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0 « InvnopucTion

ol sequences (with non-trivial nmw.we). # e Sberd comples, e
xact couple [Ms), the syviem of selative homolagies [E, Del.
 Sepenly (e, see [EM)) dhse properie have been e i the -
abelian categori

.mummurmmp«ah mappings into properties of objecs (the

peerping cyider» conaruat) s profcive s indusiv lis 10 e
 muluie the hypotheses of eovergence.

* W siudy here the  convergences of subquoticats i the mote general
St o st g i the st of Pogpe Michell () e slows
0. tho universal model of the above (exace) theories, develapped by the

oo abelse, exact cscgoey it in seliial and dissilanive (.s: s laries of sab
Mw-}uhﬁnﬁnr-wnﬂmmﬁaummw s proved in [G7),
Al the sboee el

»ai

[T
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author in (G8, G9] and formalizing the Zeeman diageam |Ze, HW)] in the
case of the filiered complex. The lack of additivity preveats the use of such
constructions as the mapping cylindce; on the other hand, it seerns to lead
1o the cssential core of the question.

The appropriate netion of convergenice appears here 1o consist of wmibar
and fnderseetisn. of reiquadients, with suitable conditions of regulasity: e, the
ennvergence theorem for the speeiral scquence of & filiesed complex A, (54)

proves. that, under suitable hypotheses on the fltration
a ne.
@

(s regular s, telesenpic union of subquotients of A,) ;

these conditions of regulaity allow in parsicular t_ obuin « mapping the-
otems », ic. to tmnsfer the isomorphism property for the « induced mor-
phisme s, from & family of subquotients w0 its union or intceseetion

0.2, Now, lei us make precise the notion of subquotient and their ordes,
Let A be an object of the exact category E and Suby (4) its modular lattice
of subsbjects.

A subquoticat HjK of A is determined by two subobjects H, K with
H = K, or—diagnmmatically—by 2 bicartesian square:

HE+*—H
0] ! -

“Thus 2 subquotient of A may be more effectively defined a5 a subob-
ject 1 HIK - A in the involutive caregory A = Rel E of selations over B
{18 =, whers — defew thc lavicton of £ Acceedlogly e mb-
quosicnts of A are provided with a canonical order 1< ', characterized
the following terms: HIK < H'IK" i H< H and K> K in the lammlf
subobjects of A in E. The wnions (o intersections) we are speaking of
tonsrn 1his ordee, and ace geneeally esleulsted by usions of numerators and
intessections of denominawes (or dually).

Equivalently, bur avoiding any problem of choice of represcntants, & sub-
quotient of A it 4 projection 02 A+ A, Le. 8 symmerrical 1 nt endo-
relstion of A (o= & = )t

@ b= 55 (A e I e H]K o Hor A
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the corresponding. samesical srder ¢ <" on the set Prj () of projections of A
is now chancterized as: ¢ = ' (or equivalently: ¢ m £7).

We shall use both these deseriptions of suquotients, the later (projections
in A) being more suitable for theorical eonsideations, the former (subabjecrs
in A) being more adapeed for applications in homlogical algebrs.

0.3. Thus we introduce in ch. | unions and intersections of projections.
in general involutive categosies, together with three conditions of cegulasisy
Pregalarity, fc. consistency with the transier mappings of projections; [regu-
larity, i.c. consistency with the selation of domination ¢Qle' (1.3); PD-regu

nmbmmg m: nbow and being (probubly) the « good » natlon.
Chapes 2 secalls the efnition of RE<aegory (lightly exending the

-‘megwu of uhmru over ¢xact categaries) snd characterizes in this case the

previous notions, in partieular for decreasing Altering intersections (27), in-
creasing flering unions (2.5: and telescupic unions (29).

In ch. 3 we oonsider relations induced on projections and the corre-
sponding mapping ks [, Someeka s Sl it T i
fections: in particola for decreasing filtcring interscetions (3.6), increasing
filtering unions (3.5) and telescopic wnions or differecer (37). Chapter 4 inves-
tigates 3 condition of regularity for induction, rypically occurring in homo-
logical thearics; which makes it to sgree with composition.

Chigns upglis et ok, il the ks s S
tesed desesibed above and the corresponding mapping theorem
(5:3), Analogous result for the systcm of relative o v S
in [G9]

Il-“ 5 the .ppmau (ch. 6] concerns distributive Ri-catcgories (s
the classifying Rb-caicgories of the above mentioned theories), P44
some aspects of the regularity conditions in this case.

1. - Usions anp oF w R

Yo chis chaptes 4 il alvags b sy with o sl (AT cxsgory
vol

nmnnfaml iffit bas a left invesse:
dually for epics; it I8 aa isomtorphien i da =1 a0d ad = 1,
The considecations of 0.2 should be kept in mind, to substantiate the fol-
Towing arguments.

1L Projetions: Fox every objeet A we write. Prj, () or ( ) the

set of prajectioms of A, i.e. symmetrical idempotent endomorphitms 2 A — A
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(¢ = &= or), equipped with the canonical (pa
U} (i o= e, 0 fof).

whose greatest element is
It is well known :hu Wi¢ product of two peojections #, [ s idemgo-

wene, geactally not symmerrical, We write « 1 sbe. commutativiy relasion

in Prj(A):

@ Af F ff=f  (fq s a projeation), 1

notice that if el f then of = fr is the intessection of ¢ 10d f in Pr ().
Moreover we consider in Pri () the reflexive selation of dumination ¢C1f
and the associated symmetrical relation ¢ /2

1) onder <2

o<t i e

@ WF el e i e=eand f=fT ),

ehich genenly re not teansitive, together with the idempotent binary opers-
tion &3

@
which generally is neither asociative aor commutative, Clearly:

B e e fke,
® O iEe=ck].
@ Nf S (e, B[S 8 f = fle,
@ o</ lmplies (Cf,
O i e</Qe then o=/,
(10) &) @&,

1.2, Fransfer mappivgss For every morphise a: 4 = A" in A we have
the asociated sranzfir mappings of projections:
[0} art Pei(A) =Pri(A), o) —add,
@ ar: Pej (A7) =P {A) ar(ey=ora,

16 A= Rl B, UKIC 1K) s war he commsicl cammpimdence i HIK K
HEIK" fnducd by 1,) b i, el means s she ais 8 a0 0127325, Thos sl
a1 wel .t pation f, e deerbed by e s oo in Sab () fr 23, They st somiire

ot every bt A) U the operstion & In ahays asmciatve, i the caegeey & o dinbusive
e 6.1




w0 associated projections
(o) = oL} o dnm P (),
1) = a1.) = e @ Prj (),
ely simulasing the coimage and the image of n. Clearly #” = &, and
procedire A+ Prj (A}, - (ay, %) &0 be formalized 35 & fancto
from A into a suimble (G8). §74).
Remark that, for ¢, /€ P (4):
ok fm e ) ).

