by virtwe condition 1), wking
into account that intg, (7)o 0. For every xe T, pus

Foymire Ts A0

We elaim that there is some x ¢ 7' for which F(x} = 0. ‘Assume the contrary,
that Is F(x) o4 8 for all e 7. Let us show thas the multifuoction F is lower
semicontinuous. Therefore, let £ be any opensetin Sand ¥ e T,y e T g
be such that AGNN —y) > 0. Since A(x) 6 Cr, one has ine,, (Flx)) 0.
Thercfote, we can suppose that ¥’ & int (T}, By condition 2), the set

U (xeXat A=) 0)
is an open neighbouthood of i Xy. Put
W= Unlie=r) + (it (NN DIN T,

It is passible 10 show that B is 2 neighbourbood of %7'ia 70 Let e IF7
1F we put_ymx— x4y, we bave yeint, (F) 02 o well is AR x— )=
= Al)(x'—y) >0, Hease, & F(x)n ik “This proves the lower semni-
continuity of . But then, taking into account thar F is eonvex-valued,

by Proposition 3 of [8], there exists T 7' such that ‘X e F(5), that i
ARHO =0, against the fact thee A(R)eC,. Now, let (T.) & a
non-decreasing sequence of convex and cos subsets of L, such thar

¥ it (T,) i for all ma N, K.([‘IT mdA.-:UT On the basis of whar

! soen sbave, o each N, thie el . T vuch that

sup A, ), — ) <0,
e



.

Thanks 1o condition 3), one has x, € 7y, 5. 5z, Considee now the sequence
{Xudues- Since K, is compact, [x,},a sdmits & cluster point 1, in K. We
mm.wm,@.)(x, ) <0, Assume the conteary. Hence, there is y e Xy
such thar T{8,)(2y—2) > D, Then, it I possible to find v N and Jeits (T3
F- such 4 way that A(R)(,—5) = 0. Thanks :u condition 2) again, the st

={xe Xy At —J)= 0} ood of £, in Xa.
l’u( H=00 (23} + Inte (7). sm.x w is & neighbourhood of 2, in
Xy, there is w v such that x, €W, If we pat y, = x, & +, we have
Ju€int (TIET,, and so Alx)x,— 1) = Ae)(8—D<0. But, since
,&0, we bave alio A(x)(,— ) >0, » conradiction. Then, by condi-
tion 3) again, the poine £, must belong © Zy, .4y, Henco, if ye D05,
there i 12> 0 such that £, 27 & X, and 0 A(EAD) <0. Since AL € Cr,
it follows that

W AR + DS LA 100, + =D
Plainly, s X, is conves, we can supparse that 4= 1, Henee, we have A(£()) <0.

Summasizing, we have proved that, for cach S 7, there is £, ¢ Ky such that
sup A(£)()<0. Then, o D:l%ﬁ, it follows  that lim sup A(8,)(s) <0
P L

Tor all yeD. OF couse, from this, canchusion i) fallows at once. Now,
let KCX, with |) Ko K, be such that the opeesor 4 is Deeglar in K.

.
Thus, tn prove thar A(K)e As, it suffices to show chat condition #) of
Definition 1.1 does not hold. ‘To this end, observe tha 5,
since the family  is ditecied by inclusion and Ve || 5,
7
Sed such that 5,28 We know that there is tye KpC K § such thar
19 ARYO}<0. Thus, aho conchsion i) s proved. Finals, suppose dhat
brd
T vt A[ux.)cr If I'¢ Aa, thea I'e §,. Heace, a fortior,
A[un’.} PO R R R i) (ke i account Propo-
sition 1.1), unekns.dl'l‘.l’l(. d.. and so, a fortioel, I'eAa: This contradic-
tion proves conclusion iii).

The ather main result s the following theorem.

Tusomw 2.2: - Let F e s, with V-H': st let A be au operator fram
X E inin Cr. Morvaner, for corh S € 7, ot Ky ond X hmwmpgmbna
of X5, with Ky€ Xy, atisfying the follswing condt

1) Ky it oocpact in r.-u)(.u.vmwm-wms.

