WS (198, Vol X1, faie 4, pags. 6576

GRZEGORZ LUKASZEWICZ ()

On an Inequality Associated with Stationary Flows
of Viscous, Incompressible Fluids (*7)
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0, - Ivtnopuerios Ao Maix Resuiny
In this paper we consider a varhcional inequality related 1o the following
boundary-value pioblesy
oy vl VY Sp=f  in D,
0.2) diva= 0 in D,
©3) a=0 on s,
where £ is 3 bounded domain in A% with & smoath boundasy 5, ¥ = cost2> 0.
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Equstions (0.1), (02) describe the ststionary motion of viscous, incom-
pressible fuids, The fanctions #(x) = (i,(x), %(¥), m(x)) a0d p(x) denote the
velucity vectar and pressuse of the fuid, f(x) = (fi(x}, /i) fu(x)) denotes
ﬂ.enm..,g mass forces. By ¥, 4 and div we mean the usual gradient,

divergence openators, so that A, (4 V)# and Vp are vecwors with
wwumn Av.. ,(rta:e)-,. (ale;e.),p #=1,2,3, respectively (repeated Indices
are summed), divu= (ifix;)n,.

Theaugh d\cp:puv:nt:mtmn:{mﬂxmﬂm when the velocity
vector # is subjected to the constraint

04 we K= [re L(D): ()| <G, we. in D)

where €, is an arbitearily fived positive number. In this case, to describe the

finid motion, we replace the above boundary-value problem by 3 variational

ity (incquility (0.6) below).
mhkn-

more mmpﬂu iy Pioblens

tions of given variational problems a5 well as to chanscaerize thase conves
and closed sets K for which the related variational problems Ame solations
with postulated regularity.

Considerations of variational problems for the stationary Navier-Stokes
cquations 45 in this paper sém t0 be new, We pay special artention to for-
mulazing oue results in temms of both functions & end p.

Before stating the resubis we introduce the basic notation and definitions.

— L8(D) = the set of dasses of fanctions f: D — R, L* inegrable in D,
with the norm

\;:...U-ﬂ-]'" (=103, g>1),
o
— W7(D) = closure of £=(D; &), k=1 or 3, in the norm
1 lay={ ZI0FE" (=1, menomnegaiive imege),
— WD) = closure of Cr(D; KY) in W2(D),
= (D) = dual space w0 T(D), Vg+ Ug'=1,
— HY{(D)=cdlosure of C3{D; &% in the norm
.
Ty =( [1?) s
(i)

— V={we CI(D: BY): diva=0},
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iR
— ¥ = closure of ¥ in HD),
— W e dual space 10V, with the usual nonm.

By () and ({, ) we denote the scalar products in L3(D) and H}(D)
sespeatively, ¥(w ¢, #) = ({2 ¥)r #).

WAk sovtmioss or Frosunt (0.1-(0.3). m-y rhusp-iraﬂmm

(n,p) is 2 weak solation of the boundary-value probl -(0.3) 4 we 1V,
pEL‘(.D'p for some g1, {,ﬂx)‘w ©and if ni-: fnllnwm' integral ideatity

©3) w{lw, )+ blw, 4, 4)— (p, diva) = (s 4)
for all functions &€ F(D).

VANATIONAL INEQUALITY ASSOCIATED wimni paomca (0.11-{0.3). We say
that & pair of functions (v, p) satisfics varistional inequality (0.6) below if
#eVn K pe LAD) for mme ¢>1, [plc)sm 0 and I the following in-
tegeal inequaliey holds
o5} i, - i, o} — (o div {w — )} < (4 —w)
foe all functions ye H(D) N K.

aim of this pape Is to prove the following theorems.

Tueorem 011 If fie LMD) dhen there exists u pair of functions (w, )
satisfying variational inequality (0.6).

