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1. - IsTRopvcTiDN

In the present paper we consider 1 problem connecsed with the interac-
ot veo sl il s, prochd rmpesiy by soneced
and disteiboted smasses. M(:hn(lpﬂ“:nn‘fdm kind can be found

in astophysics, when
that the temperaruce variations and mimnemmmgm icld are neg-
ligible (sce, for instance, [1]).

Consider & material body of mass m represented by & sphere 2(y) of radius &

and boundary o(y), centered at the point 3(4) = {n(0, 1l () & B, im-
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mersed in & gas which oecupies & fixed region £2< £ with bounday I’ we
shall assume that the gas is ideal and that its motion is iscatropic, with con-
stant speciiic beat, i.c. that the pressure p depends on the demsiry thraugh the

formula p = Ni (N,y =1 constants).
Denoting by u the velocity of the gas and by # and ¥ respectively the
poxenils generaied by the mase w and the gus, the unkioren foncions of
u, g, 3, ®, ¥ must satisfy the following constitutive cquations ;

‘:’f ) 4 ofut Vysi—pdis— ¥ (1) 4 N¥gr = — V(0 4 9,

wn

2 2ﬂi‘-‘-"+ V) =0 (el r(yp(0): 110, T

N
3 Doy (e, T, {
(L4 W, = '416‘,[“

15 O h=— J' X‘:“é. (wE R slylelyi 4 [0, 1)
5] .

& (v R e[0T, i

Observe that (1.1} sepresents.the classical Navicr-Seokes equatioas, in which

| 4t and § sopresent the shear and dilsmational viscosity coeffcients (which we
sssume 1o be comstant) (); wogedher with (12), which represeots the pria-
ciple of eonservation of mass, it describes the motion of & viseous, compres-
sible fuld subjece co.the poreniale & and ¥, Buation (1.3) expresses the
law of motion of the matcrial body, while (14), (1.5) define the gravitatiom!
potentials peveated rpecivly in J by she gu and o RO by the
mass w (G being ersal gravitaion] eonstans).

T cquations {1 1).(15) st be sdded the clviows initial conditions

.6 e O =l (v 0 sx0)),
[) 0 =aled (e @—i(x)),
a8 20 =2, rO =%

and the boundary conditions
1.9 il u-g"'g"' L (xeTre0, T7),
110y ufn ) =y (vea(y())ie (0, T1),

) I the cxie comidered in (1], o sl § st steaiied 1o be ol tha the. comevpreding
s can b oeglecred.
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whese v is. the exterior nomal ta £}
ponents of the velosiy.

Relations (1.9) interpret the condition. thak no as passes through I* and
har, since 0o gas is present outside 2, mdu;iwmvbd&mnm!ckcn
mwlu;mmr (1:10) fimlly sepeesents the no-slip condition on o,
“Thie problem consideres abuve is an initial boundary valae pioblem in which
-pndmnhhebolmhry{l.n ) depends on an unknown funcion (Le. y).

We shall in what follows consider 3 simplified problem, sssaming that
is a sphere, & nd p can be defined in the whole of [ and, consequently, thit
1.5) holds ia the whalc of R and (1), (1:2) bold in ; henee condition
{110 v alimisaed. This simplifcaon sppeas i povide we svame
that  is 3 « nearly pointwise » mass. Hence, the system of equations we. shall
consider s somiitaed by (10:0.5) (1), {£2) in 2% [0, 7], (14), (1. 5)
in Rax[0, Tl) with the initial conditions (1.6}, (1.7), (1.8) and the boundas
conditions (1.9,

Bqunnum(“]«(li)w:llﬂwpklwn:b“nh!ameufl!vel-htmrnl
distributions, assuming

= o 1), 30 By e 20, T3 LHQY) n LA0, T3 HYGY)
L) AR, TIE)
o) = o, 1), = DY L3O, Ts MY 0 FINO, 5 17,

whille ({), W(e, 4), P{x, 1) belong 10 appropriate functional spaces desermined
by (13), (1.4). (l.s)
Equations (1.

w0, the tingential and soemal com-

the only relationships that are related
Iolbepmblmlnqumon the deduction of (1.1), (1:2) from the general
principles of conscrvation of mass and mementum is in fact rigourous only
If certain assumptions an the physical quantities w and g are fulfilled, i.c. only
when 1 and, g satisfy certain consistency conditions. These can, in the preseat
case, be expressed as follows
i) The velocity [u] must be non-relativistic:
12 ] < M,

i) The deniy st o be cier ¢ o0 g » o « 100 sl since
(1.2) does mor hold for solids or for extremely rarificd gases:

