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On the inequalities associated 10 a model of Graffi
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of two viscous incompressible fluids (*%) (***)
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= INTRODECTION.

The study of the motion of a mixture of two viscons, incompressible luids
in 2 closed basin is of particular interesr, for example, in the analysis of prob.
lemms consecied with pollution. The equations can be.deduced, undee more
o e tedogen by, B e gt o govetaoa e o

of a mistuze, these in tum being obiained from the principles of conserva-
tion of mass and momentum.
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Let @ be the part of the & = (xy, ¥y, )-space B in which the motion
fakes place and let &, 1 be the two components of the mixture, We introduuce
the following nomtions:

¢n densities of the fluids (which we assume ate eonsmants);

— 6. ) local vohume concentration of the Auid «;
v, 1) local mssy concentmation of the fluid x;
— sl =8, -+ (1—4,.)8, local density of the mistre;

~  visasity of the mixture (which we assume is enastant);

— f(, 1) extermal force;
— plx, 1) pressute;
— waf. ), sl ) velocitics of the fulds;

(5 £) = b, (1= iy mass velocity of the mixture;

lume velocity of the misture.

— e =, (=6, v

The fondmental equations of motion are given in G = 0 [0, 7] by ()

Vou, =0,

)y

o =) =~ T e 4 VT

£V ) 0,

with suitable initial and boundsey conditions.

From Fick's esperimental law (see for instince (1) which enaneets the
local velocitics of the fluids with the mass velocity, the following relatioaship
ean casily be deduced

ny

where 1> 00 is the meleculer diffasmn cufficient, assumed eonstant (%),
Subulmnng (1.2)into (1.1) we obsin cxuations espressed enticely in terms
of the mass or the volume velocity. Since the condition ¥-u, = 0 is of coe
siderable importance in the theoretical study of the systems of equations, in
the sequel we shall consider the equations written in terms of the volume
welocity (which, for the sake of simplicity, will from now an bc denated

33 s olls we shall s
ieular, v sl s 1hat the

e hat the qantioms a1 eritven i diemiooless form.
it & ik o e v wieh ki comecmatian.




by ). This gives

o (o )3 Ve S Dt

&% 4‘;fvr#)Vy—gtfﬂeﬁe+§"r‘":—"!' UL
2I‘:+ u-Pomido,
Vauml,

whete

Bomp— 2 0e 4 2 W)+ §F 2 g 4 A g

We shall always sssame in what follows that the open, bounded set 2 is
cither of class C* o s conves, with boundsry I"canstituted by & finite numbes
of surfices of clags O3, Thas, in addirion th the waal initial ennditions

(14) (e, 0) =),  alx,0)=§ xel.
we have the classical boundary conditions

s,

.5 ) =0, =0 xeR.te(0.T).

which interpret the fact thar the velocity and the density flux vanish on [,
where w debotes the normal w0 I'. In the sequel mr shil alvas asome dut
°<n<!(=r:<9.<+=a
This model has been studied by Deirto da Veiga [2) and, in the cse
2 = R, by Seochi [3]; i the inviscid case (u = 0) it has alsa been sindicd
b Bﬂrﬂod.n‘lm, Scnplon and Valli [4] All these authors have proved
docnl existence and. the assumption tha ' s « suf-
smmymuh-(rmwmofmc')
Previnusly, other simplified models had been eonsidered by various suthors,

assumed 10 be negligeable); unde the assumption that p is «large »,
Kashikor and Smagolov prove a /el cxistence and uniquencss theoreen for 2
wsrong s ixence theorem for 3 (nat ly unique)

I all the terms. containing j and 4% are omitted, ane obtzing from (1.3) &




model correspanding to the cquati
?(%‘—(u-hu—,‘] —p+pdu,

[}

H - Fyp=0,
=0,

have been extensively studied by many authors; in paicular, Antonov
anid Kazhikov [6] and Ladyrenskaia and Solonnikov [7] (see also Lions [8])
have extended existence and uniqueness. tesuls for the incompressible Navier-
Stokes equations to the sysrem (16).