“Freponess 021 Suppose that (v, p) satishies variational inequality (0.6) and
that s Int K. Then (u §) is a weak solution of the boundary-value problem:
(0.4 (03). Moreover, pe WD), ua WPHD)

Convessely, f (1, ) 1 & weak solution of problem (0.1)-(03) and if we K
then (v, p) satisfies vatiational incquality (0.6).

Tumonrst 0.3: If f'& LYD), g>3 and if the L7 nomm of / is sufficiently
semall then dhere exists a eolution (s, p) of problem (0.1)-{0.3) such that
uelnt K. In this case there exists 2 constant Cy such that

[PE)<Cyr (V)| <G for almost all x in D,

Tauorem 0.4 Suppose that the constant €, in (0.4) is sulficiently small
. (1) 30 e ) iy ol incquality (0.6) with = f,
and f = f, respectively.

At e e i
o7 i=rdiasClh—fl -
In particular, if fy =, and sy, iy € Inc K, then #, = 4, and py = fy-
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To prove the existence of solutions of variational inequality (0.6) we use
the penalty method,

“The plan of the paper is as follows. In Section 1 we consider the penalry
equation. for problem (0.11-(0.3) and then prove Theorem 0.1. In Seccion 2
we prove Theorem 0.2 and 03, 1o prove Theorem 0.3 we linearize problem
(0.13-0.3). iterate Carabriga’s estimates for the Stakes problem several times
and thea ke we of Schauder's principle 1o show the cxistence of 4 solution
o the nonlinear problem. Seerion 3 03 pescrs she gk o Thesds 14

For convenience, we denote differcnt potitive numeric constants by the
same letter €, where it it not confusing.

1. - EXHTENCE vimonEM

Let us consider the folloving problem In 4 asd p:
a1y e Sp [ (TN B) T D,
0z divi om0, in D,
3 W=l oa 5,
(80}, The opecator 4 above i the penalty operuzot in LKD) related to the
comstaaint # & K, mamely

B(E) = o= Pata)

whete Py is.the projection in L(D) on the set K:
L ¥ <Gy
o %} i = 6

[t

Ie is easy 10 sec that |§(s)| < ". b’[bi-‘)-(lﬂ(*)\ uf) and that § is 4 con-
tinuous and monotone operstor

Lmaa 1.1: Suppose dhat fe L'D’) Then there exists 4 solution (s, 5)

of bl (L10%) it 26V pd LD o1 =1 and [p)dv=
Moreover, the following inequalities

D L

(L) [£h<€;

s h) s ge .
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Proor: A priori estimates. We multiply both sides of equation (1.1) by u
and integrate over D ta get

0.6 winli +3 ek n) = (fow),
since By, #, 1) = 0. Noticing that (9(); 4)>0 a0d that HY(D)=» L (D) we
et then

FeR< (AR <1f] <Clflylates
Thus, (1.4) is
We fix now « in the right-hand side of (1.1} and consider the linear problem
—rdy 4 Vpmf o in D,
dive =0 o D
" =0  ond,

-'~== I-f (- ¥y = (0.
known gesult of Cattabriga [2] we have

an [Pl C1 ] trsan-

We shall shaw that | |wsm cin be estimated by the right-hand side of (1.5).
From (1.4) and (1.6) we conclude thar

) Lomm<Sisi
hence
15t ) = (86, 5 1800
that is
a9 HLCTRET

Observe that if a diswibution r belongs w LA(D), Dc B ge (1, B g+
S lg=1 and ge Wi(D), then

LI0) el = sup ()] Iei e <H<sup lac it lie<tls
<sup {Clhy et oo <1}<Cley
since WD) -+ ED) fox ¢'> 3 [3):




From (1.9) and (1,10) we have

i [3em],,
We shall show now that
112y 16=%),

Since HH(D) s LD}, we have

J'\g-lv)..- J'pp,m gc(!y. } U|n-|l gcq\w Vq‘
bene
(0 [ Vyuy <y
On the other hand, by (110} 3
014 10t o < O3] < 0Ty
From (1.4), 4) we ger (1.12).