.13} 0 <ay g <ag.

i) The «shock zones » have, in the propagation processes of viscous
fuids, a width of the same order of magnitude 15 the mean free path of the
molecules (sec, for instance, [21); henoe, being ¢ bounded

19 %51 < a8y =g} < M.
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I i cbious b the cnena solons of (LILO) will Jave 3 phytest
meaning (Le. be physically comsistent) in 0 = 25 (0, /) provided the eonsist-
ency eonditions (1.12), (113), (1.14) are also sarisfied. in
B R e s T s e T e s
e that our model, at lesst for the data considered, is physically. incon-
slsteat.
We shall therefore e interested in the study of (1.1)-(1.9) oaly whese its
solutions see plysicaly consisicn. Assuems pa that w, o are physicaly con-
sistent in Oy it follows then from (1.2), (1 12). (113}, (1.14)

(1.15) 800 .1 vy <€«
Hence, setting

_fe  whea0srsr,
08 L] [g(f') when 1 <¢< T,

with
Ho i {5 felognwan <e) (@) =g if £=0).

i for whar hat been said sbave, substirure equarions (1.1), (1.2}, (14}

119 6L gt T — gt V(T ) 4 NV = — T4 ¥,
a2y WAy e ao

08 $en- _‘-!"J & ’).

Let us now inteoduce the following differential incqualitics, associsted to
1, 02

@) j'duJ'

£ ow-
Bdu—s¥(Vem

+ 5@+ W))(n-.n)md.
.z !&,J 40 (au))@ ~a0c0,  OereT,

swhere the unknown funetions , ¢ and the test functions , / belong o the
functional spaces defined by (1.11) and

whe Ky (o2 LA(G; loj<M, ae) .

o le Ky = (e LNQe); 0 <m<g<sy, (Vr|< M, ae]
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The following fundsmental proposition can be proved by stindacd procedures
(sec. for example, (31, [)-

Assume that u, y muy €117, (1.27) and the consistency canditions (1.12),
(1.13), (1.14) s.e. in Oy then w, ¢ satisfy also a.c, in Dp cquations (1.1, (1.2

nd also, consequently, (1. 1) (1.2) ().

‘Assume therefore that a global existence theorem holds in @, for the solu-
tion. of (1.1%), (12, (1.3}, (19, (1.5), (1.6}, (1.7), (1.8), (1.9) and that there
exists 10 such that (1.12), (113}, (1.14) hold in Z; then there eslsrs in &
a solution of (L1}-(19).

Hence, from & global existence theorem of the system with Inequalities
we ean deduce cither

i) lﬂnhﬂedmmlhﬂnbmﬁnm:mijmznimiff—f

i) & Jocal existence theorem for the ariginal sysem I 0<i< T}

i) the conclusion that the model is noe physically consistent if § = 0,
ic. the solutions of (L.1)-(1.9), If they exis, have no physical meaning.

It should be noced that the case i) differs Aigaificuntly from the usnal locsl
mm-zimmyummuyhmmmu 1)-(1.5), The normal
procedure consists in fact in proving local existence o through a priosi
mw!d:l:hnld"um0<r<r whee ¢ depends als i qaiies b

comstants, cte. which do not have a physical interpretation.

i it case, o he exhes haad, s  peecie plical mesning sinc, when
#:21.the solations, even if they ez, see 2o Jomger physically conseet.

In the present paper we shall precisely give an existence theorem for the
global solutions. of (117, (1.27, (1.3). (14, (1.5), (1.8), {1 'P). (.8, (L9,
From which one of the theee propositions indicated sbove can be deduced.

m.dmoﬁhevnﬂhu&ﬂ.lm Injzwshﬂlmmn:bumm

wﬂlhcpmmd‘whll:h§4lheﬂohluhmthmmdmdumnm
this paragraph will be given.

2, - BASIC NOTATIONS AND DEFINITIONS

Lex 2 be . sphece o R, with boundsy 7, Dencting by v, . the o
poneas of a vecror v defined in 0, we shall introduce the following aotatio

W for ne O mm om0 in 8 nsighbosshood of r(f-|.z!)}.
Vor o closur of W in W) VA=A (aps

can b decsced Frot (1.2, snlogrmanly 1 (1113) s AL (1123 (LI3), {1.34) bld
|.|u aw-,mﬁ-:umw<