Such a system coincides the equatinns of motion of a viseous, ingom-
pressible, inhomngencous Buid and corresponds o the cae when, in the
motion of the mixture, the molecular diffusion i negligeable; it is, therefore,
in some cases, aa oversimplified model.

Anotbee model associated, 1 the morion of & mistute of fwo inempressible
fluids has been introduced by Graffi [9).

Staring from cquations (1.6) and observing st if the molecalar diffasion
Tisd 10 be taken into account, the term 7 dg would have 1 be added to the
dight hand side of the second of (1.6), Graffi proposed the system

) R

o

(.73 w¥o=1dg,

V=0,

It is wonth noting that (1.7) cin be obmained from (1.3) by neglecting only
in the first cquation all rerms involving 2. This procedure, which at first sight
may appear ineoherent, en in fact be justified by observing that the elimina-
tion of the term in 4 in the scoond of (1.7) would critically modify the system
by transfoeming the parabolic second equation int & fisst oader one; an the
othes hand, climination of the terms in 47 and A from the first of (1.3) simplifies
the system in o practically useful way without changing its mathemasical and
physical fearures.

We chall therefore adopt this approach t the problem and consider in the
soquel system (17) which, by what has been said shove, will be cilled the
Graff medel.To equations (1.7) we associate the initial and boundary condi-
tions (1.4), (1.5}; it s obvious that the results obmined by Beirko da Velga
and by Kazhikoy and Smagulov recalled above bold also, in pasticular, fn our
case. On the other hand, the problem of the glbal existence and nvigtoness of 1
solutian of (1.7), (14), (1.5) it sill open.
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Although not usally noced in practice, it is imparant for our paricala
hummlmnm{ﬂ“hu-m(wﬂ*n
wasitency couditions wiich defie andlytcsily ihe physical cosdidioes wuder. whch e
ovdel maintains ife salidity o, in atber wurds, is' phyically consisiens,
For the general model charcterized by (1.1), it is evident that the con-
sisteney eonditions miust correspand 1o the following physical assumptions

4) the veloities | must ot appeoach tie Velosity of ligh, since
i il vl s p,lmmmmm

4) the density u of the mixture must be sisictly positive and baunded;
¢ the pressure p must be bovnded;

) the internal stress must be bounded : hence, V-, | mwust be bounded.
The same conditions must ebviously bold also for the Graffi model (1.8).

Sinoe we shall be concerned with «strong » solusions (in appropriste func-
tion spaces) of (1.7), condition <) follows from the oher conditinns {see the
semask at the ead of section 3). Morcover it follows from the second equa-
:nnof(l?),mmhmmmdmrmduku (14} and (1.5) and
the maximom principle (soc, for instance, [10]) that if 0< ¢, <g<e,
\'hen D<pelv )y
On the other hand, condition ) e be expressed by

8 i<y,

while, by (1.2) and conditions «), b),

{1.9) Vel <My
:ﬂ@uﬂ,-nﬂyﬁqm(ll)ﬂenpa-nlv‘ndhudn'hmhdi’,w
(1-‘1:'} |4e] < My,

from which ako follauws, by (18) aid the second of (17 that
i ig <y

Thas (18), (1.9), (110), (1.41) ase the asifoney sonsifions for Graii's model.
Tn order to ke the conshtency conditions fato sccount when studying:
the madel, we shall reqire the solutions to belong 1 1ppropriate convex
seta; this, in tuen, leads 1w 1o replace (1.7) by 2 suitable system of difirential
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inequaliter. We sball seplace (1.7} by the system

f)+ S o )ty <0,

(112) ”{ +uFo— 2'?}( V]“M 2

where @, y are test funcrions beloaging to appropriate convex sets which,
together with the exact definition of slution, will be introduced in section 2.