2y far.evecy 3 € Xy — Ky the st {30 Xuz A7) <O ir elosd i 55

3) for every e KoK, ome bos 19p AR —) > 0;

4) O.el,, co i, for eiery x € KAy, pos g, o diar AR() 50

Umder anch bypotbeses, the conclusions of Thoacem 2.1 bl




——

Proor: From the proof of Theorem 2, we know thar conditions 1)
and 2) are enough 1o show that, for each §'€ , there exists x, ¢ X, such that
sup Al (sci— 1) <0, Thanks to condition 3), one has xy e Ky Thas, shways
e
by the proof of Theorem 2.1, o gee our conclusions it sulfices to shaw tut
e A(r,}(,)c_ﬂ for all Se 7. Fix, therefore, S¢ 7 and ye D . Fir,
s Thus, there is 4 0 such that ,— dy & Xy Hevee,
4(:.}(;.,)cm e A{M)eé'., one has A(x)(1)=<0. Now, suppose xe¢
€ lerpns,xye Then, by condition 4), une bas Alx)(x)>0. Sinec Ore
Ly s, zp 08 X is conves, there iy e 0, 1] such that — (1 — ghye X,.

Hence, kh‘l
Acx,)(ﬂi- -E’L'L'};o.

From this inequalicy, always becamse A(x.)¢ O\, it fallows that

Alxalpes+ (=) <0 .
Fusther, onc has

(1= p) Ay <A (el 4 (1 — ) AN ) < Al (st (1—i)iir) <0
Therefore, A(x)(uy) <0, and 30 A(x.)(3)<0. This completes the proof.

- Sose conssquinces on Toams 2.1 AND 2.2

Fiest, we want explicitly to point oot that Theorems 2.1 and 2.2 are ma-

ey idepudes. T et sl e by e of vy simpie cxamples.
Mozeoves, it is worth noticing that in the proof of Thearem 2.1 the fol-
lowing sesolt Is implicidy proved.

“Tunonnse 3.1¢ Lot X e o now-esply, aﬂ-xdmpﬂ.’.nﬁmqfl'

It f b real fanetion on X5 R* satisfyiag the following condis

[ 1) far ewery € X, the firoction f(x, ) ir cancave;

2) for vy y e X— X, the fumetion (-, 5) (respc s —= f (3 0 ~y) i ower
i

Thon, for way cimves: real fustiony on R, with 50p f(x, Ope) <WOx) (resp.
Slax)<w(s) for all x & X), there exists 5 X b m..uf(,!.: A<wd—2)
Crep. J(3, )<y} for ail ya X

As slready announced in the Introduction, Theorem 3.2 below is 2 much
more sophisticaied version of Theorem B,




Tivones 325 Lot X be o firitly chsed and couvesssubiet of B, K a ity
ampact bt of X, with 65 K. a topologr on K, with respuct so which K 1 -
Pt f - seal fonction sm X<V salifying the following aviitonr:
1) for mwery @ X, e fiwctisi (%, ) i consate
2) e fuction [(,y) ir finitely. hwer seaoostinons iz X fur eeery
FEE=DN OV, ' A wmiasiions o, K. i e 36D
Piely continseus X wnd Etontivens in K fir 3 = @y
Thon, for iy conves rvad fumtion 0 Vi with 9(04) — 0 and

J ) B 4 0 for sl e (X VY S
rhere exists 2@ K anch that

SEA <SR O+ w0} for wll e D

: For cach Se 7y, pul Xy= A'n.r and Ky = KNS, OF course,
X.\i.. snaeC rw, define
1, e B1) = ) fwl“ NEX Tous, A{rf)‘ 5, 4 f
tiosi, ACX)C Cy. Thanks 1o condition 2), the Ranedon A(-)() f fnitely
lower semicantinuous in X for cvery ¥ (X— X} 1 and Flower semi.
continuous in K for every ye . Taking into sccout that @y e K and thar
A(x}pﬂ)ﬂ fm.ll NE(X ALYy g, we realie that each hypothesis of
Theotem 2.1 iy satisfied. On the other hand, thanks to Propositions 1.1 and
1.9, the r:pﬂlm A'ls Deregular in K. ‘Therefore, by conclusion ii} of The-
otem 21, there cxizs R K such that sup A()(3)<0, This compleres the
etk .

