Reodievonl

Acomlosin Kakeale delle Sciee dot det X1
Maeris &5 Matieare
1050 987, Vol X1, e, 6, pag 01130

GRZEGORZ LUKASZEWICZ () - BUI AN TON (*7)

On a Variational Problem Associated
with non-Stationary Flows of Granulated Media (**%)
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Su un problema variazionale assoclato alle correnti non stazionarle
di un mexzo granulaze
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the purpose of this paper o establish the existence of » solution of
& variational problem associated with the non-sutionary fow of granulted

 media.

“The flow of granulated media of constant density i described by the coupled
pambolic-hyperbolic system [1]:
o ;’.:_ il 4 (T TP —iensin) = f
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%)+ Epo =g
“The velacity, angulas velocity of rotation of particles and the pressure ate

denated by #, o and by p respecively. The pasitive constants r, g arc the
the Mignus coeficients. The vector-functions f and g are the
exterior mass forces and the quo{mmemwnaflhﬂmm, the scalar
function F(p) describes the friction between the part
wemwmmxm.m.m(mno:e;u-naam.dum-:g Gx(0.T),
where s bounded open connected subsc of & with a smooth boundary and
0= T'< o,
“The boundary and isitial eonditions we add 10 (0.1)-(0.2) are
©3) Hx =0 o0 2Gx(0,T), #x0)=mly) in G
and
@) ol ) =) in G
The existence of a suong lotal (in time) solution of (0.1-(0.4) was cxab-
lished by Antoncev, Kashykov and Monachov {1], Antoncey ind Leluch [2],
A waak solution of (m}(m) for asbitrary but finite time-interval was shown
y problems were studied by Lukassewics [7] and
b!dn Veiga [11).

In this paper we shall consider 8 varistional problem ssociated with (0.1}-
(04), namely when the angular wlocity w is subjected to the comrsine
m(mqu in 2.

‘The notations, a detiled outline of the paper and the main resalt are given
in Section 1,

1. - Let G be a boanded open wabset of A* with a smwoth boundary #G
a0 let B7(G) be the usual Sabolev space:
W28(G) = {rs D' i LG, s <h)
with the norm
(¥l = { 212l 1g<en.

The completion of C7(G) with sespect to the F*4(G)nam is denoced.
by B30) md its dual s, |v *A(GY with Vg 4 1= 1.
of IFP*A(G) is written as IPH2((
e .r-{. 26 C(G), Toww in G} We write V,H 25 the closure
of 5 in the WH(G) and in the LA(G)-norm respectivcly.
BNG); 0 k21, 1<g< o is the Slobodeckii-space with the nor

ol = ivmwﬂl
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L0, T3 W7(G)) s the set of equivalence classes of functions (-, ) from
(0, 7 to WPa(G) which are Z=integmable over (0, 7). 1tis a reflexive Danach
space with the norm

.
ekt = | [ D et}
4
letc omand l<ge
We sometimes

Wﬂlerhmdnfqrﬂmmhuud.:dmofl
fanction .

In this paper we thall show the existence of i, p, o} such thatt
W v (o V)n 4 Vp—ploxs) =/ in @,
Tas0 inQ, apk)=0 onGX0 T},
e, 0) = mylx) in G,
Jpl,\‘.l)ﬁr-ﬂ for almost all i (0, T)

![’tv-.w-w B [ T e
: ;

% e (P
o<l aein @ S
o all g in £5(0, T3 WG with ' I LS4(2) and such that ) <1
i e of the papee i the following theorem.
i sy o) e i LE(DY % LE(R) < (H 0 BHHGY )
<1 s i G
iy sosismsns smapping of L0, TS NG e LAV, T
WSC)) for sme Oa ],
Suppose forsh het
0 QFUYac.in 2 foral gin L0, T BN with gt i =
e 0.7}
i) here sxisls & poritive, sivietly incréacing, coktinieis funcrion y with
L U e

(i) F is coniwnans frome LFVQO, T3 WAANG)) dnta ZY(0, T3 LAHG)).
Thon thure exicts {u, p, o} v

L200 Ty HY 00 L0, T W M0, T WMGY) L)




bl Sae e s ol Merewe o' is dn L340, T
P-R(G)) wnd o s fr cqn T] w-w(m) with (. 0) = my{x) is G.

