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- InmnonucTion

Let A be o lincar nerwork, and G the graph associaed with N, ‘There
t¢ no necessary and sufficicnt topological conditions for the unique solvability
of N. Although these conditions ase known for RLC networks without con-
teolled sousces [1,2], 00 topological conditions cun exist for RLC networks
with controlled sources [3,4]. Su, whenever IV is not niquely solvable, one
uas 19 take the values of paramerers of its componeats knto coasiderstion,
may stempt o make slight changes of these valucs in order to tramsform N
into a uniquely solvable network. This is not always powible; it may be that
N has 8 sopalagical singulsrity, ic. # sobfamily Ci, .. nfﬂnbmh of its
components, whose members are depeadent mgud.l:s
valucs of their pammeters.

Ler N be an RLC network with controlled sources; characterizations of
ruptﬂnpeﬂ x:ngnluma of N are Lnown in tems of the topology of graphs

G, sccording 1o both the behaviour snd the canaections of its
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componcnts [5]. Let N be an RLC network with memaryless s-parts charac-
terirations of topalogical singularities of A are knowa in terms of the topalogy
of matroids deduced from a system of network cquations for AV [0, 7],

1 this paper we show that characterizations of topological singularites arc
possible in terms of the topology of G, for an arbirary linear secwork 1V,

We want our sesulis w be walid regardiess of whether G is 2 graph or
matroid (8, 9], eegardless of the particulsr space I” of timse-fanctions which
describes. the state of IV, and regandlcss of the particular space K of cado-
mombisms of W which describes the analytical behavionr of componeats.
Section 2 gives consequent abstract deinitions.

T Subsection 2.1 we introduce the notion of sewigraph; every result valid
for networks associated with & semigraph s 2 result valid also for networks
associated with u graph (see Sobscction 2,15 of Reference [10], o with &
matroid (sec Subsection 3.2 of Reference (5]).

In Subsection 2.2 we deal with linear components. Cuc definition is valid
segandless of the particular P and K. The topological behsviour of 8 con
ponen € fs raken i i d described by the ordered pair (4, M),
where A, M are the ses of branches of & whose voltages od whose eusreaty
we have sespectively related with C; we call (1, ) the sket of €. Observe
that, in our definition, every component € acts as 3 single constraint on the
voltages and currents of the branebes of its socker (4, M),

In Subgection 2.3 we deal with the notion of dependence for liveat com-
ponents. Our definition, although sbaact asd apen tn fussher applications,
behaves well with problems of unique solvability. This is shown in Sobsec:
tion 24, where examples are given, taken from both tme-davariant and time-
vazying companents.

In Section 3, in order to investigate topological singulasities, we deal with
compancats (fuarameiric cimpaents) which allow arbitrary changes of the values
of their . Subsection 3.1 fazulizes the problem. Subsection 3.2
inteoduces the /epelsgival degree of 3 socker, which proves to be the main topo-
Jogieal to0] for the solution. Subsection 3.3 supplies the algebraic backgrnund
fox the

I Subsection 3.4 we describe purcly algebraic and widely general assump-
tions (cberente ariimptions) on. W', K and on the dependence, and give relating
@xamples taken from both dme-invariant and time-varying componenss. In
Subsection 3.5, under cohcrcace assumptions, we give the topological charsc-
tetization of wpological singularitics, and descrbe their sructuse,
of lineas components
an the sockets (A, M), .., (A, M), respectively, is s topological singularity
if and only if it has 2 subfamily (C, & /) such that degl) (,, M) < /] (the

]
definition of avien of sackets is straightforwand); roughly speaking, i and
only if it has & subfumily whase members arc all connected to a socket whose
topological degree s Tess than thelr number.

In Theorem 3,54 we prove that a topological siagulirity €, ..., €, has
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masismal subfamilics without topological singalarities; that all these maximal
subfamilics have the same aumbes of members; that whenever we add one
of the remaining components to ane of these maximal subfamilies, then the
family so obtined has a unique minimal topological singularity

Regarding 2 minimal topologieal singalarity C, ..., €, in Propasition 3.5.5
we prove that degl (4, M) = r—1; soughly speaking, we prove that iy
members are all connected fo 4 socket whose topological degree is 1 less than
their number.