While however in (1.7) the condition 0 g <gices Was imposed by the
maximum peinciple relatcd to the second equation, in system (1.12) the mud-
mum principle oo longer helds, having repliced the equatioas by inequalitics.
Henez, the coefficicnt g in the first inequality of {1.12) could vanish, or even
become negative or infinite, creating serious difficulties in the study of the
system itself. We shall therefore in the sequel substinuse (1.12) by the system

I
113 H‘%“'v“’“’-‘)g

Foum

cu-m-f] + v,u-,u-}ru-w)mnw‘

)makn_

where we have set

where p<e<fy,
where p< gy,

where 4> gy

As we shall see in section 3, systems (1.12) and (: 13) are, for the purposes
of out study, perfisly equiuleat, since both reduce 10 (17) if the consistency
madiians Rl e sipmlsia i (1.12) by (1.13) is therefore justified. In
section 3 we shall also illustrate the basic ideas undeslying the substitution
of the Graffi model by inequalities, twgethes with a physical intespretation of
the existence and uniqueness theotem for (1.13), (1), (1.5) which will be
praved in sections 4 and 3,
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Rewars: 1 A simple Interpectation of the meaning of o differential inc-
quality can be obiaincd in the following way. Consider the inequality

Jfr—ne=n&a
# belonging 1o a closed, convex set.  Assume
theuwemwl(:v-xn+xv(rlsb-uky o]

=t smooth,
Mv&cpmn- (&0, re
safficiently small), from which follows that it must necessarily be As(#, 1) —
—f(% T} = 0. If, on the other hand, (2, 1) < 2K, the from the condition.

(AED — (R0, MEN—9(ED)<0, WK

kfuﬂnﬁlhtlhvmm-‘lﬂ. )~ (% 1) must be orthogonal w FK. At
these points the external force f is therefore modified so as to sarisfy such 2
condition.

Reaanx 2: The substitoticn of incqualitics for R i et 4
hydrodynamical models is not new 19 this papee. For
subject we refer to [11].

z.—mtncmmmxmmmm

Let 2 be an apen, bounded st of W, with boundary #' and #(x) = l',k)-
mlg(:)ja'mddmdmf Denoting by L* = L3(@2), H* = HY{

mm)mmsﬂmmmwnumdm
mmmmnmugmmmwmu et us introduce
the fallowing otatian:
— N (o) n e D V0= 0f,
— A= dlosure of X' in H, wllh{lgn),,. u, Bz (530),

— (A% dual space of N, ot il

— b, v, -)-((u-v)-.-)‘... 5 .,&A-,M.

ready poiated oat in section 1, our wim is 1o study system (113),
ek, vt e e AR, i o e DA

_f'(eil"r o T p i — G 4 Vg u—p)udy <0,
3

,f (o' W Vo— A Ao g'— ¥y <0 .




‘wheze we have set
- l?u[n );"ul' el)= (au(v.n “u}
O
Ta the system (2.1) ase associated the inital and boundary conditians (cor-

cesponding 1o (1.4), (15)
22 o, 0) =) s 8 0) = i)
i |
@3) dosgn=0, F| =0,
with 0< gy <<y
In osder t give a precise formulation of the problem, ket us introduce

the follawing closed, convex sets:

K= (oo 20 foj< M, 2],

K= g2 [Orlc My, g < My i),

Ky = (geL2: Jrj< M, ne}

The consistency candiions (1.8}, (19), (1.10), (1.11) will dhen be satisied in
{0, #) if and oaly if

@) uek,  wneky, g@ek, a1
Observe now thar, if ()& L0, T3 N, pleye O, T FY), we bave,

by the third cquation of (21) and the initial and boundary conditions (2.2),
@3),

fm.--—n--t«—- —f:.b.v (w—))ysy = 0,

| i
@) | [(Fe, ¢'— vt = (on 8/ e =

= § Lo —1 [Tk o whe-

Hence, aseuming that u(f) takes its values in AV, the system (21) can be




written. in the form
[ R A

(26) £ g i 2
[t s vt et ot A patheso.
i

V0.
Wi hali then sey that [uh, o) s 4 salictios of (21) ir (0, T) satifying the iniciod
o by sl (23, 3
i) wl e L={0, T3 N1 Ky L0, T ), u'(q!l.'(n, r Nyry
LA, TN, el)e La(0, T3 Ky, ¢ (1Y€ L=(0, T: K, u(0)=
), ¢ whsly (26) e i 0, 7), Vo) LX0, T: N1A x.)‘ W
Lo, T K, with (e Lo, 75 Hi K,

