

Rendiconti
Accademia Nazionale delle Scienze detta dei XI,
Memoris di Matomatica

104° (1986), Vol. X, fasc. 2, pagg. 33-37

BIAGIO RICCERI (*)

Images of Open Sets Under Certain Multifunctions (**)

Immagini di insiemi aperti mediante certe multifunzioni

Sorro. — Dati uno spazio ropologico X_i uno spazio metrico (Y_i, I) ed una multifunzione F da Xin Y a valueli non vuoti e affittat, che per ogni finanto p of Y is funzione seale d(p, F(r)) ala prirea di quanti di minimo relativo i quali non siane narche di minimo sealema, in quanto lavoro nark ponta in loce una proprieta goduta dalle immaglini modianne F dei sottoinaiemi aparti di X.

1. - INTRODUCTION

Here and in the sequel, X is a topological space, (Y, d) is a metric space (if Y is a normed space, d is the metric induced by the norm) and F is a multifunction from X onto Y, with non-empty values.

For every $y \in Y_1$ and P > 0, part $B(y, x) = \{x \in Y_1, d(x, y) \in Y_1, d(x, y) \in Y_2, x\}$ and $S(y, x) = \{x \in Y_1, d(x, y) \in Y_2, x\}$ and $S(y, x) = \{x \in Y_1, d(x, y) \in Y_2, x\}$ and $S(y, x) = \{x \in Y_1, d(x, y) \in Y_2, x\}$ and $S(y, x) \in Y_2, x\}$ such that $d(x, y) = B(y, x) \in Y_2, x\}$ is an independent of $S(y, x) \in Y_2, x$ and $S(y, x) \in Y_2, x$ is an independent of $S(y, x) \in Y_2, x$ independent of S(y,

The present paper can be regarded as a motivation, as well as an invitation, for the study of two problems that, in a geneit way, can be stated as follows: If HB is an open subset of X, when $P(B) \in T$ if V is a non-empty subset of Y such that $V \in V$, (resp. $V \in O$), for every lower semicontinuous (resp. continuous) function $f(Y \to 0)$, $+\infty[$, when does V possess some other meaningful property?

In fac, we prove that, under suitable hypotheses, for every open set $\theta \in X$, the set $F(\theta)$ belongs to the family " θ , (see, θ) for every lower semicontinuous (resp. continuous) function $f:Y \to \mathbb{R}, \theta \to \mathbb{R}$. Moreover, as an example of answer to our second question, we prove that, if Y is a normed space, any $V \in Y$ such that $V \circ \overline{u} \cap \overline{v}$, for every (sufficiently small) constant r > 0, is one.

(*) Dipartferenco di Matematica, Cirtà Universitaria, Viale Andrea Doria 6, 95125 Catania (Italy).
(**) Memoria presentata il 15 maggio 1985 da Giuseppe Scotta Deagoni, uno dei XL.

HXXX-0362-4106

2. - RESULTS

Our first result characterize belonging to the family $\mathfrak T$ of certain sets, in the case where Y is a normed space.

THEOREM 1: Assume that Y is a normed space. Then, the following are equivalent:

Any continuous linear functional on Y attains its norm on S(0, 1), where 0
is the null element of Y.

(2) Any subset of Y, which is supported at every point of its boundary from closed hyperplanes, belongs to the family G.

Proof: Let us prove that (1) \approx (2). Let U be a subset of V which is supported at every point of its boundary from cloned byexplanes. Let $g \neq 0$ and let f be a continuous linear real functional on Y, with $f \neq 0$, such that the hyperplane $f^{-1}(f^{-1}(g^{-1}))$ supports to u, y^{-1} . Suppose the transact, that f(f) = f(f). Sow, choose f > 0. To finish the proof, it suffices to show that f(f) = f(f) = f(f). Now, choose f > 0. To finish the proof, it suffices to show that f(f) = f(f) = f(f) = f(f) = f(f). Assume the contrary. Therefore, there is $y \in U$ such that $y^{-1} + f(f) = f(f) = f(f)$. So Ence $f(f) > f(f)^{-1}$, we have

$|f(y^* + \lambda \hat{y}) - f(y')| = f(y^*) - f(y') + \lambda f(\hat{y}).$

On the other hand, by the continuity of f, we have $f(y^y) - f(y') + \lambda f(\bar{y}) < |f| | y^y + \lambda \bar{y} - y' | < \lambda |f|$, so that $f(y^y) < f(y')$, a contradiction.