T Section 2 we use & discretisstion of the time-variable uand a singular per-
tubation method 1o show the existence of a unique solution of the initial
boundary-value problem:
o, —rdm (e F)e + F(pon, A e B(en) =g in Q,
(13 |otnd=0 on GO 7). wln0) =) in G,
with e = {1 lonftyon
Appropriate uniform estimates. for ww, 1] and. for 1i{oy) aze cxtablished.
hsammlmesmuduﬁlﬁmlnlﬂnqm is used to show the existence
of # solution of the coupled s
ol (e O Ty plmcm) =f,  Tm=0 in 0,
o — s+ - )+ F )+ Bl = g in 2,
A =0 on EGK O T),  wln 0) =), ol 0) = ey
with [ ) =0 for almost all ¢ in (0, 7).

Theotem 1.1 is proved in Scction 4 by letting ¢« 0 in (14},
2 - I this section we study the initial boundary value problem:

oA+ (o Vw  Flpo+ eV flo) =g in O,
@) o =0 on BGK(0,T), o) nd) i 6,
i<t wecin G, with fo) = (I— [wffa.

The fasction (1wl is equal o 0 if jw< 1 and 1o Joff—1if =1,
The main cesalr of the scetion is the following theorem.

Thsniss 210: Lat (n.p) e i (30, T V)m.-m,r H) LR (O, T
WSHG)). Let (g o) and & be as i Theorrmy 1.1, Thon chere wxis o waigwe
w.-u.kL'{g)n.!)(O T w"(l:]), smation sf (,zu Marveser:;

T limiay + ¥ ool e w00 gy < O i)
ai- E(.:.m..:— 1+ !WTM‘J—:!:"W-
indepesdext of ¢, v,

uplwcrheiqsnml:nilh: thenrem, nxmely those of o in 7(0)
and of 1) in u(g, smpesively e dhall e o diecimcn of th e
variable and then multiply the appeoxinuting equativas by noalineir expressians.
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Lt N be-a large positive integer and let = TN,
Ser:

e
£ = s ddr; 0<kaN—1.

Te e e . . dei 4. s | Combder e, saclivns i
bonndary-value problems. in

— i § DDA D) — ohitt 4 BTt
&

S BF(PY et bt = ke i G,
w0 oG, wimmy:  lskeN=1.

Lestua 2.1z Suppose alf sbe dypotbeses of Theorew 2.1 e suiisfed. Thea Hoere
excits for cach &, & wlotion ol = wt of (2.2). Morsorer:

164ty b 19y 0 BTy B )

Filg ) i ax in Thoorems 2.1 and € is independent of ey p by &y p amd v,

Pxgor: 1) Since G is s bounded open subset of 2 with a smoath
it Sol!m from the Sobolev imbedding theorem that WH(G) c L7(C).

) in an algebrm with respect to pointwise moltiplication and 1— o/t
s in nm(n;} I¢ follows feom o result of Stampacchia (10] that (1— oy~
s in IF14(G) and heace f(e) = (1 — jw e iy in WIG).

Let o be the noalinear mapping of WI(G) into ite dual IF-4¥(G) de-
fined by:

{alag)=p 2 1D, Dym; D)+ o(Ves, ¥) + (F(p)or, §) + (o), v)
for g in WIHG).

Since F{p)>0, # is monotone and (f(a), o) > 0. It is not diffcult to
check that it 2 monotone, hemi-contingous operstor taking bounded secs
of WEAE) into bounded sota of P 1AYG), Moreover o is a coercive apec-
ator in WHG).

1t follows from the wandasd of monotone coercive operators in
sellexive M&wtﬁutbﬁenﬂulmlmmnn’n’{&l)fﬂmﬁ.