5. - Pursicas mNrmmsrario ov s (2.1)

The physical intespretation of (2.1) is based on the following property,
wehich i 2 direet comsequence of 1 statement conceming the solutions
of el it (e, o lstance, 4], The oot will e given
in

-'-wiu.-lh-m&-r-(nmmmuwmiuMunza-j(u)admm
that the dowsisionsy couditions (2.4) are satigied a0, jn (0,4) (V<r<T). The
0) o0 sl of (18) n he s of distimion on 00,11, Rewcs f e

-fmq-.ffma.umw,on:ona.-m-uuw.dgm
nblhl

.tmi;mmm:,u wx existinse and
guesess thesrems for @ M-h-!-ni'f(ll).(zz; (u; mmm.a«
the two followlng. possibilities

) there exists an interval (0, ) in which the solution (u, ¢} satisfies
the consistency conditions (2.4).

#) no such iaterval exisis, i in every neighbourhood of /=0 there
citus's s of poiive resmure . which <at 4t sk o the Somitency <onr
ditions is noe satisficd,

lfmndnmi)hnun,wmmdnkmmmma-w
mitable for the description of our physical problem, fe. is not physically
consiten, Tadeed, evcn if the Gea el (L7 hd . selaion; i scion
could not satisfy in any neighbourhood of /=0 the comsistency conditions
and would thercfore be physically mecaningless.




—0

Assume now hat there exists 1> 0 such that (24) bold ae. ia (0,40
then the solution (u, g} is also, by the propeny socalled above, the only solu-
tion of the Grafi model in (0, 1) mls:vmg (2.4) and we obuin thercore a
Ioeal existence and uniqueness theorem for (1.7), (24). The introduction and
study of the incqualities (21 enable us then o .mm @ meigue svlurion of dbe
Graffi model shererer it can bn expucted tbat ibis rolutisn is physicetly significunt, i
0 stace that dhe Graffi mwodel is weil pusd wirever it is phyiically consisteat.

W would like to emphasize a dificcence between the «local » theorem we
thuss obtain and, for instance, the « Iocal » results vecalled in section 1. ln the
lattr, existence and uniquencss of the solution are proved in an interval (¥, 1,
where #* does not have special physical sigaificance, since in its cxptession there
appear embedding constanits and other quantitics which do mot have any dircct
physical interpremation, In our cuse, on the other hand, e iuiersal (0, 1')

represens the barget time interval in which sbe sslution of (17, (14), (1.5) smierprets
the physivel probienss since, in face, the consistency conditions aze ha longer
werificd for £¢', the solution of (1.7}, (L4}, (15), even if it existed, would
bave oo physical meaning for 157

Resank: Tn (26) the pressure p no longer appears cxplicitely, having
acen eliminated theough the first of equtions (25). Assume now that fa,
satisfics (2.6) and that the consistency ennditivas (24) are satisfied in (0, )
by what has been said shove, system (2.6) is then equivalent w0 (1.7) in (0, )
and we calculate Vp by means of the fiest od equations (1.7)

wpm o [ ).

Bearing i
ciple, 0

mind canditions i), ii) of séction 2 and that, by the maximim prin-

s Ty ,f]f,. fuw L3O, £ H-V=)
and, cansequently.
HORLNO,PEL).

Henee, the consissency condition ¢) of section 1 is satisfied in the function
class chosen for the solution of cur problen.

4, - AN AUKILIARY THEORES

In the present section we shall prove the following exisience theorem for
the solution of an « approximate » proboem.

Toson 1: Aseowe shet e N'OVERN Ky @e K, f) e HYO, T w
sl that €1 s sbe vonditions i v setion V. There exiuts thow, ¥9 -0, f,
ek that




e
U< L0, 5 N1 Kb EX0, T #9020 73 Ny
PR A R A R
6 o iy e, in (O, T gt
'
) [l i g, )y + b, =g} <0

1) jlle'i‘ we S 0/ -+ O whe— A, whwddn +
i +§!90)!l-1-z|¢(-‘}li-— 316k — (O ¥ (<0
"lr(flﬂ-‘(‘L Ti K (e L~(0, Ti K. v()elo0 Ii Hin K vii)e
(,an:'.ug let 7 be the projection operator defined by
where [ofx, £ <Al

i 5%"_31 swhere [ol, A= M, ;