(a) $(y_1, y_2, y_3, y_4, y_5) = (y_1, y_2, y_5) = (y_1, y_2, y_5) = (y_1, y_2, y_5) = (y_1, y_5)$

The next result is about the families V_t and \tilde{V}_t . Of course, we have $\tilde{V}_t \in V_t$ for every lower semicontinuous function $f \colon Y \to [0, +\infty]$. In certain cases, a partial converse holds. Indeed, we have the following

Theorem 2: Let V be a connected subset of Y, with more than a point. Then, for every apper semicontinuous function $f\colon Y\to]0, +\infty[$, with $2\sup_Y f<\dim(V),$ the relation $V\in {}^{\circ}U$, implies $V\in {}^{\circ}U$,

PROOF: Let $V \in \mathcal{V}_t$, with f as in the statement. Let $\xi^* \in \tilde{A}_{LY}$. Of course $V \setminus B(\xi^*, f(\xi^*)) \neq \emptyset$, since, otherwise, we would have $\dim(V) < 2 \sup f < \dim(V)$. Therefore, one can choose $\tilde{g} \in V$ such that $d(\tilde{g}, \xi^*) > f(\xi^*)$. Since

the function $d(\vec{y}, \cdot) - f(\cdot)$ is lower semicontinuous, there is a neighbourhood U of ξ^a such that $d(\vec{y}, \cdot) > f(\cdot)$ for all $q \in U$. Now, observe that, by hypothesis, $d_{x,y}$ is an open neighbourhood of ξ^a . Hence, if $q \in A_{x,y} \cap U$, we have $d(\vec{y}, z) > f(\cdot)$ and $d(\vec{y}, \cdot) < f(\cdot)$ for some $y \in V$. Thus, since V is connected, there is some $y \in V$ such that $d(\vec{y}, \cdot) = f(\cdot)$ and $d(\vec{y}, \cdot) < f(\cdot)$ for some $y \in V$. Thus, since V is connected, there is some $y \in V$ such that $d(\vec{y}, \cdot) = f(\cdot)$, and so $y \in V$ in it $d(\vec{y}, \cdot) = f(\cdot)$.

Now, we prove the following

Theorem 3: Let Y be a normed space and $V \subset Y$. If there exists a sequence (s_n) in $[0, +\infty]$ such that $\lim_{n\to\infty} s_n = 0$ and $V \in G \cap \mathfrak{V}_{s_n}$ for all $n \in \mathbb{N}$, then V is obtain.

Paooy: Assume the contrary, Let $p\in k^*\cap k^*$. Since $k^*\in k$, there is $q^*\in V_k(q^*)$ with that $d(q^*,p^*)=d(q^*,k^*)$. Fix $a\in k$ we that $a_k^*\in k^*-q^*$ and put $k=a_k^*(p^*-q^*)=d(q^*)$ and put $k=a_k^*(p^*-q^*)=d(q^*)$ since $k^*(q^*)_{n,k}$ there is $n^*\mid k\mid_k^*\mid_{p^*-q^*}\mid_{q^*}$ such that $k(q^*+q^*)=k^*\mid_{q^*}$ for $k=k^*\mid_{q^*}$ $k=k^*$

it suffices to take, for instance, $Y = ([0, 1] \times \{0\}) \cup \bigcup_{n \in \mathbb{N}} ((1, 1/n)) \cup \{(0, 2)\}$, with the relative usual \mathbb{R}^2 -topology, and $V = \{0, 1\} \times \{0\}$.

Our main result on the images of open sets under F is the following

Tyeoriem 4: Suppose that, for every $y \in Y$, the real function $d(y, F(\cdot))$ has no first, somedinate, minimum point. Then, for every lower reminostinuous function for $Y \to [0, +\infty]$ and every open set $\Omega \subseteq X$, the set $F(\Omega)$ belongs to the family Ψ_Y . Moreover, if $F(\Omega) = G$, then $F(\Omega)$ is open.

PROOF: Let f and D be a in the samment. Let $\pi_0 \circ f_{(P,p)} \circ \mathcal{O}_{DOD}$, $\mathcal{O}_{DOD} \circ \mathcal{O}_{DOD}$, $\mathcal{O}_{DOD} \circ \mathcal{O}_{DOD} \circ \mathcal{O}_{DOD}$, $\mathcal{O}_{DOD} \circ \mathcal{O}_{DOD} \circ \mathcal{O}_{DOD} \circ \mathcal{O}_{DOD}$, $\mathcal{O}_{DOD} \circ \mathcal{O}_{DOD} \circ \mathcal{O}_{DOD}$

As an immediate consequence of Theorem 4, we obtain the following oper mapping theorem.

Theorem 5: Suppose that, for every $y \in Y$, the real function $d(y, F(\cdot))$ has no local, mos-absolute, minimum point and that there exists a base 3s of open subsets of X such that $F(\Omega) \in C$ for all $\Omega \in S$. Thus, the multifunction F is open.

The next result explains the role of the first assumption of Theorem 5. Let us recall that a set $U \subseteq Y$ is said to be proximinal if for every $y \in Y$ there exists $z \in U$ such that d(y, z) = d(y, U).