2) We shall now cstablish the estimates of the lemma. Since W3(G)
o an algebn, ot} 3o s in WHH(E) For esch 1, 2 < oo Mileiplying 22)
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by the nonlincar expression (w2t and iowgrating over G we have:
@) [t un"_*':l (12,030, D ¥ 2081) . (S, ¥t 2t)) 4
+ ATt [0 R) < Fat e s 4
Ia the above csimare we have wsed the facts thar:
Fley=0 and  (plot), fobp-2ut) 0.
A stmightforward calculation yields:
RGE A s E 8

We have:
B DD, Dy ) = X (Dyon Dy 4D
+ f’jz’lgl(:u,h.,,- A (D ) 0.
Similarly:
(¥, Tl 200,
Thesefore (23) becomes:
L P e ] A
Sine {eh oL, 9} are in L3(G) we may let 5+ oo and obtain:

L P ol P o
Therefuze:

@9 b Ly < o lpmgy 'E‘is‘lu-m< Tonglision o Thtlimiey
3) Returning to (2.2). multiplying it by w* and integrating over G we get:
Fon i -+ IS gy 2b Vst gy < L8 i b Lo

+ o o+ Hot B
Tiking ina account (24) we obiain:

@9 b E Sl 55 5

<ol + (mes O (o liey + Thglpeia) T
The lemma s proved.
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L 22¢ Suppare alf the bypasbeses of Theocrm 21 are sussfed. Toon thore
exirts for cach by | <R <N—1, & tolutee k= w* of the eliptic boundary-raloe
prebler

2y | P b B Tt BRI+ b tilot) = bt 0 G
ol W=l oniG, (uf=wylx)in G).

Marcever:
.
10 3 | Vsl < CEGg ) -
C i dudpendent of £, b 7, p amd . The excprersion E(g, o) is as i Theerrse 21
Proor: 1) Let ol Ilhnhwcsln“wﬂkllm‘(nrshm hshszl
With the cstimates of the lemma we get, by tali if necessary -
ot~ w* weakly in IP3(G) and in the weake- mpuhgy of L‘(G') R e

weakly in WHG) as 0.
The cstimates of the Lemma follow from those of Lemma 21,

2) We now show that o is u solution of (2.6). Cleatly
2
# Z (10,52 D,e. D) =0

a8 g0 for all g in WHG)
I scmains only o show that there exists & subsequence (u} such that

Hed) = (I—uifyol—=fot)  wally in LYG) 2 4 —0.
We know thar:
(Aol —plody b —g) =0 for all 'y in WHHG).
On the other hand:
T ey 18 gy 11— [0y < € {3 4 [ gy - b} < M-

Thus, by taking subscquences we have: () - p-uu,mu(q
hies by spplotas the Goble ibedding theoka, s

(0 —fp), o' —g) >0 for all g in LG 0 PING).
Take g = o' + iz with z in L*(G) n W}*(G). Then:
(5 =Pt +.42), 2) <0
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Let 2400 and the hemi-contiouity of f yields

vt —plat) ) =0.

Hence:
Aty =y
The lemma is proved.

Lusnan 2.3 Suppece ald sbe byporleer of Thoorem 2.1 are sarsfc Toon ibere
exitr 2 i v, it L4(0) 1 LM 0, T w’(q).mm i 30, T; P13(G))
aned that:

an {”-_. Yoo b (- T)er+ F(pJos + 1w} =g in &,
o5 ) =0 on FGx0.7), i, 0) = exfs) in 6.

Marsbiver ;.

@l + PP oo <GB 0]
€ b indspesdent of v, 5, p. The expression Elg, o) it as in Theorvm 21,

Proor: 1) Let ) = w be as in Lemma 22 and sec

onl ) st} for At (hp b =01, N—1.
With the estimates of Lemma 2.2 we obtain:

(ot Fotnlanior = @M boniy o wynioy < CE(R ) o
We have:

L R T A L

B G e L e L R L P Ty PR
sinee TPA(G) cZH(G).