an ideal of 4.
pasallel projection,
by a null one, is null. Transfer map-

peojitions,
Mmﬂnf!!h(ﬁ)mmﬂmkwmmj(n
cqpivalently /81 s

e Condar) ln e BRI
‘W 'f;!N(A). P ("") T‘ﬂﬂ
a} i (CLf< g then o,
B if < f Qg then fCg,
) i < f then: aple)<an([), plee<ghe f, ke g A fbe g,
‘. ) If )< and 1<, then < (e},
) ) (a0 and ety

) if ) Oe then arasle)lan(e)
Proor:

a morphism a3 A - A"

) e (ol e ) e of e ee) = ofe e ofe =
B ter = (N)20f0) = e(fef)e = ofe =
9 Tioes =t o
the secon property follows from the fine (by 125): 4 o the third:
] (o)) o) = emvgegs = nee.
) £ (e} = abayle)< o), by o).
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) I eQarfe), then eClar(l) = da, by ) and ¢); mareover a{e)dle

) ¢ () = (oo ¢ ) = (e(0'0) ) = o aP(Y) ) = e )
Conversely, when the right-hand property of ) halds:
eaR(eya e a)e = (¢2a-e)(0e w)(e-n-€) = b (Cae) o) e =
= el (aaT)ire = (o) o ) 2
1) (@ e an(eN) o 1)) = (d-e-da)de a){ta-e-da) =
= o) ¢ (ank)n = B{asd)n = o fe) .

1.5, Derparion: Lee res U, (f€7) in the (canonically) ordered set
Prj (A). We say that this union is:
a) Porglar i, for each morphism  with domain 4, 1) = U asle)
in P (Coda);
) Deregalar if, for each [ ¢ Prj (A), the condition ¢, f (Vie £) implics
eaf;
¢} PD-rygler if, for each morphism a with domain A, a(e) =L a(e)
is 3 Peregular union in Prj (Cod ). g
Aralogowsly we define F, Dr, PDegular intenections ¢= (16, (ie)
in Prj (A); eg.:
¥) the intessection ¢ = ¢, Is Derrguler 1f, for each fePri(A), the
condition {Cle, (¥iel) implies (s,
wie shall see in 1.7 thae Pregular iterscetions are always Doreg-
ular, and coineide with the PD-regular ones. This does not hold for nnlnm;
there are cases which are P- and D-regulas, but oot PD-regulas (2.11),
spplications to the convergence of speciral sequences {ch. 5 and [G9]) -nu
show that the good notion is the strongest one: PD-regularity.
1.6. Elenentary properties’

4) PD-egolasity implies D- and Peregularity, for unions a5 well as
for intecsections.

#) Associativity and esmmatativity hold for all these kinds of unions
and intersections, as well as the cuncellability of repested elements.

) M ém e is D- oc P or PD-segulac and o< [, for every i,
then ¢ = U/, is again 50; dually for intersections (fo the proof, use 1.4 2), 8)).
d) 1 ¢ = maxe, then ¢ = | ¢, is PDoregolar; duslly for intersections,

i

Rp—
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4 The ransfer mappings preseeve P- and PD-regulic unions or inter-
sections.

£) We=Ue is 3 Deregular union and s, is null for cach i j, then
e, (usc 119 and the face that ¢, e, for all 73,

Prorosrrion: 1F £y e, @ B (A) (161 140 (), ¢ 15 the Pregola
Dt A A b

o) SaeemNf&ny  for every fubr(A).

this case, i £ comauutes with all r, it also commates with
Posqlar lnericsons. e Ao’ Dhitgolde, aod coincde wich the BD-
egular oncs.

Baoor: The neeessity o\'(l) s obvious, since f& = fofs). Conversely,
- assume (1) and uke ac A(A, A }'lnl.,a=nr,(nk:]l—l.mﬂj) More-
over < ¢, implies -,c.)-c-.(-). if e'< mafe) for all iz

@ )< atale) = @)k, (faD),
@ W) (Fa)8 ¢ = atirpls) .

Now, a5 ¢'<apl(s)<up{l) = ad for mme ic! (1 408), by 144) applicd
o d it followss

@ o aputay e iyl

Assume now that £= (¢, is Pregular in Prj (A). 1f f commutes with
Call g, then (117) f& r=<e, (inl) audfa;c—nfs«.,<nc,-: ie. f com-
. mutes with +. In order 1o prove that ¢ = e, s also Doregolar, uke fQLe,
(i€ d); then f= f& s, and; f8co =) f8e e, =[\f=f, Le. fUe, Finally, since
iniersections are preserved by m‘:n.ppm;.nm),nm“
*Dsegular intersestions coi

18, Commatiog projictions: In ordec w give a similar characterizstion for
P and PD-regular vrions we aeed some considerations on the commutativity
aclation « 1 of projections (1.1).

B0 i o of . pmpe i . ) W TR b i I
every mrrpbicm 4 of damain A & ek (401 = 1), which it euivalen m sking thas eveey.
.n-wa—l-.u-:-ﬁ.d«.u- b ). Tostmad e r-—c-..u-mrl.

A s, which b
Ihmhndhmﬂut-mw- o e e o o
e mferscibons o
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Comsider on 4 the following cquivalent propertics. concerning. pasallel
projections (always satisfied for categoeles of relations over cxaer cego-
des: 23):
(1) i g<rand g=<f, then elf,
(2) el iff there i some projection ¢ such that g< ¢.and < f,
(3) if g and g<; then elf,

Actually: (1) = (2§25 o1f take §= cde f = of = o (2) = ()1 if olg
me then g = gz precedes both ¢ and </, besce o1t (3) = (1)
mh 2 category A also verifies (use 1.46)):
) iFelf then w{e)lap( 1), (for ¢, f& Prj (Dom )},
(S)  a fnite fmily of pasallel projections (1) bas intersection iff these pro-
jections commute , then the intersection is the peoduct and is Poregular .
19, Paoposrmios: Aswume that the RF-category A asisfics the equimlent
conditions 1.8.1-3 and let ¢, r, € Prj (A) (F6 J; £ % @) Then:
&) wis the Prregular uanion of ) ifffox every / Vej (A), f& o= ) f& 1,
b) ¢ is'the PDregular usion of (&) iff fur evesy fePri(A), f& e =
=Uf& o, is Deregolar.
Moteover, #f ¢= s, (simple union) and there is some je / such thae
Sley, then fle
Paoars
#) The beginning of the proof i similir t the one of L7: we just
severse all =, ] antil we reach 1.3, which becomes:

)y Ay e

Now ¢ > 0,() and a,(t) < A1) = o for some f€ £; by LAZ, ¢ commutes
with e 4nd:

@ ¢ o/ (ai) ' o= () - () == 0,07() = 0 pa"up(e) = ap(e) .
#) Assume that the righthind condition holds (its necessity i trivial)

and take some mohisn @ & A(A, A'); then 0,0 = Uan(e) by 4, and we

have to prove this union is Dorcgular. Let an(e)Ce in Prj (A), for cach

FE 1. Then (14.0):