THEOREM 6: Let Y be a normal space. If, for each $x \in X$, the set F(x) is f'(x) in f'(x) in the multipustion F is open, then, for every $y \in Y$, the real function f'(y, F'(y)) has so local, somewholter, windows points

Proop: Let $x_0 \in X$ and $y_0 \in Y$ be such that $d(y_0, F(y_0)) > 0$. Since $F(y_0)$ is proximinal, there exists $y_0 \in F(y_0)$ such that $||y_0 - x_0|| = (p_0, f(y_0)) \le 1$. Obe any epen neighbourhood of X. Since F(D) is open, there is $r^* > 0$ such that $H(y_0, r^*) \cap F(D)$. We choose $k \in P(H)$ is $-(p_0, f(y_0)) = (p_0, f(y_0)) \le 1$, $-(p_0, f(y_0)) \le 1$, $-(p_0, f(y_0)) \le 1$, $-(p_0, f(y_0)) \le 1$, where $f(y_0, f(y_0)) \le 1$, $-(p_0, f(y_0)) \le 1$, where $f(y_0, f(y_0)) \le 1$, $-(p_0, f(y_0)) \le 1$, where $f(y_0, f(y_0)) \le 1$, $-(p_0, f(y_0)) \le 1$, where $f(y_0, f(y_0)) \le 1$, we present the following such that $f(y_0, f(y_0)) \le 1$, where $f(y_0, f(y_0)) \le 1$,

Example 1: Let Y be a normed space and X be a dense subset of Y with empty interior. Consider X with the relative topology. Fix $x_0 \in X$ and put

$$F(x) = \begin{cases} \langle x \rangle & \text{if } x \in X \setminus \{x_0\} \\ Y & \text{if } x = x_0 \end{cases}.$$

For every $y \in Y$, $x \in X$, (x_0, y) and every open neighbourhood \mathcal{Q} in Y of x, since X is dense in Y, we have $d(y, \mathcal{D} \cap X) = d(y, \mathcal{D})$. On the other hand, since Y is a normed space, we have $d(y, \mathcal{D}) \in d(x, y)$. Hence, the real function $d(y, F(\cdot))$ has no local, non-absolute, minimum point. However, since the interior of X is empty, the multifunction $F(X \mapsto Z^T)$ is not open.

Now, come back to Theorem 4. If we apply Example 1, by taking $Y = \mathbb{R}$ and $X = \mathbb{Q}$, we realize that, for any open set $D \in \mathbb{R} \setminus \{x_0\}$ and any constant r > 0, the set $A_{x/D \cap \Omega_0}$ is countable. Therefore, $F(D \cap \Omega) \notin \mathbb{Q}$. This shows that in Theorem 4 the conclusion $*F(D) \in \mathbb{Q}_F$ cannot be replaced with the stronger one $*F(D) \in \mathbb{Q}_F$.

The following final result provides a positive answer in this direction, in the case where F is single-valued.

THEOREM 7. Let X be locally connected and let g be a continuous function from X and Y and both, for every y e Y, the real function $d_{1}(x_{1}^{2})$ but no block non-solubolist, extremon point. Then, for every open in $\Omega \subset X$ and every continuous function $f_{1}(Y \leftarrow [0, +\infty])$ and that $f(y) < \sup_{i \in X} d(y, g(x))$ for all $y \in Y$, the set $g(\Omega)$ belongs to the family g(Y).

Paoor: Let Ω and f be as in the statement. Let $\tau_0 \in \tilde{A}_{L_0(\Omega)}$. Choose $y_0 \in g(\Omega)$ such that $d(y_0, \tau_0) = f(\tau_0)$. Let $x_0 \in \Omega$ be such that $y_0 = g(x_0)$ and let Ω^* be a connected neighbourhood of x_0 contained in Ω . Since g is onto and

 $0 \sim f(u_0^2) \sim \sup_{i} A(u_0^i, \delta(u)_i)$, by hypothesis, there exist $x_i, x^i \in P^i$ such that $d(y_{i,i}, \delta(u)) \sim f(u_0^i) \sim f(u_0^i) \sim f(u_0^i)$. Since $f(u_0^i) \sim f(u_0^i) \sim f(u_0^i)$

Example 2: Let X=]0,2[,Y=[0,2[and let $F\colon X\to 2^y$ be defined as follows:

$$F(x) = \begin{cases} [0, x] & \text{if } x \in [0, 1] \\ [x - 1, x] & \text{if } x \in [1, 2] \end{cases}$$

The multifunction F is continuous and, for every $y \in Y$, the real function $(I_j, F(c))$ has no local, non-absolute, externum point. Moreover, we have init sup $4(j, F(c)) > \frac{1}{2}$. Now, take $B = [0, \frac{1}{4}]$ and $f(y) = \frac{1}{2}$ for all $y \in Y$. Observe at $F(D) = [0, \frac{1}{4}]$, and so $F(D) \neq \overline{0}_j$. Therefore, F does not satisfy the conclusion of Theorem 7.

REFERENCE

 S. Scotta, Best approximation in narrord linear spaces by elements: of linear subspaces, Springer-Variage (1970).