43 Folx, )=

ST byt Thet ;Mm..;u. r.g roseover, () be the busis in N con-
stituted by the cigenfunctions of the operator — 3 and denote by {4) the cor-
sesponding
4 &= APl VRN (5=,
whil, by the sssumpiions. made on 2,.5,6 HY (. [12).
Setting () = Z-J.(PJI.. we consider the following « approximate s
e of ondinary differential equations
() s o Aot B I P Pl £) +
4l Prt, £l BDa =0 (= L)
coupled with she inequality
[ttt T g w0 v s b
T S0+ & a5 01— 30200, ¥ <0 -

Desoting by 11, the opesator « projection. on the subspace spanned by
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Bivongls we associste b0 (45), (4.6) the initia] canditions
(8] ) ==, e =g,

Let us give, to begin with, sume  priosi cstimated which will caable us
prove the existence of a solution of (4.5), (4.6}, (4.7). Setting Alu) = u — Pu,
we have, by (4.1,

@8 ) =0 = [y < My s
@9) (CORDRELN

(4.10) (A(ae), 1)y (A, fer)ys
Moreaver, setting

. Rn[lsC‘(_Q):‘er(x.q]ﬁ;A 75!(.‘1',4!1" ool + A < M)

(412) B, = dosure of & in L3(Q),
it cin be proved in a straightforward way (e, for instance, [13], note 1) that
13 on(NE LM, Ti Ky} = (e Ry,

You(9) HI'(0, T LF) with g (0) = §. Hence, conditions g.{r)& L~(0. T: Ky,
#{6)& L0, T K,) can be substituted by

(#14) (e im0, T; K)o R, .

Sinez, by definition, u_ o FP=(G) and K,, R, ace closed, convex sets, it
cin be proved that (46) sdmiss, ¥ fixed w,, 2 unique solution gn(f)e
L0, T: B, with g, ()€ L0, T3 Ky)r Ry, ¥y( e L=(0, T HY), with /(1)

K0 Ry, w(f)e L0, The proof is given in Appendix 2.
nd che definitions of K, and R,, we have then

o <My 100 e r g < My 0
ealHaom. ruam <

In order to obuin corresponding & priori estimates for u(7), let s awl-
tiply (4.5) by =, and add; observing tha

@1 (et =15 §lds ey
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we obuain
(18 LIV e el Pt P, ) —
L Gt o G L)+ () Y= 0.

Hene, integrating between 0 sad 76 (0, T, and denoting by ¢, quantities
which do not depend on m and 8, we have, by (4.9), (4.3); (4. I!). (4.16),
19 VIO alalbeis] VBB +
AT R FAT e e
sl eoftall ol Pl 1 el =
<ot e et Lo oy st o g s«
Consequently, by Gronwall's kemma,

(420) !“-(-')Im 71, S

Under the assamptions we have made, the systent (45) admits, by (421),
¥ fixed gu(r) € L0, T; Ky) whh enirre L0, T2 K a global tolution satis:
fying the first of conditions (47). From the 13, (MG)-

4 priosi estimates
{4.20) and the cxistence theorem given for (4.5) and (4.6) it follows then, by |
Scmdmpuuupu that sysem (4:5), (4.6) sdmits, V4 and m, & solution I

w} sarisfying (4.7), with g ()€ L0, T3 H' 0 K, e (e L0, T: Ky),
v(&)EL'ﬂT K), w0 L0, I K0 &), v (e L0, T; L),

to be able 1 pass 0 the Lmit in (43), (3.6) when m—» o3, we

umd some. udnam o the decivatives of u,. Multplying (4.5) by AJ,.., |
adding and integrating beoween 0 and /€ (9, T] we have thea, bearing in
(417), (44) a0d sersing B, o= e, ‘

@) 3 F Wal D3 3 VEDm -

{3 00160 oo B, D]

e P, P, ) () Y )

Henee, by (4.15), (416), (4.20),

@2 33 VERD R ptualbes s 3 VEDS
+ sk e i+ ety

LR R R
<l byt guldualon oot e
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In facr, by the monownicity of 5,

4.23) —J‘(ﬂ(ﬂ_), Au gy j’([).ﬁ(n_). Do oy 0.