@ (00)& 0= afa () Aurle) (e,
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ad, by dhe hypothesis of Deregularity wie.t, da:
@ (@n)d e atie)
By 14d):
@) asle) = npaepls) = ar((@0)8 ) Q¥
The last zemack follows at once from 1.8.3: f 14, and 4=tr.
110, A comterexample: 1o ordes to buikd o semigroup 5, with regulac
ivolution, which does not satisfy the conditions 1813, just consider the

. semigeoup with regular involution gencrated by three projections f, f. g under
 the conditions g, g=fi The multipliotion wble af 5 is the following:

(0]

FEedasnd|s
B R
RaZarnalx

B S B
[Ba@arsals
Ragam®ala

ratantn

while the involution is obvivus: ()" = fr
QT iy k| o seke o oy f (0 e
; gqm)wumannmmlu(um:muanmmum)

that 4 s idempotent,

R

2. Usiows avp o e
o, ntodore n [G6], are 8 sligh exenson of th cxeporkes

RE-ategoti

of relatioms over cxact categaries (see also 3.1}, We reeall here the defini-
tion and some propertics, and suudy the unios and intersections of thelr peo-
ectians. -

ROstriu: An RO-cusgory 4 = (4.~ <) it cxegary 4 pro-
w-u‘w.n.mynnq.am.um.w <

are
(l.‘ umm.ndmxmm)umﬂu_ﬂe-mmm-nrm
damdant‘hlsnx./l«-zl wesifying w1 is called n resriciion of A,
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Every testriction is'a projection; two projections x, ' alwiys commute and:
m

e

L

Analogously fox wrestriclivws, ie. endomotphisms £: A — A such that
251 except that, if g, ¢ are s0:

@
We write Rst [A) and Ces (A) the subsets of Prj (1) of restrictions and
mr-mcm

=7 W >y

proper  (verifying fuz»1 and siv<1) from a subccgory,
P-pa if w and # are so, it is easy tn check that w< r implies ¥ = » ([G6], §1.7).
22 REatgecise: An RE-caiegory A Is & RO-cacgory satisfying:

(REA) for every r6 Prj (4) ll\m exists a unique restriction mte) such
taat nfe) = ¢ and m(e) < (the mmersir of ¢), together with 3 unique core-
steiction d'(s) such that d¥(e) > ¢ a4 de(e)ze (the "demominator of &) (9:

(RE2) for eveey object A these is 4 aull restriction w, and a nall core-
striction {1, {equl!.mrh the ordered sex (A(A, A),<) Nk st '
and maximum £, ().

'nm ((Gs] §4.7) these is 2 canonical bijection ("-dusity) berween restric-
tions and corestrictions, which preserves < and severses <1

o
@ CotA=Rat(d),  Teg=niud.

Ret(A)=Crs (), xoex= d(x ),

and allows to define the dossminsisr (%) of & projection ¢ of A: ]

@ (g} = (@)} = n(d"(s) wd () = Alrw e Rer () .

morphism a: A —= A' determines. four restrictions, the dsfiition,
mmm il s o eoerepoaing o . al sebobits

0 1.4 = Rel E b a cagory of slabions aed ¢ i naeciaied w the sobsganiient HTK of A

M (A AY, A A A A g G O AN
umid +0e 4 A= (At Ere )
s e ok e e o e e

<, eharmcitiond by i 1. ool w0 quosiun, The *aliy describel bekne coers
wm|&wﬂ\z’m*‘kﬂﬂp-‘w‘il




s
when A it & category of relations}:

@ defan(i),  anna=diis) in Rst(d),
® valo=n(ea), indn=dd) i Rat(A),

hich charciz i the wnal way monos, <ps sos and peoper morpime.
Tn this chapeer, from now on, A will sisays be av RE-cstegory.

2.3, Galewtur of projections: The following resulss hold for v, f& Prj (A)
(IG6}, §5 44, 69):

) </ (etnf and dee<d") i (necnf snd desdf),
@ ef il (ne<inf and d'edf) i (ne<nf and de<df) .
) Rat(4) and G (4) are modulae lasices with 0 and 1,
@ nlek ) = nen (i Ud) = (nennf) Ude,

a8 f) e O (df L ) e ) e,

oA il (e df and nf > di),

U (e e and de i),

@ vs ool i e,

_lap-dbnh.r b,(e:. every RE-category satisics the conditions 1,813,
m@mmdmm(mr.mﬂmw)

388

© (P (A), <) = Raty (A) = (v, )@ Rt (A Ree (e} o s (e, de),
whase reciprocal isomorphism will be written:
0 [ T e 1

Eovery morphism w: A - A' of A defines increasing tressfer mappings for
A1) ax Retgd) =Ret(A),  wals) = nfartad) = nfand),
(12)  o% Rat(dA)=Rur(d),  anx)=n(erec))=n@xa),
satisfying the obvious functoriality conditions. and:
(13) axfxip) = o), (x> in Retge).
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2.4, Provosrrion (Unises asd interscions i RE-atgories): Let v, be prs-
Jections of A in the RE-catcgory A (ie J).
) The non-empey Gunily (1) has 4 (siomple) union in Prj (A) iff the
it (ne,), (de)) have sespeetively union, and inersection in Rst (A); in
such 1 aasex 1, = (U nef{) de).

¥ ‘The family (r) has & (simple) intersection in Prj (A) B the families
(me), (de,) have respectively intersection and union in Rst {4) and morcover
e, U de; in such 3 cases (1¢, = (] ne) /(U de).

Paoor:

4) Fix some e £ (Fa0). I the Families (me,); (d) have respectively
umion and ingersecsion in Rat (). then (L meg > ne, - de, > (7] dey), andd it
is cany to see that the projection (U e /(1] ) i3 the union of () in Pr(.4)
(ose 23.1). Conversely let ¢ = xiy=]e,t then x = me>= e, and 3 —do < d,
for cach i; moreaver If == e, and y< ds, in Rst(A), for every i, then
X5 > dey 2=y ind we can consider = oy € Prj (A); wivially, ¢ -,
for all 4, hence ¢, ie. '3 x and 3'< 3

4) The right-hand condition is clearly sufficient. Conversely, lec ¢ =
= ¥l = (e, then x < e, and > de, for each i, Assume that x'< e, and
¥ = de in Rt (A), for all /i as 5 UN > x =i de ey 3N ¥, we may

consider the projection [ m (v W ¥')/(y 1 y) < o, (F€ 1): it follows that f< e,
ie U< and ¥y, be ¥ < and ¥

2.5. Puovestrion (Unisas and issersections of resteicrions):  Let & Prj (A)
and x ;€ Rot (), for i/, Then.
() #=Us, in Pej (4) if ¢€Ret () ind ¢ = U, in Rst (),
@) i s U, in Rat (A), the union is Deregular in Prj () if for every
yeRst(A), rA %, e for all § implics 3oy = o,
Fuethez, the Follswing canditions are equivalent:
) ¢ = U, is Pescgulae in Prj (),
) = U, is PD-scgular in Prj (A),
x= U, is a ditributive axiew in the fartice Rat (A) (ie. ¥y =
= U“ar-ﬁr)- for ill)EMM)L
) (8= UaaG) in Ret (A1), for every w e A(A, A7,
A dual resolt holds for intersection of restricrioss. Distributive unions

and intessections of restrictions are preserved by the transfcr mappigs 4,
as well as by — vy and Uy (y 6 Rat (4)).
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Proow: Property (1) follows from 24u), with ¢ = s, = /3 (2) is also
trivial, sinte x €.y i ¥~ and xn,-... @37,