T
e WONG); =T
(179 = dual of 1 with (H) = H"*; (6, 8= (i, B),

%) }[ Rt = uih

Obscrve that o e U = ée(P)jév = 0, ¥P in & acighbourhood of I'; in fact,
we have

We dbali gy thot tiv finctiont Wi, £), o, £), @, 1), Wi, ), 3(4) (she Rast two
definied in O, the third and fourth in Re(D, 1), the last in (0, T)) represens
a solupiow of she sptem (1Y), (12, (13), (14, (1.5) aorifying tbe initiol snd
bawdary condicione (1.6), (1.7), (L8}, {1.9) if:

3w d=@, T V1A K)A LD, T3 VHn HY 0, T: (1Y)
(e>0,=>H3
alel7(0, T; K): W& L2 (0, T W=(RN)
B, T; C(RY) YN0, T), ¥0) = 3., ¥(0)=
)y gy P, W, 3 darisfy, a.c.oon (0, T), rhe relerions

Poi d0—eP)_ g
Av i

@2 ’21utrn_mn.+_-|'(a‘+ Vb4 1)+ N
S5 4 B, HOE
Vh()e HO, T3 10 270, T K3

@2 31Kl [ 5@~ D lea— IO
* Vi) E N, T; I L0, T3 K
@y H—vrin.g;

28 ¥ 1)-~7——J“€ D
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J--mahmm:@}@nwammmiﬁmw
on of inequalities (1.1%), (1.27) and of the cosresponding i

:n;d.mu i "n‘l:uj; wut in § 1, the functional classes for
wu,mdmmidn-slyfmnmm&ebrmdmmmn.
(243, (25).

3. - SouE AUNILIARY THEOREMS

/e now prove some suxiliary cxistence and uniqueness theazems which
will be wilized in the proof of the final existence thearern.
Tusonsst 34:  Acwse thet upe VIOK,, j(q.u(l} L. poe
e L~(0, T K;). mnmnmu-@-'_rnu-u(
i) (e 700, T; V1A K LND, T PO n H3(0, T (V7))
(=00 >4}
) w0} satisfies . in (0, T) the ineqroiiey

0 Ju—=hek +j'(w—;+ B AT
0Ty B) < KO VROSHOTL IO T K.

lﬂ{h}h-h&um-\] soder (e sasiptons sl e can s
wence of the in 1 of the operator

S dp b, =m0
Setting 1,(1) = S x,(g,; consider the Facdo-Galerkin system sssocisted

to (A1), conmining the penalizacion term Blu),

B2 (Wt 00— gy FO ) - (Pt +
) o
+ NI g0+ a0,
03w,

whan-hmmmwme’mK, 1. Is the projection of
the subspace spanned by £, .., §, 10d we hve ser

Gt}

i jo <ty
B(ﬂ-l,(l_%) if fol =M,
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The differential system (3.2) obviously admits s unigue localsolution,
¥ fixed 2, satisfying (3.3). Let us now, following a disslcal procedure, prove
some a.prioci estimates on (0, T) for t,, which will caable us to obtain a
global existence and wniquencss theorem for (3.2), (3.3) and then pass to the
limit when # - <o

Multiplying (3.2) by ,4(s) and adding we obusin

00 (st = S0 0 5 oS 4 T ) =0

On the other hand we obeain, bearing in mind that, by the definition of 177,
Yy fu fey e O 0n T,

G5 ) = -(n..'«‘;) #J‘% B ara

.f:‘+ ((g-v]u..n.:l_ﬁ—%i

36 C;V(V'I'.LN.),_—— (w.. r-'ﬁj‘[i...v-u_.«r..
[5G

Since (Blty, t)pe>0, we obiain from (3.4), (35), (3.6)

£

owfht (7 )

D flewi s

ik T i<
<GSO [l s+ Tt ) (D +
MG b ()
Hence, by Geonwall's lermma and the assumptions muade on 1 and f

[eX] [, rirrimsim i <My
where M, does not depend on .

From (3.8) follows that the local solution u,(¢) of (3.2), (3.3) can be extended
1o the whale of (0, 7).

In order to obrin further a prioc estimates, we now multiply (32) by
2,4 and add, obsaining

659 ( %‘\u_—)_i;\'(v‘lq,)-(P\c_T)u,—‘N“F—f*

+ nB(u,), Ju) =0




We have, on the other hand,

L e e L
o (Gt ) [ i
- Gv(v-u.;.vinu,,))'_— [%‘—‘va. vcv-q];
AI?;;(V--.)JI%(Ej‘}'.dn.w'ﬂ)_ﬂf-',"—'(m;u)m

Let s show that in (3:10) all the boundary terms vanish, Observe, in fact,
fiest of all, that since, by the defnition of the gs, g, v|, = 0, it is

(&) Auevym B g vl = T b= 0

On the osher hand, defining in an obvious way in 4 scighbourhond of " the
direction v, we have

342) Lrmy=vite r-ﬁ;lu..§).