Differentiating (4.5), multiplying by =, sdding aad integrating between 0
and & (0, T), we obiin, on the other hand,
{2 sty

i+ B PuLY, Pug, ul)+ b(G. Pu, (P, wl)+
_f.nl.);u]d-, o

B2n L EEme - ) Va0

(TR TR TR (N AT
Obscrve pow that, Yu, o me H],
as) B0, 18) = — b, 2, 9)— (T -1)0, Wi 5

hence, by (415), (416), (4.20), (425),

@25) [Py, Pr, il [ Py P, )]
(P, ot L)}y rnl B oy
(LR ] L O A e
+ tual oo DO T v L Po T iy
B LA R T A P (G R S

oyl Fhalem v

ST LA AT

ol L v e Lo 1+

L

Sokwionieg (435, (420) Into (420 s bexdng mind that (.
(. ul)y-0, we obuin

b+ wlaie o § IVEREOTE+

+ i love s i v+ oful Lave oy -

Multiplying (4.5) written for £= 0 by a,(0) and adding, we bave, on the




other hand,
) VO OO+
e o 0 — GO 00,

from which follows, by the assumptions made on the inidal dats, that
) Wt
Hence, adding (4.22) and (4.27), we obuin
w3 F IVEDmIE+ § IVETLE +
B L e

£ oulit by bliran oy it s

onsequently, by Gronwall's lemms, bearing in mind that g g, > 0 4d the
assumptions on 2,

#3n [alimis, v e 10, miaim < Al ¢
(33) [ by, v st ey M-

Deooting again by (3, (e sppropeiate subsequences sclected. from
1], fo.].. we have then, by (L15). (416), (420), (431). (432) and by well
known emhedding and eompaemess theorems,
w3y ) < ute)

topology of L0, T'; ), the weak topology of L3O, T H%) 0 |
nR‘:D.?' ), the weak-star topology of L7, Ts Ny Him(0, T A") and.

434 Jims.m =olf)

in the weakestar topology of Le(0, 73 H*) A H2=(0, T3 L) and, conse-
queatly, in the strong topobogy of L0, T; Hi=). me,hr«ﬂ).(tm

{435y e I A R
and, consequently,
(436 limg.=¢

in the strong topology of L) and the weak wpology of FA(Q). On the
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othes hund, by (4.33) and the defnition of the operator P,
4.3m

lim Pu, = Pu=u

in the strong topology of LA(G) and the weak wpalogy of Hi{), ¥
(4.18), (4.33),

438)

im (Ao, wa)er = 0 = widye L0, 75 Ky) .

Maceaver, sitice |Pu,| and |3, ate uniformly bounded a.c. in @, (436), (437)
hold also-in the etrong topology of £7(G), ¥p.

Let () be sn arbitrary function (H"(ﬂ T3, with jep(x, )] < M
setting

(439)

vt = Srtten oo Enlom.

it i obvious that, since the embedding of F'(0, T X in C¥({) is comple-
tely coatinuous, |@,| < M, when pf sufficiendy lauge. Asuming that pf
and setting a, = 7, when j< p, o, = 0 when ;= p, let us multiply (4.5) by
%, —m; taking m>p and adding, we obtain

4A0)  (Gawi—p dus - ) — G fi v @)
b g Putn, Py, 9y} = 0.
Consequently, bearing in mind tha, since (e, |< 4y,
L e e S P

we have
B [l s =G fy M @i+

7 U Pty Pl 4 — 93] <0,
Letting ar = oo, It follaws from (4.41), by (4. 33) (4.34) (‘ 36), (‘ 37} (4.38)
that the limit functions ¢, §. w satisfy cor 2.2) Vep,
defined by (4.39). Since the space of these funerions is Elunnmﬂ-lufl:s:

ns considered in i), (4.2) holds. 3

By (4 ﬂ), (4.33) (4.34), letting i -» =0 and observing that, by & well known

property of the weak limit,
(4.42) i

{[AGH 2P0

we may eonelude that also (4.3) s verified. Since the initial conditions for u
and p are abviously fuliled, the theorem is proved.
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- PROOE 07 THE MAIN THEONEM
We now prove the fallowing uniqueness theorem for the
wﬂmndwmm)mmmmmmmmm
@3).
Treoness 2: Assume that
EeNnHNK, deHnK, fHeH, TN

i that 53 satisie. tbe conditions set i suvien V. Thore excivts sben ove, wsd only
one, oupie {u, ¢} which utigfer conditions i), ii) of section 2.