L
Now, ﬁnSn (1.11), (1.12) and

iflwzan<Cifly

we eonclude (1.5). )

To prove the cxistence of the relevant w znd p we proceed us follows. At B
first we prove the solvability in  of the problem

ool + b m )+ § (B0 = (i) onall ae

The proof is very similst to that for the stadionary Navier-Stokes equations
(see [11]) 50 we omic the devails, The cxistence of 2 suitable p follows then I
dicectly from the main theorem in [2]. Thus, Lemma 1.1 s proved.

Rears: It i ey to show that in face pe Wi(D) and we WHED). It |
seems difficl, however, to get citimates of # and p—in the noms of these !
spaces—uniform with respect fo 4,

Proor on Tuzaness 0.1 We shall prove that the solations (4, ) = (u%, p%)
-(1.3) from Lemma 1.1 converge with 4 (1 to 2 solution (4, ) of
wariational incquality (0.6).

L
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We write (L1-(13) in 8 weak formulation a5 follovs
(118) e ) oo, ) - %(ﬁ(-).-) =, diva) = (/.a)
for all ze HY(D) .

Lot s put 0= g, g @ HYD) 0 K i (119).
Por we K we bave f(p) =0 and by the monownisity of §

100, =) = § (=B =)0,
W we can write
(L16) o+ B ) (2, i 1)< s ).
From (1.4), (1.5) and (1.8) we conclude the existence of 8 subsequence (i, £,
e, such that

(a7 W i

strongly in LX(D) and we.in D,
(L18) foep weaklyin LXD), ge (LB
where we K.

We pit (¢, #) = (¥, £*) In (1.16) and pass to zero with 8. Using (1.17),
(118) and cbserving that

o <lim e, 7).

we get (0.6). The proof of Theotem L1 is complete.

2. - ConpcTions witi Tin EQuATioNs or Moriax

I this Section we consider the relationship between solutions of variation]
inequaliry (0.6) and weak soutions of the boundury-value problem (0.1)-(0.3).
We prove Theorems 0.2 and 0.3,

Puoor ov Troeonras 0.2: Suppose that we Int K and that (s, p) satisfes
vasiational inequlicy (0.6) foz all y € JII(D) 1 K. For asbitrary £¢ C2(D; BY)
there exists ¢, > 0 such thar

g=w—tick,
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provided o] < ry. We put g of the above form into [0.6) o ger
ol &)+ bl . & — (b, div 8 — (£, ) <0

independently of the sign of ¢. Hence

@1 €]+ Bl 2, €) — (py div §) = (/1)

for all ;ec‘(o RY) and, in consequence, for all EEH‘(DJ Thus we have
proved that (x, p) s 4 weak solution of the boundary-value problem (0.1).

{03}, From the resuks concerning the regularity of weak sokitions of problem
1103) [2] we conchude that w= WHD), pe WD

Conversely, suppose that (s, p) satisfies (21) for all § & HA(D) ahd that
ne K. We an put §=u—g, WEH‘(DJnXu (21) o get (0.6) This
completes” the ‘proof of Theorem 0.
oF Tuzones 0.3 Throughout the proof we adapt much of the
argument wsed lately in [12].
Let fe LN(D), g> 3 and let

R (2w 1) 1

={ra VoexDy: _n.(ég s [Fera R s }

whece 7y, £, te some positive constants which will be defined later on.
t fitse we shall prove two

Loysin 2.1: Lot fe LA(D), ¢>3 and #= 4. Then the problem

@2 et Fpf eV in D, 1
@3 diva=0 inD,
@4 w=0 on'f,

‘hag 4 unique solution («, ) such that se Ao wq(uy.”wrn),‘!,(x)us.-_o, 1
Moteover

@5) Il Ipha<CUfL+ BT

Proor: A prioci escintes. Multiplying boih sides of (2.2) by 4 and
integrating over [ we get casily
@8

¥
<l




From (1.4) and (113) we have
IOl i S

By Cattabriga’s esimate for the Stokes problem we per then

- ipu<(S 1) ifleca,

Sinee IPJ(D) <+ LD}, there exists a positive constant r, tuch thac

[rlesry iy

1)l <ol |y < CR

where € docs pot depend on o, Alio | f,<C]f], From Caiabriga’s estic
mate again we have

Iole,t [l < Ul CR<CR, .