@) =y I %= Ui (%) = U--(ar) in Pri(A). By
2312 and 24 a.(:r} n(a..m) Un(ﬂp{x)) Ut}

4) = B) Take n morphism 41 A -~ A's then, by 24, «.m-u..w
in Prj(A):

@) nae(x) = aalo) = Lmaf) = Unesloc)

@ da(x) = an(r) = [ auler) = ) darfoc) -

In onde to prove that the previous union is D-rogular in Prj (A7), sssume
shat () 0L/ = 1y in P () (U ) by the charscieripaion of domins-
tion in 237 this
) mtE) < Unl), s>y nmi)Ged),
©)  anfs) = Unsfe) < ¥ Uang(o)

@) Ol = yhan(ed = U ppaadsed = U (10 maf)) < wales) o
£o that, again by 2.3.7, a.(r) <L /.
) = 4) Obvious.
2 d) = ¢) For each yeRst (), ya(x) s n(pg) = a3 = x 0 3: analogously
5
= u) We use the duraceriztion 19 of Prcgulae uniom (the con-
dition 18,1 holds, a8 remacked in 2.3); L(fsP:i(Aj,bf!.W
®  n) = nfoieud) wnfoUsud) =
=/ n (e dn) =Unifpf).
@) diff)=df o (wnnf) =df, difx,f)=dfVtonnf)=df,
5o that, by 240 fl s U f8 s,
uivalent.

Now a)-d) are eq r'mlhlmmuuwe.mtlu(‘ < dmlity,
s o i Gl o 3 Mot 4
The list remack Fllows from che .-s.m..m;ni-nwnh

2.6, Tuponess (Poregiar muivnr and wiersecrions): Lex 1,2 Poj (A), ic Fo 0.

) The family (6) bas & Pregular union iF (me) and (db,) bave ve-
spectively distributive union and distributive intersection in Rst ()7 in such
8 cues Un, = (Uned /(0 de).
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#) The family (e} bas a Porcgular intersection iff (ne) and (dv) have
respectively distribusive incersection and distributlve union in Rt () and
morcover the former it greater than the laiter; in such 1 case: Mg —
= (i) de),

€ P, - and PD-regolar interscctions of projections caincide.

If there exist x = max ne, and y = min dv,, then ]y is the P-regulac
union of {«} (this union need not be PD-regular: see 211),

&) I there exist x = minne, und y = max de,, with x> y, then ¥y i

the PD-tegulac intecsection of (r).
Paoor:

) I r b & Plcgula wnion , o eac A == oty () = Ul
by 2.4, this means that
(1) alne) = Uslne),  asfd) = (nalde)  in Ret (A7,
heace, by 2.5, ne = Un,, de — (|ds, disscibusively in Ret (), Comverse
when the last property holds (7, has & wnion ¢ — (Une /([ de) by 2.4, 4
is casily seen tn the P-regular by seversing the sbove argument.

#) Reverse all unions and istersestions in the proof of g),

) We already know that, as to intersections of projecions, P-regalac
{mplies D-regular and coincides with PD-regular (1.7). Therefore, let r= ¢,
be Deregulac in Prj (A): by 24, 3= [x, and y = Uy, in Rat (), where
xn...,,-d.-.nd-am.br‘? we just need to prove this intersecsion and
union 10 be distributive,

Let ge Rax (A): first we want 10 show that 'z =[] (%4 2); we can
assume that 7 - x: otherwise, by setting £ = Uz, it follows thar

HUg=T= YD NxUrvD =Nxug-

Take also some resriction ¥'<x,Uz (i€]). Then (gu)ze, (ie)) by
233, since:
2 IUT<NVL,  WNRUI<I<s<g.

By the hyputhesis of D-regularity of r== [¢,, (7 )z A, hence g '<
<xugand g<xUT

Sccond, we have 1o prove hat y N g=1 (5,0 9); besice we assume g<r

(atherwise, consider §=ig) and chovse some © > 7,0, for all ¥
Now we have 5/gn £}, (e ), since:

@ TRIELNURNAL). RN
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again by the D-regulacity of ¢ s [Vr,, glgn g} Qe Fimally yng<zog
and g >Nt

Clearly sy =g, (24); s nsfer ngs proscrve <, het
s yﬁdmﬁu’iﬁuﬂﬂnmmi’m ik

4 Analogous to the peoof of d), combined with ).

27, Conouianr (fuirseetios of dureasing filtwing fomilies): Let (&) be a
decreasing fumily of projections of A, indexed on 4 non-empty, qu:
(i, an ondorcd scr where overy finite subet bas some
= (1, andy —Lids exizt in Rat (), then x> 7 aoed )y = n.-i,mr_
hmnhﬂwﬂnlﬁltl‘ﬂzquhr iff it is PD-togular, if x = [ me,
and 5= Ude, ase distriburive in Rst (4

Proor: We only need to prove the incquality x 3= 7, as the rest follaws
from 24 6) and 2.68),¢). Actoally, if i=<j in J: ;3= 1, 3= de,; ths, for all , !
- U ey U dy (e sex (2 7o) . cobioal in £), and x = (e yom ‘

—Ud.

2.8, Trmowssi ({wisn of hucreasing fliering families): m;h..w,.
filtering sct . por.mn.l =ofpupcdon-, Pregular unions
D-regular and coincide with the PD-regular

Procws Let (e) be an increasing Lamily of projections of A and assume I
that ¢ o« Us, &s Pregular: by 2.6, ne = Une, and de = de, are distributive
in Rut (A); consider now a projection f = 1" such that €1 f (i 1), .

o me < Uy, Fom<d, Gied).
Now, for i</ in {1

@ < e < Ude,, dixde> y Nmeg s

from the cofimality of (/2 j>#] in /, it follows that:

(] 1 Dy o (1 ey (e

@ e Uy vy =y oy =y O U = 7 O,

&) fe=Une < Uds,  de=(de=yOme,

Finally, since transfer mappings prescove Poregular unions and increasiog
familics (1.4r)).m.hmmmmmmmr-wm
is also. PD-regul




—om—
29, Turores (Unice of telesopic fumilies):
) Lt
(6] Kk Xy = Ky =1y,
be a finite increasing family in Rat (A) rmd consider the associated feksnpie
family of projections ¢, = /v, ({= vy 8). Then:
@ wmUe (PD-segular in Pr (1))

B Let () be s incrcasing family in Rst (A), indexed ity
oF % (with at least tuio elements); cansider the associated ielescopic family
of projections 1, = xfx,., (&1, where ['=lie: .—|e.")

“The following eanditions are equivalent:
(3 () bas a Peregulas union ¢,
(4) () tas s PD-regulsr tnfon ¢,
(%) () has union x* and intersection -, distributively in Rst (4),
and in such & aase: s =i,

Telescopie unians are preserved by trnsfee mappings #, and in particalae
by mappings f&—.