Since g€V it is, 13 already poineed our,

fEXE) %o

o & neighboudhood of 1% Hense, by (112), (31

o) L @aie=t,

Tt Bollows then from (3:10) that

o9 () = (5w, ) -
—(K‘,',%w.v(v-u.))“-‘p{%'ﬁ!. 4-..1.«)”.

Bearing in mind thar (since B'50)

(339 — (B, o= (B )yu) >0
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and that, by the assumptions made, € 179, 49 L%+ 0 1% we have then,
by (39, (3-’5)-1.'315):

61 JEmi A el L )k

SCITHOT = (e fren (Ve Pt (e b M-
B IR RO BRSO DRI

with G Independent of n.
Henee, by Gromwall’s lemma and the assumptions mide on § and £,

(318 Tl lemm.r rinio,r v < My
where M, does not depend on n.

It is then possible to seleet from [u.} a subsequence (again denoted by
o) soch that
@49 im0 = ()
in the weak topology of L¥0, T; 13) and the weak® topology of £2(0, T3 V).

Moteaver, by (3.4), (318,

:
020 J'(s(u.m).u.m)-m%
and, consequently,
o

v i [{00), (1) = 0.

Feom (320) it follows immediately, by the definition of B, that w(t)e
e LX0, T; K.

Let aow 4 be an asbiteary function of £0, T; ) and denote by 4, its
peojection on the U, (U, lincar manifold spanned by g, ... £.):
by (32), (3.18) we have

om | frunres] - | fuo o)<

/)
<G+ o (B Bl
1




i

On the ather band, by the definition of 5 and.(3.20)

029 S [atuyudn—[1Bon a0, Im-.»w
A .

and, consequently,

(24

.
(), | <o B0
w . o

<GIE e riami-

Substituting (324) lata (3.22), we cbudin thien, by well known embedding
theorerms,

.
025 | () PO | < G i+
+ GO lomurs <l Dt e v

wheee ¢ is an arbiteacy positive number and x > .
Hence, by (3.25),

3:26) T80l i) <o
s bq:liu that w(fe A0, T (V7). Hence uly) satishies condi-
nmummmm (3.19), (3.26) follows, by well knowa inerpola-

dan.
@ lmu,—u aein Qe

Following now a clissical (se¢, for insmnce [5], ch. 3 and [6]) it
@n be shown, paning o the limic in (32}, thar s(?) ¥hlye

pawing
EHO, T3 VY 3 L7(0, T K3, the inequaliy

y
628 %ium--cmw‘[ (gt NSy

+ Ty <3 lwg— O

Since, ohbviously, Fut = u, (3.28) coincides with (3.1) and the existeace of &
solution is proved.
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“The peoof of the uniqueness of such a solution is straightforward. (see, for
instance, again (5] ch. 3 and [7]) and we shall not sepeat it bere.
Trnomes 32: Aswwe that g€ Ky, g0) € LKO, T3 HY),  TFiere exists the
an wnige fusction o(t) rich fhat
i) gl e 2200, Ti Koy
iiy) o) awisfies a.e, in (0, T) tiv inequlity

—Awheh <o 0L,
{0, T3 LY n L0, T3 K).

BB)  Ha— L0+ 0D+ (7
; Ve

‘Obierve, in fact, that, as Is well koown (see, for insnce, (5], ch. 3) there
exists, Yo >0, an unique solution o,{7) eatisfying i) and the ineguality

830 le)—

O+ .[ W to— D eile b~ 1)+ (9 0~ D i

<hln—fOffe
Since g,(1) € 20, T Ky,

@3 li o) = elf) = L0, 75 )
in the weak topalagy of LMD, T'; HY); letting « -0 in {3.30) it follows then
immediately, by (3.31), thac p(¢#) satisies (3.29),

“The uniquenes of such a solution can be proved dircatly in 2 classical way,
{se, fox instance, [3], ch. 3).