Restaxx 314 To deduce Thebrem B from ‘Theorem 5.2 mke 77— E,
K= K= D, 1 being the rltiviaition 1o K of the given Hausdor vector
topology on F, y == B, and dicn obsceve thas & point ¢ X does not be-
ot 10 Iy y iFand only i XU ar— w9,

Now, we show bow one can ubnm from Theotems 2.1 and 2.2, some.
improved versions of the celebrated results by H. Brésis [1] on cquations
involving operators of type (Al). Thus, in the next six theorems; 1, G and
ate as in Proposition 1,12.

Taeokes 33; Lot 5 6o, For vach S€F, it X be w closed cmmvexc of §
wnd Ky be s wiempiy compact sbiet of Xy meh thot, for ooy € X,
e . 5up @)y x> 0. Moreerr, asiome. thol the v 1) Ko i cnepas

<

Tien, m.m{ UK 00 = 0, i mnemply . compasr,




I

Proors: et ez 1+ ¥ be a1 in Propasiion 112 It by exsly sccn
that each assumption of Theorem

and A = Ae. In pamicular, con

opersor B is finitely (0, 1)-continuous, On the other hand, by Proposi-
sion 12, the operane A s Veregulae in UK. Therefore, thanks 1 con-
clusian i) of Thearem 21, onc hay .«L(UK.)EA that is the st l'":%"
B = s.} is non-cmpry. The oulupnnn:l af this set follows at onee from

the fact that @ s of type (M).
The following resul is & remarkable particular case of Theorem 3.3,

Tuwonrss 3z Let K be o compact swbiet of |V coviaiving 8, Sppase
s s 0 fir all 3 VK. Then, e 4e1 (6 Kz B(x) = 0] if rew-epty

Proow: Tike # = F, and, for each $& &y, Xy =8 and K, =Ko s,
Then, apply Theorem 3.3 ohserving, in particular, that Loy g s = K11,

Kot 321 Thoorem 34 1. dight kgt of Theorat 1 of (1],
since K is not sssumed 10 be eonves,

Tueon 35: Let Tely, For o §eF, b Xo o compeact aones
el of 5 and Ky Be u ompact sbset of Xy, with Ore Iy, o ., snch that,, for every
KK, o s 1 (B, ) >0, o, o e B K e
(W), 020, Mm.mmy.r.an.ﬁ:. m.nirml:reg&
ﬂx)-s,lum-pgﬂfﬂlpﬂr

Praor: mpmr,mm.m..ly..‘m.n‘-mmmn except that
«ane must apply Theorem 2.2 inscead of ‘Theorem 2.1

In particular, from Theorem 3.5, «g«mmmm.

Timonsst 3.6: Ler X be a fsiely compct vospes: wibeet of 'V and K b 0 sum-

pact aubiet of X, with Ove By y o Suppore (B(x), x> 0 for all g XK and
comx»updfch\ v, e Then, e et fox e K: D{x) = ) i mame
emply. und rampart,

B ey Thecend 520 gl 5y oand, for cach SeF,
K= XS and Ky

Rusuanx 3.3: When ¥ = K, Thoorem 3.6 reduces 0 Theosem 10.0f [1]

Trmonese 3.7: Lot F@Woo For sach S6 &, let Ky, Xy bt 190 sov-empty
awbiets of 5 amd W bt ¢ sostinia fovction from X inte Ko satigfying tbe following
conditions




1) Ky e comvexs and compart, Ny iz ooapese aied e, dios (X2 ad
Kot inty (X}

2) (xeXu <), v — Vol = D) K
Mareser, wrmms bat UK, it tompact, Thos, bo st fse T
=3 =4
i pam-smpty anid comepact.

Proor: Fix e . Condition 1) implies that the set X, K, is eonnected.
On the other hand, it is easily seen that the real fanction x - (), x— ¥a(3)
i continuous i X,. Therefore, thanks to condition 2), suh foncrion has 3
constant sign in X, K. Taking into account Propositions 1.1 and 1.2, we
can apply Theorem 2.1 1o (A.)l,_ oF 5 — (Ag)iy, according 10 whether the
sign in X, Ka of the shove function fs + or —, Thus, we get a point
£36 K, such that (®(£,),y) = 0 for all yef. Since rhis holds for cvery
Je F, our conclusion follows at m-:[mnﬂ:tﬁnthalkﬁzmuxlum
pact and. the operator $ is of type ().

As 1 particolar case of Theorem 3.7, we obtain m=rouwmg l:vuk.