Proor:
) By 2.64), wulwy = U, is Porcgular; since transfer mappings of

wivaly pcaceve. selescople fcullén, we, oaly e 6 prove tha i

wnion is D-regulss, Assume that @ f = &ly (I= L, w.,#); thea:

® EARUNL, IR

(o] K XUy L (U ) < e LUy,

8 XN = FAAR) L0,

which precisely means that w, /s, (0 /.

#) We may aseume that {=% .'),pm‘hlvhywngamu
in (x). By 26, the family () has Prregular union ¢ = x*fx- ifi

O s mUnmgmlUs,  o=dg=(le, b

I this s the case, the union i also PD-regulas, by the following argu-
ment: for every €N, we have a projections

g ~Us ) (P segaae vaion by ).




g
an inreasing Gy (£) on N, which bas (26, 28) PD-regulse
."m (Un)l(m.f]-x‘fr-—, by assaciativity and cancellabilicy of re-

. poated clemens (1), the union of (e} is AD-cegular.

210, Semy exaspier fn categoris o mosdles:

4) IFE s the abelian category of modules on tome ualtary diag &, every
incrcasing wnion H — U H, of submodules of A is clearly distributive:
w HnK=U{H,nK), for all submodales K;

indeed, i x € 0y K then e M, for a suitable index 7 and x € U (M0 K).
#) Tn the category of abelian groups there caise decressing intessections
of subgroups which are not diswibarive.
Eg in %, the family £, =2°% (s30) bas ull intersection, while for
each n, 2 EVIT = %
- Notice aleo that, for decreasing families (.} of subgroups of the abelisn
-group A, the conditions:
i) () Ha =0, distributively in Sub (A1)
) dim (ALY = A,
dre independent. First, take:
@ A=t B = {er ik =k =l = k=0,

o that i) holds and i) docs not: for the subjrroup K = 2% of quasi-null
;sequences of integers, KyH, = A for all v
On the aiher band, let p, denote the sequence of all pelme integers and set:

@ A=Z,  H o=

-uiuoeH is evenmually conmined in cach subgroup of Z, the condition 1} is
satisficd, while it is not difficult to see that i) is not.

211, A commtrrocample: Last we bulld an example, in the uegory A of
telations aver abelian geoups, of o Pregular, Dercgulae tinfon 1= Uy
which is nat P
mhnmﬁmﬁmlnﬁﬂmzﬂﬂﬂfﬂr&u
iy Pl ot el s ot gty Dol bl
Poxcgulusity should coincide with PD-tegulasity, as i bappeas for intersec-

Let A be 4n abeliin group whose lautice of e
ehain: 0< ¥'<¢ X< A; eg A = Z/8Z. Thus the lartice Rst () of resiric-
tions of A in A s the chains w= y < =< 1, whete y = (A = ¥ 3 A) and
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smalogously fur . Consider the projections of

0]

nm.,mamg o the subquesicnns ¥ and A/X.
Gy U= Yor=1 is Poregubir. It is casy o see that the usion
is ||l|o I)—umllu the unique projection f of /A such that 7, €1 s 1
Finally we show that y U &% 1 i§ not PDoregular, Consider the projec-

tion f= x|y snd the transfee mapping fr — f&—:
@ &= (e (o )00 o)) = iy
@ S (1) = (vn U Y0 (v ) = ax,

now the union (y1y) U (x%)
tions (2) and (3} are nall (i

S8 f is noe Desegular, since the projec.
dominated by ), while f is not so.

3, - Inpperiow e RE-caTecontes

We tzeat here the morphisms induced on projections by the morphisms
of A and their connections with unions and iatersections of projections; i
onder 10 avoid the conditien that A be facoeizing, the induced morphisms
will Jive in the associaed factorizing catcgory B = Fed recalled in 3.1,
Ais always an Ri-category, with #€ A(A, A"), 26 Prj (A) 2nd ¢ & Prj (A,

3.0, Fectoriging RE-categerivs. ‘The RIGitegory 4 is said o be facoriging
whea ¢ach morphism has an esseatially unique epi-mone factorizstion (actually
the uniquencss follows casily from the existeace of 4 tegular involution).
Equivalenn. condition: for each projection ¢ there exists 4 mono # such that
=i

In pacsicular, an RE<category A is factorizing urm asgory of proper m
phisens E is enmponentwise exset; in such cIE 66, 5 61, 64,

Evcry Ricategosy A has an e nmnxm,, Ricategory B = Tet A
it objects. are: all the projections of A, while & morphism
en by any & A(Dome, Dom ) sueh that @ = far (or oqn\ul
a and involution are those of A and

There is an obvious fully fithful embedding:

@ A--Fad,
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sily—e.

'qhnﬂ)nanmumkmofnugwﬂ:n'nhmﬁl‘bﬂuming in this case
the cecipeocal equivalence fs: ¢ v+ Ime (for some chaice of images in

If Al an RO-catcgory, B I also 5 {with the « same arder <); 4 i un
m::ylﬂshwﬂﬁﬁ}iﬂs)

2. Deswerrion: We sy that the morphism a1 A —» A" induces from
-sm(/u wf(Pr](A') the following marphism of B(e, /):

m Jus e .

Anslogouly, if 13 5 -~ A snd f3 T A' aee mosic in 4, we sy that o
indaces from 1 to 1 the morphise a'= sz § —» T of A. The second sotion
isa case of the firsc ane (3.1,3) and the two notions are equivalent
e 4 b fcocing, Thersoce W develop il the focmer, b v i
ta the lateer in the applications of ch. 5.

Beware, this induction, geaeaally, does not agree with compasition (IMal.

P 535 sec alio 6.3).

We tay that  fndives a mone (cesp. @ opf) from ¢ o f whenever the (trivially)
equivalent propertics (ZH(5) {resp. (2)-(3) nre satishied:
@) faee-ofis mono in B, @) farze—fis cpiin B,
@) far=cin 4, @) fadf=fin 4,
@) e=cRarlf)in A, @) f=fhalyind,
) edan(f)in 4, () SAufe)In 43

accordingly, we sy that a iedicer ax iz from ¢ o f when (2} and (2) both
hold; by 1.4) this is equivalent to:

®) c0or(f)  wd  fOaf) ind.

Notice that the properties (3-(5). (!')-{Sjmd(é)danumlh
omstruction of Fet A, Thas, from now o
Trl\dd.l,,¢mdmﬁ|mnnpfmwr(ujﬂ'd=ndn=-n=ﬂ5vm}'m'
Elmjmnﬂmnmaindmdmmmfmmvmj
two parallel projections ¢, 1y € Prj (A):

Qe 1, induces 4 mono from & 0 6,

(2
® ebey iff 1, induces an o from o 0 4,
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in the last case ¢y and & nay be said @0 be romially w,w Reaull
P Eiace i el sl gty (627 5.6

that

3.3, Mapping theseem for D-regnior selss:
in Prj (A, for ia .