Thas,

@n o e O

M(e) b5 independent of
D e e @l by

@y = slinese functions on intervals (b (k+ 1)5), k=0,
continous on (0, 77, such that

Bul0) = o iy, B = oY, o by v

:ﬂ




We have

i a® .
fla'.(i):-uu.—_g_ J 1850 i = b

Therefore by tuking subsequences we obiain: try -~ i weakly in L3(0, T
TFEYC)) and in the weak*-topology of 12(@), dn—w’ weakly in L2(0, T3
WPy
th%z!}(lﬂmdhdmumlngumfwnlmm get by
takitg subsequeiices sy —w in LYQ) and in L2(0, T wmr-(:q) for
D<x<l and 54

2) We aow show that p(~,) - [I—|m,7”') oy o) weakly i LG
With the cstimate on vy, we taking subscquaces Sun) -+ weakly
ia L), Bu:

fmtwv)—ﬁ(l’)\ s — )l >0

for all y in L7(G) A L0, T3 WIHG))
Passing to the limit in the above inequality we get:

Iu—m.-«—-w;n.

Henge, by bemicontinuity of f, f(u) = 7.

3) Let g be in L0, 7 WHHG)) with ¢ in L43(0, T's I 4%(G)) and.

Tot g3(x) = g0, Al () = () for bt (bt iy o= 0,1, Nl
It is keown dist [g, pr, pus 2a) — (2.5 8) in

LHQY LN, T WG M0, T WG LA T3 V7).
We have:

[ a5 T o Ernn

“ .
3ot vt =_‘:‘§“ J' (v.,.t.v,n)amj'(vﬁ..,vww.

Muliplying (26} by ¢, integratiog over G and wking the somaution
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from k=1 ta N1 we ohuain:

I

. -
A LR [ T (3PS T e P

r

=ty

e i)t + BT, Ut L PGP0, 9% +
o TA(A(0, ) — (AT, o)

Let N+ 4 oo with our ypothesis on " and the resalis of the st two

pacts we baves

r ¥ .

[ e oo, S [+ 4l g~

7 i i » 5

_j'(.,-v,,,.u)atj‘u.,m.

Since we C{(D, T; £2()), the initial canditivn is sarished (see the prool
of Theorem 2.1 below for more details). The lemma is proved.

Proor or Tagonsst 21: In view of Lemma 2.3 it remains aaly to show
that 4 [(w) ey =€ where € is a constant independent of £,
It is the crucial estimate of the paper.

1) We have:

—edw = g— (- D)w— Flp)os— e 3p(w) in 2,
@10)  foH=0 aniGx0.T). ofx,0)=m) i G,
Il <1 st in €,

We shall use the Gagliardo-Niseaberg escirmate a8 in [6] tn show that the
sight hand sids of (2:10) is in Z4"(G). The oaly term which is not obvious
it (- Va.

An application of the Halder inequality gives:

! e Fespinade C‘( '_J' |ynﬂa)"(uj.n.\m vu\-)”':
- c[ ;I' x.,-m)"'(!:v«w)"'.
Aeenmding to the Gaglissdo-Nisenbécg estimaie:

Wl < CIBI G VM1, for all & in WIYG).

" S
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Thas,

.J‘\t’-VJmr‘"#<C1V(-.dl{-”uﬁ“’f'd)liﬂ‘nl%(-. Oidtey
Henee:
Ll LR Ll M R L S
Therefore w'— rdo ks in L(G).
It follows from the theary of linear parabolic equations that ' is in L¥{0)

2) With w in Z*(Q) 0 LA, 73 WG, 1 — o isin L2(G) N LA(0, T
O b ke of et (ol e LT
WiHG)). Therefore: flo) = (1— ofy-m is alio in L(G)n
IHG)). Sinee flw) Is In L7(G), it is akio in L(G). We now

. . .
@A) [l )t - (Ve St 4 [(FOpY + G W)en, )

Feh !smm..dr-fa.mn&-

h aod Jed ol = o u.

It and (#31) {1— o} are in £3%(Q) and thus, by Sumpac-

s reeult, EFF')(l—\s--; ] is in L9%0). On the other hand (1— oot~

is in L), hence in - Thercfore (1— - is in (|0, T); I{G))-
Notice that

‘! With e in L(0), o in L(0) it is exty to check that a’w is in L39(2)

ﬁ»‘.ﬂw})ﬂ-,’: Jén.(-—snw—w&ﬂ—é ! £l O oy dvds =

.._l!z;(l-|.-\ly(lg,-ﬂrbdr-,‘|-d[17,.") (A [oft)diedt =

=3 Ji— ot D a0
sinee w(x,0) = oy and logl)] <1, 3
Naw with 2 in L0, T3 1), $r = 0 in G and

I= Jeesrm i & ﬁ]'r.b.-.a—y»mv~.«h

=3 & [nner oty it =3 & (10,0 o) — oy it =
{




D, (1 e e 0.