Toosones 38: Lt dim (1722 aud et 12 Vs 1 be a fisitely contiswin
Jowcisa, with . frite-dissensionsl voge, mch. ol He vheed cowe il of sbe set
VO Ul Vi (PG, 5 — P00 = Of, ap K, is compocd, Thun, the smi
e K D) = O 17 nan-cmpiy and compct,

Praor: Let 7 be the family of all S Fy such that dim($) =2 nd P{1)E5.
Of course, F€ly. For each S€ 3, mke X, =5, Ky= KNS and ¥, =¥[,.
Now, apply Theorem 3.7,

Revanx 3.4: When e K and the function ¥ is ideatically aull, Theo-
rem 39 reduces o Theorem 12 of [1].

Reyark 3.5: For seasons of heuristic nature, we have limited ourselves
u:@..wmmwmmxumuwmnm
of Thearems 2.1 and 2.2 and the original existence results by H. Beéais on
muf:yp:(ﬂ).mmmhhwwm[u Laer, other mhe-

some variants of the notion of an operator of type (M)
given uymau. Fot instance, P. Hess [4], in the setiing of separable and
reflcxive Banach spaces, gave the aotion of an opemator of type (M) with
respect to two spaces. Also the theory of Hess is & pasticular case of ous.
Buz we do nor wane to insist on this, here. The reader himself, in any case,
can check easily our assertion.

Now, we eutablish some futher existence results (parsially similar t0 the
Iast six ones) for cquations invalving operators not .-mmry of type (M.

Thus, in the pext five theorems, X s a noa-cmgpty subset of .L, i 4 roa-
empry subset of X, F is = topalogy on K, with tespect to wh
p-ec. Ax- an operator from X into Cy, with A(K)< My, ﬂ-em 2l l-.,,...

b = 84)




et

Tusomust 3.9 Lat tic bapoibesee of Theoreae 2.1 Gespy Thoorv 22) be sas-
ied, with U KoG Ko Morsorer, asomoe that, for ey 36 D, the set (e K:

A7) O #e Velsed, T, hers i ¥ K. sndh tiah ACICr) m 0 for oll
yeD.

Preor: ﬂﬂnlﬂln?mp-wumll:nﬁllﬂ.ll!opmrAisD«gﬂn
in K. Thus our asertion i 2 simple <o of conclusion i)
orem 2.1

We point oot the rwo fallowing particalar cases of Theorem 3.9, whose
proofs are similar to that of Theoeems 3.4 and 3.6, respectively.

Tuconss 300 Lot 17CX and let K Do fnitely com) with Gae K.

Mercoser, asceme that, for arery ye V, the st [xe Vs Ape](;nqm is fivitely
chisal, that, for oves 7€ D, the gt e Kz AC(7) = 0) e -clooed and that
A0 for o x € VK. Thea, tbe. oncinsion f Thesrem 3.9 bolds.

Turonat J.11¢ br)'kﬁmgwn{mv.ﬂthw
with Oe Ly, ALX)e oy ye (XK= X) OV,
i set fxs.&’r\ I/ A(:()u)-.u} J-,!-hy s for every y € D, the set (€ K:
A7) = O, ir Tokieds G > 0 far all N e KK} ACHN S0 for alf
& Xdgnx Then, the canchuaion of Theorsne 3.9 heids.

For the sake of completeness, now we state explicitly two theorems. whase
proofs arc quite similar 1o that of Theorems 3.7 and 3.8, respectively.

Trwonese 312: Lot F €Wy, wilh Vng.f. For tach S ¥, bt Kay Xy

;

be w0 ety sabsets of X 1.5 wnid Wy be a continsons funcrion from Xy imte Ky
anticfying. 1he folliwig conditiont:

1) Ky i comvexs, compact in § and outained in K, Xy ir comex and clennd
i 8, dim (X)) »2 end KoCinty (X)1
2) dhuoperitor Akt tr-toaticns fn Xt
3) fre Xaz AQHe— W) = 0)E K.
. e ht AU VYE V- ot for ey 0.2, 1 lbhr(xek
.q(,-;mﬂm techosed. Thon, the conclniine of Theorest 3