#) 1 @ induces a mona from ¢, 1o f, (:... all i) and ¢ = Ur, is D-cegular
in Pej (4), then ¢ induces 2 mona, from

£) I a induces an epi from 7, 10 f; (n. .u #) and £ AU, ts Deregilic
in P (47, then a induces #n epi from ¢

Proor: a) By hypothesis, for each i2 ¢, (La"( £ < w(1); by L darts)
and, by Deregalasity, ¢Cla"( /). The propesty §) follows from «) and ~duslity.

Let r,<¢ in Prj (A) and f,< |

34, Mapping theerem for Dercgeiae Iniersctions Let £ 1, in Prj () and
S <o In Pej (A, for {0 0.
4) If a indaces & mono fror 7 (for all i) and = 1)/, is Doregular
i Paj {A), then a induces 3 mono from ¢ 10 £

4) If a induces an epi from o, 10 £, (for all §) and ¢
in Prj (1), then « induces an epl From ¢ to .

woor: Also here it sufices to check ), For each i: ¢ < du(f), hm:=

(I-H)) «Qar(f); by 1.44) it follows that a L)1 f,, For all i By J
 WnDE £ Now, o totie 16 1.4 ¢ sCLLP( )< o701y =l e £ LA

, again by 144), ) f implies +Ca?(f).

35, M..,p,..., w.- Jor Jiliered awions in RE-sairgorier: Lee A be an RE-
Tt be given a fliered, non-cmpty set £ together

s i D-regular

inPri(d), (el
Sy= iy da P (A), o Gel)s

@ f=wiys
with () and (f;) incremsing and ¢, <v, fi<f (iel)

induces a mona from ¢, to f; (for all 1) aod x'= U, 3=,
distiibusively in Rat (), then w induces 4 mano from ¢ 10 .

]
%
!
|

f o indoces an cpi o v, 0 £, (fos all i) and »

) Uslizm iy
distributively in Ryt (), then  fodoces an epi from ¢ 0 /.

Proor: By 26a), 28 and 3.3 !

3.6, Mapping theorrm for filtred isnernctions in RE-setcgories: Io. the same
gencral bypotheses of 3.5, assume now that (r) and (f) arc deevsaslyy and 1
=t £ F i)




oy
mono from ¢ to f; (for all ) and x'= 1], y'e
wmmnxuq gt ita e gy jn” ol
) If a induees an opi from #, to £, (for all /) and x = M}x 7= Uiny
distribatively in Rst (), then a induces an epi from ¢ ta 1.

Proor: By 2.7 and 3.4,

37. mmmwmd& in RE-calogaries: Let
A be an RE-ategory, a: A A' .narumm.-rz(-;mmmm
 elements); Is(.f,)md(’,)hnmm&mh-nfmgﬁj and Rst (1) and
M) x=Usx. x=Nx e disibuive in Rst (),

@  r=Ux, =Nz e dismibotive in Ret (A7,
| Wite ['= [ie £ i~ 1€ 1), choose & fixed € 0" and set:
@) a=xixoEPG(A),  fi=pDoEPAl) (el
) IFa induces s mono (resp epi, s0) from ¢, to . for all Fe 7% then
the same holds from ¢ = x*jx= tn f = 3oy~

b) 1f  induces & mass from ¢ to f and an ey from ¢, tw J, for all i€ 'y
i, thea ic induces & mens from ¢, 10 fj.
| ¥) I aindeces an epi from ¢ to f dnd & mewe from ¢, 10 f, for all is 7/,
#4j, then it induces an o from 4, to fi.

7). 1£ n induces an i from ¢ to f a5 well as from #, 1 f, for all Fe f’,
4, then the saro holds from 1, 1 .

Proor: Finst notice that ¢ = U, and /= U/, are PD-regular unions,
by 29. m.)n.mlymmmmoqwmnnndwemm&m
prove 4): the rest follows by ~dality.

By hypathesis a induces & mono from ¢ 1o f, that is:

o< eQu(fi=Ue(f);
thus. £, LLar(f), i
£
(&)} =t [BH‘M}):H,('.R LB

mmmhu,udqwﬁnmvum‘.-,n-n{m ) For all
proof, sinez by (3) and 1.6 £} it implies
s -'(l). ie. oue thesiss o, Qar(f).




Actually, take F€.1', i ¢ ji the morphism a induces an epi from ¢, 0 f;,
i, f, Capled, henee (140)) a7(f) e, and (237):

@
)
so that, if i<, by (4) dnd 234235
©  nfy

) <X Uaty ),

ANy KNy,

e 0 13) = 340 (0520 L) <340 () U ) =
VU ) = e at(f),

0,0 o

and the projeetion & o7(f) is mull (2338).
Asalogaudy, if i3, by (5) and 2342

e fear(f)) =

ay Canat el V¥ (N xan e v

O} ey =mled at(f) .

4. - Recurin mppcrion

We consides here a notion of « regulac induction » which agrees with co

algebea. It should be noticed, bawever, thit non-regular induetion may com-
pose with the regular one in regular and uscful ways (e, in RO-inductive
squares: 4.8, 5.7), so that we may not sestrict our attention w the regular
situati

A is always an RO-category (2.1) and B = Fet A the assaciated fctorizing
RO-category (3.1),

41, RO4purs: Tn the theory of RO-<isgories the follawiog sque
disgrares, called. RO-squares in [G6], § 2.2, axe of more insercst than the com-
muEtative omes:
Asp
0] des e
|

(2)  mand s arc proper and e <ho (or equivalendy: aichr),

eg. they appear in the definition of RO-transformations [G6] o, here, of
regulas induction. The RO-squares of A form a RO-category, w.rf. the
obvious vertical companition and invalution,




e

42. Dernamos: We sy that a: A -« B judwes rogularly (R-indaces for
thor) ﬁ;om 6 Prj (A) 0 f<Pri (B) (the morphism u'm fac: ¢ f of B
.2))

@ .

induction agrees with composis
zwm;q (the mompbism &' g f— of B), then bu: A —C Rein-
from ¢ to g the composed ¥’ of the induced morphism, since:

@ (ba)e i< glba)
© sn)e = ghor)e< Bfo)e = () fas) = da’,
@ b = aB)a > 20 e = (gH))(foe) = '

Motcover, if 8 Reinduces alw from ¢ w [, it is easy 10 see that the same.
happens from e&ee' w [ ",

4.3, RO-imdution: Since we ate mastly interested in the proper case, we

secized in 4.5 for cxcegories of

) 16w A = 8 s proper, it RO-induces from ¢ to f i the following
 equivalent conditions hold:

(] wrl)< Sy
@ rewif)i

indeed, if ar< fu e Bave: i de) o il il <,
= vy ur(f ) dast, 1 (2) i swisfied: me nsfrs;