Fimlly

r

Jewo.saenien E foora—om-ica+
) a

J'h.‘o,h-.n,m— ey} em

D, (1 (815, () ) v =

b
!(o,m,puf i) &ff—;

ﬂé,J’""'"}’

oty e ;Iﬁ J'[.DJ {1— Ryt

Sa:

@i3) J‘(r.-., Vi(u))dia0.
Therefore with (2.11)-(2:13) we obuin:

1) e = LeTunan A e«

The thentem is proved.

3. ~In this section we shall shaw the existence of a salution of the initial

boundazy-valae problem:

on l,.- o+ (o Vha 4 Vp—loxm) = f in G, Ven=0 in Q,
=0 on 2GxO.T), sy =mfx) a6

with the nocmulizing condition
62 o de—0  for almost all ¢ in (0, 7)
and

W'—edo 4 (V) + F(po + ejo) =g in 2,
33 |omn=0 o iGx®T), @) =o@) b6,
lmgla)l <1 ne. in G.

Ao} is the cxpression (1—
The muin sesult of the scction

he following theotem.
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Trmonest 3\x Suppese ail the yparbeser of Thoorew 1.1 are catigfed:  Then
1ibire £ (e, Pry 1) 10
L0, 15 1) 1 LMD, T4 V) L0, T TG e
<L LT W)
soluticn sf (313-(33).
Moreoser:

), Dl v+ Bl s 13+ 19 Lo, iy HP e, maniay <G+
2) lolemarH 10T e r it © ) ey 100 Tyt iy < G+

G, G are independent uf v,
‘We shall use the Schauder fixed point theorem 1o prove the stated result.
Lo 3.1: uf{;,,..)mm Thearim 1.1 and I, &) be i (L0, T3 H) 0
NLHO, TiV) % L*(G), Tom rhwre piss a wcique n,p) in (L7(0, T:H)
P20, TiV)} 5 LVO, T3 WISC)), solution of the ivitial bswndary-salve probiese

Vit VL qlexa)=f, Va0 D,
A=l 6n 2GR T), MO =nl) B G,
o e =0 for bons sl 1 0 ©.7).

4

3:4)

Moreoeer:
1) Wlemgein + #lowrn <G RS %)
2). P lomprimnay < Co ROUS #0) {14 1Bl mey ol Felite.rim +
3) 10 Bt ey = Ca ROS A 1 12 5 PV 5 o}
Cou € nd € are fudependent of , 7. 5.
BOS, ) ir the exprocnion 1+ 1z, Ity + L f e
Puoor: Note that (s, ) =0 for all # in Ff.
The existence of & wnique solution of the lincsr problem (34} is well-
known and it is clear that

a5 Il gem + o rn =G RUL M) -
To estimate p we rewrite (3.4) ax:

w— v - Fp e f o {5 w) — (e V)a
a6 Vom0 in g wxf)=0 oniCx@.T),
%, 0) = iglx) in G, J’,,(x‘,,.y_n,
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From & zesult of Selonnikov [9] we get:
B luga, v = C (Ilammoy o HHE* W)l | 8l Wi, pumds

w0 account the Gagliardo-Nitenberg estimate as in the proof of
we obein:

Taking
“Theorem 2.1

1 Lusse, oy <C (Mol oy + | Toren + 10]menline e+

With the estimates (3.5) for  we get the desired result, It is now trivial
10, show that [,z sy 1588 stated in the lemma.
Consider the initial boundsry-value problem:
o} —edei+ (- Vyon 5 FlPan+ e By =g in @,
@n onf ) =0 oo iCKO.T)y o) = agf) .
) <1 s in G

where p s given by Lemma 3.1
If follows from Theorem 2.1 thar these exists o unique @ in L=(G)N
DA, T 3(G)), solution of (3.7). Since
(e T, ) = — (-, w) for all g in WHH(G)
we get, by taking into sceount the estimates’ of Theorem 217
B8 ey losnge ey <8 a1+ #lumia, v+ PP L, rorsivni)} <
Gl lndgp:mkvll of e, 5, po
We now praceed to the proof of Theorem 3. o from Theorem 2.1,