Rextask 361 We want to pommm in Theorem 3.12, the assumption
W ALXN V)21 5 serves only to prove thar, for each § 7, the real func:
tion x —e A(x)(x — ¥lx)) is. m!l:m in Xy

-rm-m 303 Lot dim (V)52 VEX end K be omes asd fulnly
cumpart, Marsaver, et W Vs 17 bt n fuuction, widh. chirn (1) < + =,
il et ik it 0t i bty V7, 8 bt PV
GSeU AR VN UK s, s it e ek
e — A ‘dMﬂrﬂq;uD&ﬂ{:ex
.fl(x)(y)-o)v!-:am' Tivn, e cavclusion of




B

Ristans-3.7: OF course, it bs possible 1o give the versions of Theorems
39313 in terms of sers D and operators A stisfying the assumptions of
. We leave to the reader the rask of formaluting the appro-

T the consequences of Theorems 21 od 2.2 we have prescased up o now,
only conclusion if) of them bas been utilized. In some of the nesr results, we
shall wilize also conclusion i),

s 3145 Ler X be a contese and fuitely clused cnbest of £, K a fnitely
compact subiet of X, with 50 K, Az X — Cy wn aperator which is fositely Ty-con-
timmsus by X0V V. Suppase. that shere exists @0 such, that ACx¥) >3 for all
FEXN VY deps P

Pony = {pedly: —pec, M‘ﬂrﬂa;<1]

ey = {padli —yaty nd 2 p(3) < + ).
Thew, the follewing conchicione bold:
i) 2Py c (AT,

10) for cery sopace (). in B, mith s p == oo, ons-boy

Laar S AR OV,

Procr: Let rc 0, af and yePy,p. Hu!nt!y X6 (XN )\ aar, onc
fm A3 (x> — (x—¢) = s, Thus, arguing in a way by now
thar it is possible 1o apply Theorem 2.1 to the et

AT~ Gecayp nc ety v e

8y e {AKN VY

On the other hand, it is casily seen that
TR =G0, = (AKO 1)~ (—)y-

Hence, (x—e)ye (A(K A V)], Plainly, the fonction o -+ ay, fom R into
a, Ttk (e, e (“_A(x A7), This proves conclision i)
Now, et us prove condlusion fi). Let 460y, y. Choose x' 6N such that
;Hp'w(!ﬂ‘.rd. Thus, gafl, € Py, Buc then, thanks to conclusion i),
m has it e (AR A 9),,, and s po

Piwmdmg 8 1n'the proof of Theorem: 3,14, taking into sccount Propost-




===

tion 1.1 and, reipectively; Propositions 1.9, 1.10, 1:11, and using eanchusion ii)
of Theotem 2.1 instead of eonclusion i), we obtain the three following results.

Towomeat 3.15; Lt tie dpporbescs of Thiorew 314 be sosisfd. In addicion,
et K o compact Iopelegial spare 1ich vho, for evey 3 D, e fusctisr AC)R)
is lowerivmicostimuens in K. Then, for ey ¥6 Proy, dbere sxisiz 3 K sk
m-u AQY)<avlr) for all 3D, Marpwer, for overy sequesce (§.) in R*,
L aud eveey §€ Doy there exist TR and 3 a1t
BAR <) for t yu .

Tasonsse 3161 Let b dpporbues of Thooress 314 b serifed. n aiiton,
et D e ymemiic, A(K)E Sy and fet K be a compost space. rach that,
Sfor wwery 36 D and erery FER, the set (x6 Kz AGYy)=r) ir clawd. Then,
Jor every W Py, Sy there eists € K e that A7) = aw(z) for alf
7D, Murvsoer, for ey mqpem () in B, with apif = o == and ity
8Ly r 1 Wy, there exist Fe K and 5 e N owd that [ AR 7y =g() for ail
e b

Risank 38: From Theatem 3.16 onc can deduce at once Theorem 1
151

Taeonest 3.07: Lot the byposbeses of Tiworem 314 b satisfod. In addition,
ior D b by imar but] of  conntobie sei V&V ot ACKYE V" and et K be u cose-
poct topadogical space rich thei, for every y& ¥ and cery reR, the at [ve K
Am)=r)ﬁrhd. Tien, sbe couclusions of Thvoress 3,16 bl with V" intoad
of I