We begin by proving the existence of a solution. Let {as, oo} be the sou-
tion given in Theotem | conesponding o a given valoe of 3. By what has
been proved in the preceding section, we have, ac. in (0, 79,

G1) f{(E—p Aota— Gl e @)+ bt e, sa— )} <0

i
B2 [ifeit e Von, ei— v+ Heb, v ios, Wi dn +
+ 5 401+ & ) T 80 (<0

Yol L0 T K), ol wie L@, T: K, v(nel=0. T: Fin K. y'(0e
@i, T; 12) sn

©3) )=t

mareover, bearing in mind (4.15), (4.16), (431), (432),

G Vedea<M.  lolsa<dh,

(55) Ml romaewr <M, Bl nn< ¥,

where the quantities M, do aot depend on 8. Hence, we can seleer from
(m},(m}lwmwmwnmﬂiw{w) {add soch that

& i) = ()

strang topology of LA(0, T; AV, the weak tapology of L0, T )
:rm, T3 ), the weakestar topology of L=(0, 73 N1) \ Hh=(0, T; N¥) and

(] limpemgi Mimbi=4.




— a0 —

in the sttong topology of LAD) and the wesksmar topology of H
Sinee ], uniformly bounded a.c, in @, the limits (3.6), (5T) ol
sl in the strong tapelogy of L7(G), ¥

By (5.6), (57), (B4), (B.5), (5.3) it G e Bk Ao e
satisfy condition i); moreaver,

38

00wt aj'@:. Vi) =

Hencs, passing w the limit in (5:1), (52) and bearing in mind (5.4), (5.5), we
can conclude that 1, ¢ atisfy also condition §i), provided the test fanction y
is such that y*(0)e L0, T LF). Since however the xpace of B ey
tine it dense in the ons considesed in i), the existence of 2 rolusion is proved

Let us now show that the solution in unigue. Assame that {uy, o), fut, o)
satisfy conditions i), il); serting

e O S
. and deoting by v, the salutinn of the diierential equarion

&9 e witha ()= e>0,

we et in if) respestively u =
=y, = w,; adding the e

.o =0, and o = w1y, 0 = gy
thus_obexined, e have. then

A0) ({3 — s Aoty o, who— (G A G W)y +
y Bty 1 10— bty s, 80} 0,

511y 1 Vg ol — ol (0 + 24 Vs i ldr—

s M P Ty S PR AT L
from the first of which follows, bearing in mind (4.17),

613 VGGl rﬂ e

+ (G — g, 8o+ ]+ B e w)
+ (i — o), W) <0

) b, 0, ) — ((By
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Observing that, by (59),
(513 ot e = 200, 00 = 2 - 2=y e 2 B
and that
19 Tl b= Al o=l
we abain, on the other band, from (5.11)
G190 — Motk 210 + el + 3 Int— otk +
108 P el (e Ve = i <0
?
Lewting + —0 and setting y = g — gy, it follows from (3,12), (5.15) that

616 JVaDREl- +H#Hl-— G
10+ W,y )+ Bty 0]
++ M ) (xf, <0,
61n fhi+ J'urm(-. oot (0 Ve, 30} 44 0.

&m-(m—:(ﬂ)=n.whnmb,smmmlmmmu,
()= () = 0. This proves the uniqueness of the solution,

Arresore 1

Let us prove the fallowing proposition, stuted at the beginaing of sec-
don 3.
r...[..,,) satfy conditions 1), 1) of eetine 2 amd azcome hat (24 Ylold wr. fn
[0.!'). Tiew {ua, g} ir a sohuiien J&M-ﬁl(l,?},ﬁ&mfm
X0, £).
541, 00 be two asbitcary funciions, beloaging respectively to L¥(0, T
) and w0, T ) and let ) be the solution of the diflecentisl equa-

tion

(ALY Lot o= e, Wil 00 =& G=1,2,..0.