Lemma 3.1 that for any given s, &) in {:.-(u £ H)nL‘(D T3 Vi< £*(0)
thes cxies 1 ks (o, o scltion of (34) and ()

[r: Erlimia, puin + 1Pl eom S G RO 8 10 g, sy <
<G RUm) (L4 6 B ) + G RU )}
where €, 3, Gy, R and E ace ay in Theotem 2.1 and Lemma 3.1,
Ser:

By (82 By <6, 00 16 Lo,y 6o )
[+ G RO m) + (G R, MM+ 0B 0 + G R, ) -

B =By Bo LD, T3 Y L0, T WP~ 44(G))
where 0 <z<1.
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L {r O] be i B Jt 4 bl the igpin of 2 fow LA T3 )X
LA, T W), <z <1, defined byt

09

where i, w} fs the solotion of (34} and (37).

Resuans: 1) Suietly wﬁ..x A(.. =
the linearized Navi

Al @) = (1, w}

ace given
ndmmnedmly;hs-i:kmwn

2) o define A in terms of s, w, ¢} and in ordet 10 apply the Schavder
fixed paint theosens, we would have o use:

= {4,;,p}, However once 7, &
equations (34) are solved in wand p

Alp, @, 4) = (w0 )

where in (3.7), p is replaced by g. Then A maps B B, into L2(0, T; H)x
SCLM(D, T; P3Gy ) P-4 (G) with

By {g: g e L0, T WIAHG)), | glusgy, rowmaman <
<CaR(f w1+ By o) + G RO
All the following argaments are valid in that case.

Proos or Tugowss 31t 1) B is 4 closed bounded conver sbset of
L0, T3 H) 3 L¥(0, T; W *4(G)) for 0 <z a1, We have:
WA(G) e WG LAG) & WGy c WG

The ioeion anpping of F7(0) i L) i compest e beses st of

IO ok (PG m W) s s e
application of Aubin's theorem shows that B is o compact subset of

0T L, T e

2) From the estimates of Theorem 2.1 snd of Lemma 3.4 we gee:

it g st

’—

A(B)c B
H ‘We now show that .4 is continsous, Suppose that {r,, }uinsmd
iv..ﬁ)—-(r,u'i in LM0, T; H)XL“(D T W""“(ﬂ)) We have to show

Alpy. @) = (8. o) = Alp, ) = [ )

] in LA, T Hy< £9(0, T3 F=25(Gy),
From the estimates of Theorem 2.1 and of Lemma 3.1 we get:

L2 Jusors oo + %0 s mivan < K-
K independent of r, w. Moreover {a,, 0,} is in B
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2 sabucquence ('I.-.D.. g} = (o py) weakly in
0, Tr’)xw(ﬂ ) I'W(G))Avmr IFAG)), Moreover, fom the
estimates of Lemma 3.1 and from (3.8) we have, b, eaking subscquences:
(ol o) =o', oo} weakly in L8O, T, PGy
and o, — 0 in the weak®-topology of £2(().
Applying Aubin’s theorem, we gee:
o = fwel i LN, T H)x (L0, T: P *54G)) n ENG))

for D <a<t, SH<r.
now show that A(s, &) = {i o).
With our hypothescs on F: F(g,)ora—=F(p)u in the distribution semsc.
On the other hand:
TF(p ) fumay<K -
Hence:
FpJor—F(p)m  weakly in LA(G).

3o — ), wu— )0

fot all  in £7(0). Using the lemi-continuity of § and the fict that w, —»m
in LM(Q) with iw,) = 4 weakly in L), we get: fuw,} — f{er) weakly in
U(_Q)hg‘hhng:uh:q‘\nm It is now casy to check that indeed there exdsts
& subsequence such that

Al B3 = o = ] = Al 6«

in L0, T H)= A0, T WP"9(G)).