Uﬂulﬁlnpcnm/!humhﬂmo‘mﬂ ty property, Theorems 3.44-3.17

versions of the tbove quoted theoteas where. this new cocrcivity condition
; appears.
I Tuuzonest 3.18: Lot X, K by as in Thesrem 314, WG 5 a sone contoiving. X,
t Az W V*.x-pnar-ma.,magur-m..wm'mm
{7} amd (8] be foo reguences i BY, with sup d.fy, = + oo, tuch that, for aery.
' P
I weN aod evory x € (XN Vi Tepr. ot daz Alys)yox)>;. Then, ome bas
1 Luaen VEY GG EATI), -
I Paoor: Let ye G, Vs Fis 0N such that sup o)< 44y
XN VP g5 e = (XN V}\"Au)-brmﬂ“hﬂdﬂl)bb

=4, for all y&(n XO V] Lurns. Therefore, thinks to conclusion i
of Theoren 3.1, one bas &, P,;,..:(A{,.Kﬂ T Now, observe that




sup plpe) < deo beciuse y & 17, Hence, wed Pyogop. This completes. the
sxnr
proot.

of Theorem 3,18 and wsing, respeetively, The-
ocem 335, 336, 3 :1. we olbuain the three following resclts.

Tumonsst 3,191 Lot the bypotbeses of Teorem 318 be saticfed. Iy addition,
Jor toch we N, der v, be a topolegy o0 p,K, with respect tv which 3K it compirs,
such fhat, for very ye D, e funcrion ACH ) ir 7-Aower semicentisvens s v, K.
Thes, fir erecy & Gy 0 V', there exist T K and FeN nch that Al R)(r) <
<p0)) for all ye D.

Tomourat 320z Let the dypatbescs of Thvorew 38 b satisfed. o aditis,
ﬁtbbq-m.'rircwl.ﬁfm-eﬂ.J\-Ir_i--f-p-lqp-!uxrﬁiﬁupnp‘
which y K is compact, anch that, ﬁru’q;tﬂdrﬂqv(k he b ey, K
Af) )nr}mqm Then, for evecy ¥ € Dgnr OV, there eocist T K and
A6 N b thst 4(7.!:(;),'-0)[» wll ye D

Tuwomm 3.20: Lot the b;pntb\m of Tiworem 3.18 de saticfed. [n addition,
det D2 be the fivear bl of a cuuntuble sei Y 1 wud for esch N, or 7, be @
iupalegy o K, with sespect to which K is compast, such that, for wery 3E Y
and vvry rER, the set {xey, K ARI) = r} it v,-closed. Then, the soncasion
of Theorem 3200 baldr,

Now, we present & remarkable application of ‘Thearem 321,

wpokes 3.22: Let (E, |1} be o refeioe Bansch space; W chosed finvor
..u,,..gﬁuiw-wnv;,mqu.mmmv:a  a lisear
swbipace of E, contsining V, meh thar WV i dewse in G; T:W - G¥ an
aperater such thal, for every y &V, the fuscrionel T(:)(y) ir fnitely continmosz fn
TP AT Morsaver, det {3} wnd {8, be dwo oquences i R, with sup 3,y = -+ o0,
wneh tbat, ot ey we N aud vy xe WAV with |x] =y.,--ﬁ: T =8,
Finally, Ww Jor erey € X and srery pER, dhe st {xa Wi T(x)(p)=r)
is seguentinily weakly
u-b.-.-&w.uw..mmr) .

Proor: Take X = K = {xeW: [x] <1} and D= W V. So that

(XA P Sepe= (e WA x] ).

Moreaver, for each e N, choose us 1, the relative weak topology on 7.X.
Since W' is reflexive, y,X is weakly compact. For evety yY and evesy
reR, the set {xay,X: T(x)(s) = r} Is sequentially weakly closed and baanded,
and a0, by Thearem 7 on p. 313 of {7), it Is weakly closed, Therefore, we
M el A operator = T(x)(")ls (xe W),
First, observe that 1€ Gy, 17 Then, given y ¢ G¥, by Theorem 321,




=

there exists £ 7 such that T{8)(y) = v(3) for all ye W V. Since W 1
s dense in G, it follows that T(()) = () foc all y&G. This proves that
TPy = G*.