From WD) - WD} <~ CAD) ] we conclude the exbstence of a con-
stant r, foc which

@8 My Ry -
In the end
1Vl < Gl [ ], < OB

50 sgain by Cartabrig’s estimate ‘we get (25). Inequilities (26), (27) and
(28) give we A
To prove he el of 4 (i) el 04 we e the same arg-
ment as that described in the proof of Lemns 1.
unnmmwmmom/w,a@:(.,) uherz(., )uds:
unique solution of the boundary-vilue problem (2.2-(24) fram 21
and st By fe) = w

Lisnes 22¢ The map #z A= 4 is continuos widh respect o the
unifarm topology.
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Proos s

s D)= (o ). Because
—vdnh WA Ty =
Flr W+ =

we lave

@3 —eVi—w) o+ (e —r e+ (o =)+ F(p—p) =0.

After maltiplyiog both sides of (2.9) by # — u, and integratiog over D we ger
o —a b —p W =) = 0.

Bat
bl —p, o n—w)| < Cle =]

=y

30 that, in view of (26)

in—s <Gl e

whete € docs aot depend on x and a,.
Thst, if 1, — tlu =0 28 & —= =0 then &, =4 in V. In consequence

(=P T+ (o VHa—p) =0 in LD}, 25w oo

and from (2.9) and Cattabriga's estimates for the Stokes problem we conelude
that #, = in W3(D) and thercfore unifommly in D. Lemma 2.2 is proved.

Now we aze in a position 1o complete the proof of Theorem 0.3 in a few
lincs. To prove the existence n.mlmn(w)mfpmumm;(oa}uln
Theorem 0.3 it sulfices to show tha the opecator db, has 2 fixed The
above considerations imply that $y(A4) c A, that &,(1) is 3 bonndrd subser
of Wi(D), hence 3 relatively compact sulset of C%(D), and that @, is con-
tinuous in the wniform topology on £. From Sehander's prineiple we eoa-
clude the esistence of we.A for which ®(x) =

Feom csimaie (25} 10 the embeddiogs. WD) <= CXD) (i1, 2
9> 3) [3] it follows that there cxists 4 constant €, such that

IKAI<G, W< [Tal<G
for almast all xe 0. If | /], is suffciently small, we cin take Gy €. This
completes the proof of Thearem 0.3
3. - CONFINUOUS DEFENDENCE OX DATA AND UNIQUINESS
In this Section we prove Theorem 0.4,

S‘PPM it (r..p.) (g Pa} ase two solutions. of inequality. (0.6) cor-
daa £, and f, respectively. We write (0.6) for (s, p0), f; and
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(5. $i) fy respectively, take g i(w, + n) and add obrined inequalitics to get
(520) 084 b — 2t )+ Ay Sy — ) <0

Since [9)<C, i= 1,2, then

bty = g = )| <O [ — 1
Ao

W= Foom— )l <CL=fil —mh <
From (3.1) and the above incqualitics we ger
1< Clfi—fh
1F €, Is such that a = §»—CCy> 0 then

Gy — CC) Ly

62 =mh<S 1Ay

This proves the first past of Theorem 0.4.
We proceed now fo the proaf of the second pare. 1 melnek, i=1,2,
then by Theatem 0.2

B e o T PP E
hence
B3 —rdln =)+ V-
=i o D =) — (= Ty =4
It is easy to sce that
(34) Wy <Lh—fil+ Glm—ml+ s =l fly -

Now, by Catiabriga’s estimate for the Siokes problem and inequalities (3.2),
(34) we get (0.7). The proot of Theorem 0.4 is complere.
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