Resanx 1: We recall that the potcotal G, 1) given by (147 11 -
tion in R of the Poisson equatio

@32 (e, ) = — 40 Giglo, 1)

with lomogencous asymptotic boundary conditions on the varisbles x. Beating
in mind the definition of § and Theorem 3.2, it follows thar

AP L2 (0, T W) A (0, T3 IS =
LM, T WPAe(RY), HNQ, T HI RN = (0, T3 TP (R OV

Hence, singe. §{)& Ky aie. in (0, T), we may condude dhiat equition (1.3)
admits an unique solation, in the dassical sense, y(1)& €(0, 7),

Reseanx 2: Setting, in (3.
resp. by (24), 25), (116) i

i S V(¢+V‘J+"«{V!"'E) (@, ¥, @ defined
s obvious that f{1) £ 140, 75 13),
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Consequently, we can spply Theorem 3.1 and abtain by (3.18), (326),
(3 P zm, rimin g v o <6
s @y e & w8 My, My, ¢ (these last three

# depends
a.-ﬁuah;(u lz),{l 14 a0 (1.15) cspecivel), L. on th s fche problem.
From (3.53) il follows also. thax

@) felt) o, ro ey <
and, bearing in mind (3.26),
o) (7! ERG—T

Analogeusly, if in (3.29) we sct g = ¢u, we @n apply Theorem 3.2 snd obiain,
in particular, that

336) e i<
fa0 6y iy depending obviously caly on Uy, gy, &, %75 £ 8, A, M, 0

4, - We now prove th i
‘This will be done by means of the Sd:.d:‘l‘,uhnm Mpniunhorm
Let off), o{1) be 2 conple of functions, with
()& L0, T; WA oir) e LMO, T, 174)

and let 4{r) be defined in accosdance to (1.16).
Consider the following system

(] zlum-nhmm_[(h B A

Ty k) < MO,
B2 e~ e+ [0 7 000, e — Dy <A leu— {0 e
B3 y@=—TEn.1,

(A8 Wix ) -7.%(:_[[:5{'-%4 ¥

“s) 0, 0:—%»:«[»’7%"
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where, h, / arc acbitrary text functions belongiog tespectively to HI(0, T, 190
o F0, T I'}r\l'(l\?‘ K and 14,6170 K,y gpc Ky

e pointed out in the preceding mlum
ofs), (43, (44}, (4.5; carble us 1o cakculate 3(1), i, 1), ¥ix, #); moreove:
VEW + 0(0) € LG, with V()5 B9 ey i ot o o

ring in mind the definition of 4, we can conclude that, siace the assump-
tions. dﬂma nd 3.2 are satisfied, there exists an unique couple of

funetions (g, w) which !mlfy (41), (42) and (3.3), (3.29). Sysiem (A1)
(4.5) thercfore defines n one-to-one tonsformation 5+ (g, ) = S(a, #) from
Ll:o, 7 wm,xmu. T V1% 1o sl
that the proof of the existence of & solution of the problem
mndderedwequ'd:ummwmﬂs:mrmmmjhlsud
point. We therefore now prove the following preliminary theorem.

Tusones 4,85 Tie irasforssation § defined abeve has e follawing poopirties:

) Thure it bn LMD, T3 W0 L0, T, V%) a et == Foy>c B, wbich
s lssed, camrese, wrably compect and sach that SEC E.

) § it weakly cemtinmons,

Let us begin by proviag ). We set, for this,
Ey={a(f)e 140, T; WA A L0, T K,
L= o= L0, T4 0 L0, T3 KoY, [0 mnn,riorm <3 [Ohaner mn <t
where ¢, and ¢ are the constants introduced is § 3 (see (3.34), (3.35)).

Tt s then obvious that the set £ defined in this way is closed, conves, weakly
compact and (bearing in mind the cesuts obtsined in § 3) that SE £,

fove paint i),
be a sequence such that:

{a., 9.} {7, 0}

in the weak topslogy of L0, T3 W) LAD, 73 17%) and set

47 feny il = Ston 0.} .

We it prove tat

“8) A e ]

in the weak topology of 140, T'; W) LH0, T 143) with (s, u) = 5o,

Observe, finst of all, that, since {p,,#,) & &, there exists 2 sol
{es 1) for which (4.7) holds. Moreaver, by the defnition of & and of &




and by (3.34)-(3.36)
(#9)  a.-+d ac. in G and in the wesk topalogy of L0, T3 HND)),
(#10) v ac in © and in the weak topology of Z2(0, T 1),

(A1) wy—-u ae. in , in the strong topology of L3(0, T; 177) and the
weak topology of L0, T; 171}

Let now i diverge in (4.7) (in which we have substituted ' to 4); bearing in
mind (4.9), (4.10), (4.11) and the definition of § we haxc o, u} — Sta, o).
the uniquencss theotems praved in §3, we may condude that the whole
sopese (] by maE Y
The weak continity of § is thercfore proved.
We ean now prove the final existence theorem,

Topomem 42: Mlbmmﬂbﬁahawai
32, the travsformatins Joced point; thersfere Here excisis af loast e sl
m._rym.(wj, (u;,(u) (1A, (1.5) satisfying the inital and bomory
eonditionr (16}(1.9).

mmm«wmmmummmw
poine theorer.
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