Reax 39: A natursl way of finding two sequences {y,); (3, 45 in the
statement of Theorem 3.2 s 10 assume that the following classical coercivity
condition holds:

s

et o0

Indeed, if this condition is satisficd, then for every wcN, there is g.> 0
such thar T()(x) ] for all x0 0P I with %] p,. Thas, it sulfces
0 ake g, = o, and 3, = g,

The final pact of the papez, siarting now, it devoted (o some conscquences
of Theareias 2.1 and 2.2 in the setting of Hilbert spaces. Thus, from niow o,
(E. (-, +)) is a Hilberr space.

Throness 3.23: foi X be a clvsed, convee, baunded swbget of B, with &g
Cint (X), Lit @1 X+ B be am opalsr sch, thet, for evey €V, the set
{xe X0V (v $x),9) <0} ir fiitely ceced. Suppess that Vit dot 16 £
aad that, for ey y &V, the et [xe X (x— DOxd,5) = O} ir weakly closnd
Fiually, auppese that (00x), 3)< Ex? for il 02X V.

.s,p.d.. there excittr S X b that £ = B(R).

Paoor: Lec A be the operator, from X into 1%, defined by AQ)(:) =
= (5= (), )r (x€ X). Marcover, uke D=V and, for esch 56 #r,
Xy=Ke=XOJ. It is caslly scen thar, with these choices, the assump-

tions of Theotem 22 ore mtiafied. Since X is weakly eompact, Proposisions.
llmd}lumhlzmm\nmndudm“)ntnmzzmmx -
ore, there exists !exa-d:m(!—‘(‘).})-ofa(-";sl/ Our
cm:]nsmn follows. then from the density of 1 in £,

R 3.10: Theocem 323 improves Theorem: & of (8]. Morcover,
if Vi the linear hull of a countable set 16 £, then, thanks to Proposition 1.11,
it suffices o suppose that the set [x& X' (x— B{x), y) = O} is weakly closed
only for each 7€ V.

The following propasition will be weful in the proof of Theorem 324,

Provosmion 3.1 Let W be w choued disear bspee of B, £ 0, X = {pe
[Hl<rh X€ T, [x] =r, g0 B Then, the follswing conditionr are equivaleat:

& mp =)0
8 24 W ool 54U (), wbore Wit byl compliment of WP
nd o) i e eetiagenel projcriss of % ..
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Pacow: Let a) hold. Thes, (5,) > inf (z.7). S0, in parseular, 7 W74
Oldeae il given by we OB the Sepoation pleym inf p() admits
2 uaique solution in X given by — s [ie,], where #, deaotes the point of 7
which, by Rics's theotcon, sepresests y. Now, apply this observation to
the funcional y = (g, Je. In this cse, one has b, — Mulg). Hence,
g (e a(0)){1Te(z)]. OF course, this implies the second asiersion of #),
i Tl , then, recalling tha

| 3lnlg)] » & contradiction. Now, let §)
hold. Suppose that «) docs nac bold. Thea, on the basis of the sbove discus-
ot o et peeemrl e (O MLIE(O - oo e 2, Thie- oo
tradiction eompletes the pr.

Tiwonsse 3,24 Let £ be infnie-disonsions and separsile and 17 be e fvear
bil? of ai arthonsrasal basir, (e}, of . Far each we N, iet 5, be the fisear bull of
U costd)e Furthr, bt 72> 0, X = (x £ Bz 3] <) and bt .} be 4 sigoas
of real fuctioss an X snch u\..-n\)g (P < + = far olf xe X. Supporc rhat,
Jor voth wE N, dhe fumetin y, s fvitely contivmess in X\ V" and that e set
[re Xt . (x) = O) s svakly cosed. Finally, et N be au infnie sobset of N onsl
{ru} e equsce i 10, ) ch st forevry . and ey 2@ (IR XY 05,
e wxdie 128, and REN, widh kew, b et 3 plsHon )< 0 and
rx(’f)(#- s)>U
el dypotheser, therr wxists $6 X wach thet g (8) =0 for alf na¥,

Proor: For esch xe X, put #(x) = 3 ¢,(dv,. Thanks e the Riese-

Fiachee theorem, the operator 3 X -» /5 i Let A be the
operator, from X inta 17, defined by A(x}()-:(b(x), e (xeX). Fix
weRand xe e X) 05, Inm to them, consider » and
% 15 in the statement. Then, since 3y (x)(r ) = (B(K), ), the inequalicy
Er,(.@(. o} 0 Frpins izecily, thes. ${ach 55700 the other. el wincs