) ‘The morphism fur: ¢ —»f RC-induced by u is ftself proper (in B), 251

holds: e<ueein=

) (fusy™ (i) = cife = ai(_fe)eomdiive e,
and amalogously (fi)-( foe)"< f-

44, RO-inducticn is RE-caioricr: 1§ A Is sn RE-csegory snd u: A5
it propee, the following conditions are equivilent (by 25-26):

a) mx A -+ B ROinduces feom ¢ 1o f,
) e <, ei{de) < df,
) me<a%(nf), de<ndf):

itivn: if also b; B -+ € Reinduces from f
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i the induced (peoper) morphism s mono. (resp. epi) iff #) (resp: )

d) e e e O Nd),
) mf = df Unsln).
45, RO-induiticn i sategories of reletionss U A = RAIE s the atrgory
of relations over E (exact), i A - B ks peoper nnd 1: HIK —» A,

K-+ B
arc subquoticats of A and B (L., monorclations (0.2)), the Eollu“ng con-
ditions ate equivalent:

) # RO-induces a (peoper) morphism & from 1 10 7,
B a(H)< H* and w(K)< K in Sub(B),
#) there Is & RO.squarc in A+
AL B
e nr< e (@7 <),
HIK = HR

) there s & commutative diagram of E:

i remp, b,
i
HIK = HK

i

v

Wert. projections, the induced morphism from ¢ =7 to fe= 7 is t7:
et

Proor: u) =491 by 44 5 =d): by wellkaown properties of cxace cte-
goris. d) = ) the commutasive squares of (2) ase eivially RO-squases; by
verial involution and composiion one gets (1), ) = a)i a6 = a7 < 5 <
<l e,

Finally, éhe proper marphism & in (1) and (2) s the induced one:
& < ()<t —w,

“) W= e gup == g e g - e T
46, RO-indwction and Poregulor anions of fuierssciicars Let A be an RE-
Ue, and f 3= U/, e P-regubae, respectively in Prj (A) and
pr,w;md A -+ B RO-induces feom , to f,, for all J, the same holds

from ¢ to £, Anslogously for P-regular imenscctions of projections,




.
The proof is & straigthforward agplication of 44 snd 2526, E.g..in the

ease of wnions:
® ) = ) = Ut < U= o,
@ n3) = (1 2) = %)< NS =
47, RO-Gudwtive spuaies: et A bean RO-category: the follawing is again
& situation typically produced by transformaions of models of homological
‘The disgesmn of 4, equipped with the projections 4, £ ¢, f'
i _ Cemj), 7 ema),
& boh venit e,

will be said to be a RO-induciine square if:

@ Wachi,

® i ROinduces from ¢ 1o [,

w ' RO-induces from ¢ to [,

e aes e e and fBfi f— ate properin B.

Then the morphisms induced by buz A — B and by &
0 "), are proper and equal and enineide with the compositi
‘phirms induced by & and 4, as well as with the composition of the mozphises
induced by a and #'s

® S ) = f (o) (B o) = ()
Tndeed, by (21(9):
o (P Nea < ars b (L )5

uuw.hyﬂﬂ)ml(ﬁ}(ﬂ!.h&nmdﬂ:hmmdmmwm
phisms (in B), beace colucide (2.1).
5. - CONYENGENCE FOR SPECTRAL SEQUINCES
Wtsmhﬂwl:ppliﬁﬁ&ﬂ.ﬁﬂﬂb&hlpoﬂduqmnlﬂnm
les.

E is an cxact citegory snd A = RelE its RE-category o
the uswal shuse of notation, 1|'H>-Kln|hlnﬂc§uh(d)ufmhbyn|
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of A in K, the subquoticar 1K will stand also for the A-subobject 12 Fi{K — A
described in 0.2, of equivalently for the projeciion = st A -5 A,

The speciral i o 2 i gl Lt bs given s Glesd
Lumplu in the exact

m Ao = (A (B, (FoAd), mpez,

where, for each n, F:A.‘A,, is & morphism of B, 7,2 =0 snd
(F,A,) is an m 3 jon of A, with the wherence condition
AWF,A) < F,
Cuuidx lhz(nllawlng subquoticnrs of A, corresponding 1o the homology,
associated to the Altrations and the terms of the spectral
sequence (we 2.1, 234, 23.5):
@) H, =Keddmé,,,
B G =FAJF, A,
W B-
- (F AN @ F, A Fp  ANHF AN o Fry Ay U Fy A =
& (72 A ) Al <G, (=0,

) By =(FAN0 @00 F ANF,A A (A A=

=G, &H, <G,

© En=H&G.<H,,
m e B

52, Morphismsi A morphismn a1 A, — B, of flesed complexes s 2 family
of mopkisn act Ay o B, I B, eoscenaing wih the, sl and RO
inducing from F,A, to F,B,:

wy(FyA)< F 8, .

Tt s casy 1o see that the masphisms w, RO-induce w.r. the subquotients
considered above in 5.1.2-5.1.6 (in particultr, use the preservation of RO-
induction. by the &-product: 42). Morcover, since "5 ® £ and becawse
of the RO-inductive square lemma (3.7), the morphism #: A, - H, induces
4 mom0, of an ep, or an is0 from 3 (A) 10 £5(Hy) i it does from " E5(4a)
w ES(B).

(412, denotes the e e 0F sk by €, 7 she. commeriages of sabolec,
“The degres » ia dropped when no cnafusion oty s




a5
5.3, Durmernios: Say that the filkered complex Ay comperges in degree x if:
) NFA=0, UFAd,=A, dissbuvely in Sub(4,).
ez -
5.4, CONVIRGENCE THEORRN FOR FILTERED COMPLIXES:
) IF the fitered eomplex A, converges in degree #, then:
) H.=UEL  (PDepube, wlecopic uaion in Sab (4):
B I A, converges in degrees w—1 2ad w <- 1, then:
@ En=ME, (PDregubs, decressiog intertection In Sub, (4,))-

Pacor:
a) By 29 and the hypothesis, there is a 2D-regular, telescopic vaion
subquoticats of A,:

)] A=U (A FpA)= UGa,

which is prescrved by applying H,& —

¥) By 25 and the hypothesis, there is o PD-cegular, deceeasing inter-
section of subguoticnts of A,:
“w Ho= I}(F‘PHJ»JI(F-F,..-A.,I))-

which gives. the thesis, by applying G.,8—
5.5. MArrisG Loana ron mumenen coupuexes: Let ui A, — B b 3
morphism of fltered complexes. Let 7,n € .
o) I, for all peZ:
(1) B B )= Ei(Ba) it mono for imn—1 and epi for i =,
then the «same » holds for all s>7 and paZ.
8 I, for all pez:
@ B By(Aa) —E(B)
is mann for f=n—1, iso for s and epi for i=n+1,
then the wsame » holds for all r>r and peZ: in pacticalae B, () i o
(pen)
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Proor: We just have 10 prove o). Consider the diffecential of the speceral
sequence of A,
@ = FlAa) Brl A+ A =),
together with its « eycles and o bords 1
@ Z(A)=Keed,  B{A)=Imi.
We prove now that, for vt
) B3} is epi and Bl ,(f) is mono for all peZ,
by indocrion on £, Since for £=r this is the hypothesis (1); we assume it
holds for some 42+ and check it for 4+ I
The commutative disgram:

Ay > BLlAY By, (A
Taean Ta b
BalBe) » Biye o slBa),

shows that B2,(/) is iso (for all pEZ). Thus, the commumative diagrams
{with exace rows)

DolAe) = EL(Ay) + Bufdy) ZL(A) = Bl A)

! } ¥ ¥ .
Zi(B) = 2,08 = BB, (B = BB,

show, respectively, that ,,,ﬂ is epl and F'"(f) too. Dually, working on
the right-hand side of (6), o that () Is mona; by
arbisrariness of p e, the prouf is musplew

5.6, MAFING THEORES FOR FittERED compexes: Let ui A, s B, be

2 morphism of filtered complexes and r, e %

4) 1€ A, converges in degrees m—1 and n -+ 1, B, converges in degree
(53) and:
[0} By yu{0) is mono and () is epi, for all pez,
then H,(u): H,(AL) = H,{B.) is cpi s well as Exa), foe all peZ

o 1 Ao converges in degeee #, B, converges n degress w1 anid
w1 and
@ E3,(n) is mono and Ef,,,(s) is epi, for all pez,

e Hy(r)s H,(Ag) = H(By) is mono, ms well 35 E(n), for all pe,




— =

#) 1 the filtered complexes A, and B, bath convenge in degrees a1,
# w41 and, for all peZs

&) B Bty )
is mono for = a—1, iso for = r and cpi for fmn+1,

then H(u): Ay~ HL(B,) b s (s well as g, for all pe).

Proar: We peove ). sinee B) is its dual'and ¢) follows from both. By
584), EL,(e) s cpi for all or and all peZ. By 544), the mqum
Eg(AL) is the PD-cegulat Intecsection of F3,(AL). for 51 by the mappl

theotem for D-regulac incrsoctions (3.4 ), Exn) s qllﬁrdlpf&]'hlﬁy
by 544), H.(B,) Is the telescopic, PD-regulac union of the subquatients
BB, for pe % by the mapping theorem for D-regolic unions (3.3 ),
H.(a) i epis

6.~ AVPRNDIX: THE ORTIGDOK AND DISTRIBUTIVE CASE

B oxii sy e e e S Ul R e A o
briefly some resalts from pagers on orthedos lavolutive ciegories and distri-
Vi oo ctegorien ([0, 02,63, GA1).

6.1, Orsbodose and inverse Rl-categorier: An RE-category A is said to be
artbedsx [G2] when its idempotenc cadomorphisms ate stable for composi-
)-

Aawxnmucji.is:uvmmmm‘.A4A*
has 4 unique gencralized fmverse 4 (7); then the mapping n —d defines &
el imvotation K. (desty she-omly ‘one)s 1 b mat Al 5" prove
{entending a well knawn sesult for semigroups) that & category s inverse HF
it s g-regular (7 and its idempatents comanite. iff it has a regulac involution
and its projections commute.

Mmmmuquulveumw)mmmﬂu the meet being.
the product. ‘The aperation & and the relation (I between projections coin-
cide respectively with the product and the cancaical ordee <.

6.2, Tiv canewicel prisrder: An ortbodne Rl-category is provided with s
camsairal preorsor (e dominstio) @€l on parallel morphisms, consisient with

) Meve pencally, emending enhodok semigrops; 8 casegeey I wbd 1o be seiladi [GI] I it
Apsalicrdlaveny &5 A'—= A, b aa = 4
s Rl
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composition and involution, defined by the following equivalent proper-
ties [G2]:

¢} a=aba,

@ ol

® thete exist idempotents v, £ such that: o = fie,
@ there eist projections ¢, f such that: o = fle.

“This. preardes extends the domimation of projoctions, which is thus, in
the orthodox case, 3 prearder.

The assocated  yields & quorient A which is an invesse
eategory, provided with it cewniral erder (L (extending the well-known can-
onieal order of inverse semigroups).

6.3, Tuwomae (G3]: The Rl-category A is outhodor iff in A indeed
micplimi are prowrsed by camposition. The last propertics means that,
# £ A(A, B) induces an o from ¢ Pri(A) w0 fo Pri (8) and beA(B, €
indaces an iso from f 1o & Psj (€) then bu induces the enmposed 110 from ¢
w0 g () far) = g-bave.

64, Tusouead (1G], §3.17): Lot A=RCLE be the category of celtions

over an exact category £; the following conditions atc cquivalent.

s) A is omhodox:

4) for every object A, the modular laice Rst () is distributive;

¢) Eis distributive (ie. all its latices of subobjects are s0);

) the selation of domination (T is rnsitive (a preander) on cach st
Pej (A);
1) the relation @ is transitive (herice in equivalence) on each set Prj (4);
f) the openstion & is associative on cach ser Prj (4);
) for every i A = B in 4, the mapping a, preserves the operation &;
"i for every a: A -5 in A, the mapping a, prescrves bimry moets
joias,

Analogous resuls ([G6]; § 7.4) bold mote genenlly for any RE-citegory
A and its asociated componentwise cxact category E — Prp Fer A,

6.5. Divributive RE-saitgories: ‘Thus an orthodox RE-category i also
ealled 3 distributive one, when we want to stress the properties ) and 2) of the
previons characterization.
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Esamples of distributive exact categorics: eyclic groups; sets and partial

Dijections; the distributive expansion Dst E of any exact category ([G6],
_§7.00). Thelr carcgories of relitions are distribative.

66 u:wmwn»m-:-fwﬂbnhhum uw Let K be an
fnverse category (with its unique RF-structurc). Then:

) every intersection of projectiont s PD-segulas,

) every usion of projections. is Doregalis,

& Pregulac nions of projections coleide with PD-regolar unions, ss
well s with dirsribwise unions (w.rt. the intemsection, ur prodict, in the
semilarice Pri ().

Indeed ) and #) follow feom 1.7 and from the lust femark in 6.1, A3 to 0],
Poregular unions are also PD-regular by a), and coincide with distribative
ones by 1.9 (the condition 1.81 being trivially satisfied when all projections
comemute).

677, Ussians and infersections of prejections in artbeduse. REsategoriée: Let A be
45 onbods Elctngory; wrie K = AN she ssocced nrese cnegery wad
a s &'the quoticnt: fanclor,

u) o= ﬂr,mPﬂ‘(A),llgmmnD-ngﬂltllwﬂl.m Prin(A),

) i Uy, in Prj, (A), the unien is D-regular if & = )¢, in Prig (),

Ue is PDoregular in Priy (A), then & = UZ, s distributive

9 if

in Prig ().

Indeed, o and ) follew trivially fom the fact that ol fin A 7 <Fin B

As 10 ¢), it is easy to sec that, if ¢ = Uy, is PD-regular in Prj, (), then
&= U8, is Pregulir in Pric (), bence (6.60)) disibutive.

0.8, Remurk: Last we the example considered in 2,11 (a P~
nggular, D-segular union 1 --.u:. wnm: is not PD-scgular) sctually Jives
mﬂt(nﬂbudnx) of relations over the distributine exact category E

of e groups. Tes image 1 — U4, in Rel (B0 shows 3 (D-regulis) union
in an inversc category which is not P-regulir,
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