=
Sinee [, ) satisfy (24), it is possible, sssuming that £ £, to choose in (2.6)
A1z (1) = wult)—eGN) s W) = () —eB(0)

with le| sufficiently small.
With this choice of the rest functions, th first two equations of (2.6) become

ALY [t . ) Mtk ) <,

(A14) I((y' -V, ' — g} + o — Ao, oi— ¥ )] iy

& et} falie<0
Since we can change ¢ in —u, it follows from (A1.3) that
(A15) i o B, B 10,y = O

VE(r)e LAD, T3 N¥). Hence gu'—p ot + (u-¥)u—gf is orthogoml o
30, T'; N¥); consequently, by a well known property of the space N, there
exists 2 function p such that

' (G Vg = —Tp
in the sense of distibutions

i
Let us now consider (AL4); observe, to. begin with, that, by the defink-
don of g,

@7 [ uidn o< 3Tl — 3

Hence, it follows from (AL4) thar
O e o [
wnd, et /=,

(a1 Jite T e+ e ) <0
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Changing ¢ in —r we obtain then
®139) S
in lh m: of distributions,
i princpl << g (3= o) and she system formed by
(m 6. gms;maa:m ‘with the it two equations of (L7).
Arpzxorx 2
Let us prove that, if L2 sevisfes tbe comdicions sed v wction | wnd v HV=((),
»nmvbm..a,.;m-,msmr Y, with g (80 L0, T Ky
By, 00) = O s e bn (0,71 e
tz) j' o+ 0V w' po+ o', )i Ao,y dn +
w10 etk ioik— o) vine<0

bt T S (R P DO T LY e
s denote by (b} the basis in A comstituted by the cigenfunctions of
operstor — 1 and by ¥, the corresponding egumha
o tlw=rdbp s Yze i, (o=,

Byaem-mum‘u-agmn.“m

Seting 0,(e) = 3,70}, and denariog by ) & pensization operstor 1o~
dlated ta the dosed, eonvex set L=(0, T: K;) 1 B, (%, we consider the sywem
(A22) (e + okl — A dualn) o) Vo) + Kol i)ome O

= B

with the initial conditions
(a23) al=mi,  a®=0
having denoted by /1, the operator « projection on the subspace spaaned by

By by
Multiplying (A2.2) first by #,(2). then by %70} and adding we obrairt

3 Apuse fros s sl dilrences i o the picaar wreruee of (A2, our prost i
el with tha o overl theorem for hyperhoie inaqualiies (Licen,[14], . 3, b. 7).




direetly the a priori stimates
(AZ4) IodDlema.mam<tse I rm<a.

with &y, ¢ independent of £ Hence, we tan select from (g} a subsequence
(sgin’ denoted by {n}) sueh tha

(A23) iz eale) = o)

in weak-star wpology of L=(0, T; H) rv H'{0, T; H') (and, consequently,
in the strong topolegy of L0, T L8)).

Sinoe (A2.2) is |m=u'. it cn be proved by means of standard tchiiques
(see, for instance, [14], ch.3) that the function p(s) defined by (A25) is a
salution of the problem considered, The uniquencss of the solution can be
obmained by & climsical procedure. Let py, ¢ be two solutions and set
@ = {{oy + &5); denote, morcover, by o, the solution of the differential equa-
tion

(A26) —wi)tol =), with o0)=g, 0 m=0, &0,

Sewting in (AZ1), written for gy and gy, ¥ = ,, we obain

327 [(tsi o Ves, it ok 4 Ve, =i —

— 8y} g o) — Ao+ s wDue) o+ § L1+ 5 el

+ 3l 4 3 et

(i) 4 i) <.

From (A27) follows, by 2 stmightforward caloulation (sce, for instance, the
uniqueness theorem proved in section §,and [14], ch. 3) that o, = oy,
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