T, (#) = 5 pta)e, the inecaliy o) o) > 0 imples exsily that
x$ UL (#4)

Thescore, thanks to Proposition 31, onc has

sup  (Blx), v =) > 0.
P
Now, if we take D=1/, & = {5,: ne N} and, for cach 5eN, X, =K, =
[._;)A'n 5, we reslize that the hypatheses of Theorem 2.1 are satisfied.
in particular, condition (3) follows from the above discussion, while condi-




v
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don (2) fallows from the fact that, for cveey ye I, the function AC)(3)
turns ot to be the sum of a fnite number of functions Which are finitsly contin-
wous in XN V. Finally, aking into account that, for each weN, the set
[0 X A () = 0} is weakly closed, Hqgoqu] 0 fxe X g,(x) = 0},
we see that Propositions 1.1 and 111 allow s to wilize conclusion i)
of Theorem 21, with K= X, Thercfore, there exines £6.X such nm

£),7) = 0 for all y& /. But 17 is dense in B, and so #(3) = 6. This
means that g, (8) = O for all we N,

Rusiang 311: The conclusion of Theorem 3.24 s seill true if, indtead
of dhe st assumption of it, one aysumes that, for every ne 1 and eveey

xed((r ) X)n 8., one has i;.,m(x...),m o see this, one must apply

Thonens 3.25: Lat W F = E b a continwnns finesr sperator and {3y, -or 2}
be a finite ortbonormal wbiet of E such that

st [0t + Y E ]

T, oar bus D(E) = E.

Proor: Put
P [ e

Denote by § th fosr hll of Ly, - 1) 3 by X the sed
Fix w2 and ge (x3)X. Observe

VE o nar = o001 = sup (809,
Thus, there is & X' § such that
.8y =—Y E s

‘Then, one has.

=g =) 00939 + | E 010 Iz
Now, iff we take

DmVamE, F={feF;:8cs), Xi=K=XnS $eF),
A= @7 ) e XD,
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we see that the hypotheses of Theorem 2.1 sre satisfed. Obviously, for every
e E, the set (.‘-sx Af)(3)= 0} iy weakly closed, Thus, thanks to Prop-
sitions 1.1 and 110, conclusion ii) of Theorem 2.1 holds, with K = X.
Therclore, thete exists £ X such that ®(8) = z. Henee, Lmxs e,
Then, a8 B(F) is 3 linear subspace of £, one has G(E) =

In particular, from Theorem 3.25, we obtain dircetly the ﬁzlhwung cesilt,

Tumonen 3.26: Let dim ()< + o and fot W1 5 v 5 be a inver sparater
s that inf [(9), %) 4 [#6)]]> 0.
Then, tne bus BE) = E.

Theoren 326 s o onges mue if i () = . Todesd, e have she
following resul

Terowsst 3:27: Let £ b infte-dimonsiomel s sparsbie,  Then, shers st
« liear fsometry B E — E, with $(E) o F, sch thot

(P, ) (9691 > 0.

orthonorral basis {¢,) of E. Next, define an infinite ma-
rix [,..| (k --m in the following way:

1 iFhk=n=1,
) I r>1 and (k—20+ 20k =28 4+ 1) 40,
e | it and k=22,

—  ifa>1and k=2u—1.

icuplics that the mateix {5, ] represents a concinuous linesr operator B2 £ £,
by mean of the equilty #(x)= ¥  Tonoq e)n GreB). Thanks 10
Parseval's identity and to the previons relation again, ane has

1960 = 3 | Tatsodfi= Flonatfm Iaft o all ¥ B

Hence, @ is 1 linear isometry, Vow«r.mlmll,scmmn,ﬁxnuyxtﬁ
ane bas alio (@(x), 3)— (x[}2 Therefore,

(000,591 m)a|1>|_‘;z>




g

Lt us dhow, finally, that @ is not sajective To this end, observe that if
I any pusitive seal numbee and p 15 any odd inseger such that 518> 4, then
oic has C

g3

This fact, thaoks to 2 wellknown result (sce [9], p.49), implies that the
point ¥ e,/n docs not belong 1o B(E).
o
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