Since the peoblem (3.4) and {46) is wniquely solvable, for each (v, @) in 2
there is @ wnique (v, e in & with A(e, @) = (s, ). Thus the scquence {x,, u,},
and ot o wbaequctces conrcges o () 1 e bors

T follows from the Schaudr fixed point theorem that there exists (s, )
in B such thatt

Al ) = o},
The theotem is peoved.
4.~ We shall now prove the main sesult of the paper.

Pacor or Theonem 111 1) Let {w, o, s} be the soution of (113-(13)
given by Theorem 3.1, From the estimates of the theorem we obiain by taking
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subsequences: (s, fuy 4} = 1, oo} weakly in
LHO, TV L0, T3 WISG) 5 LI, T, W 384(GY)
Alsas fuy ) =} I8 the werkecopology of L7, T3 H)L°(@) wikh
wy —ea’ weakly in LSO, T B )8
An application of Aubin't theotem gives:
{rpen} = o) 0 B0, TS H) 2 A0, T3 W4S4G))

for Oaxl and 1es oo
Funhecmore from Theorem 31 we have:

Bl = (ol on-+0 in 13-
1t follows from the manotonicity and the hemi-continuity of f that f(m)= 0
i o, O] <1 ae. o Q.
2) Let g be a3 in the theorem and comsider the expression
r i
D) X[ = ) -4 (For, Tl — ) + Gt Vo = )+

F (Flpdon— g9 — ).
We also have:

A7) (ol — ) 0 (Fores Flor— oma)) -+ G Vw4 — o) 4
4 (1 Bom) -+ F(pu, g — ) = (£ 5 — o)
With o, in L7(0) 0 LX0, T; LYG)) and o] in LMD, T; D"(G}). o s
in ([0, T]: L*G)). We may scwrite (4.1) by taking into account (4.
RS T SR 0 R
S — el D — 1 o0) — ol = — 1900 — ey
since fy) =
We note M ({o Wiy in) = 0 and
(O Ty ) = = (o Vg o).
Thus from (4,1)-(42) we gets
W) — ) — < X —

'
[ )b (e, i ) G T ) o (P QYo = et
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Lex ¢—0 and with oue hypothésts-on ' we obiaia:
WS — O = onllem+ hws;ﬂm.lm.,m,)ﬂ.,
~f{(7‘-ﬁ~-")f (¥ 0) + (Flp)ons ) — (g g — )} d .
3\ hiaine i3 o tat
!‘(F@}.J..,m@._fj(m)m.n;a

m Theorem 2.1 we know thit (e, o) Is in L7(@)x L0} and so
(a,'m;u.n belongs to La(0),
¥ be in WIG), muliiplying (3.3) by ron snd integrati & we get:

(—‘w-w, ) (oo, ) — (Ve e FH) — 2 Van, #¥0as)
Ny o) + 4 3 oo mrie
4

Hence:

|2
(£ [t o) | <
|(au.‘>JJ

+ el Vonldvor + LF(po} wmar] vl iy + e[ o) e oo e +
+lendbimbnds i)
‘With the ertimates of Theorem 2.1, we obtain:

|N "‘""I.-a.‘mm.,,“"'

A independent of r. Since Lol <y, &t Bow follows from Aubin's
theorem that by taking subsequences:

(L8l ooy ¢ e | Vo +

jenft=+4 in the weak"-topology of L*(g)

and in £2(0, T W"M@)fm any O<z< 1 and 1<r< oo With our hy-
patheses on £, we have.

) [ = m et
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4) Since F(p)0, i Is casy to check thar
TN oy CLECA) om0 < M«

M independent of v Hence by uking subsequences we pet: (F(p)}V% —
= (F(p)}®ar weakly in LX), Moreaver:

@1 TP o= F(P P des imiaf (o b
N <! ihxulnfj-f‘(_n)im,,"&i.' 4
From (46)-(4.7) we have: 5
“8) ! Fu)m.ﬂa«!rmuw = lim al (FCpo) e

It follows then from (4.5) and (48) that:

.
— U=l [ (F(pon, )<
i

[N S S P
!
Sa:

[l'sg =)+ (Vo p—a) + (Fiphos, p— )= (g y — ) e
:

>—H(O — o ling
Al T 0 Wi eI
s proved.
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