Let # be the number of beanches of G in Coeollary 35.3 we prove thatall
familics of linesr components with more than w members have topological
singularities, and tha every family without topological singularities may be
extended 10 a family of # companents without topolgical singularities.

In Subsection 3.6 we prove that the cobetence assumptions are not oaly
sufficient but also necessary foc the above characterization of topolagical sin-

faritics,

When o dependenc family. Cy,..., €, of linear companents is not  tapo-

igularity, then opporcune changes of the vaiues of the parsmeters
s €, Into ....ua.,,msmamly Oce may ask whether these
changes may b chosen
favolves the twpology of K, and is not m:mmd ere, In Subtection 3.7 we
give examples of affirmative replies maken from both time-invariant and time.
varying enmponents.

2. - LINBAR COMPONENTS AND DEPRNOENCE

In what follows, R denotes the fickd of real pumbers; R* denotes the
denotes the canonical basis of R®,
R* - R® will denote the othoganal pro-
@, € R, then [ay, ..., ] will denote the ni<r mamix
> will denote the subspace of R*

LfWuxvm:lpﬁwuru&mn W™ will denote the space.of the columns
with r clements in

e algebra of the Rendomarphisms of W, Let
A= [o,] be an wxe mutris with clements In . For every

(exponent 7' denotes tranzpass), lek




=

The map oz W™ — ¥ defined by ofw) = Aw, is obviously Relincar. Let
a3 P W be any Relinear map: :I:n:r_xunrm:kndun]jnm-x. -
wix A, with elements in £, su:hduw(u)—.{u for every w,

‘The space of the mx<u matrices with elements in Z, \Hllhedmmrd by
M(mcn; E). Obssrve that R s, i a eanonieal way, & wblield of E; this
allows us to considee the matrices with clements in & as particular matrices
with elements in £, The elemeats of £ will be considered as 11 matgiccs,

1€ K is a subspace of £, then M(.n. ) will denore the space ot the
mn matrices with clements in K; M 3
Mwxcey E).  Ler AgMmwxn
& M(uxcgi R), we have BAe M(pxa; K), ACEMmxg;

1f f is 4 set, thea |J] will denote the eardinalicy of J. The. lrmlml lies)
will denote the family whose members arc the a, with 7o /,

21, Semigraphs

Let fe } be & set with u elements. An clement o |PERS
will be considered 43 3 s of {1,y ) on B, namely the ‘map defined by
ali) for 1= 1,....5.

211, Dernirion: An ordered triplet G = ({o,, ver0di 15 -’).whﬂr |73
and 1 ace subspaces of R, each s bei the ohogoral complemet of th atbr,
will be called a wmigraph. The elemeats gy, ..., 0, will be called the brandes
of & 1 and [ will be called the spaces of the reasiant valtages and. of the -
shant curewmis of €.

212, Dernerrions Lot &= (@0 0a3 ViJ) 502 sesmigaaph. For
AR nnbogmnl Projections of ¢ on 1, / will be depoted by

The matrices of pry1 K* -+ RY, pryx R Y, with respect to the
hd--,, +e., will be denored by @, T, Obviously
B=8,..8,], T=[r.rai

moreover B and T aré syrmmetric idempotent matrices such thar T =0 = 0,
®ir=l

22, Sockets, linear companerts and epuaiions

Let G = (e,;.‘..,(-,; V1) be o ccmigmph with » branches, Lot 7 be
& vector space over R. Let K be a subspace ot Hnd 7.
Angkn:m--{r 7 & P will be considered as & map of g, ...
+a) 00 1P, namely the map defined by w(a,) — #;, fac 4 = 1,

221, Deremos: The spaces
Vg = (we W jive =0, for every iei),
Lo = (we Pjpre =0, for every v V],
will be called the spaces of the Worsliages and of the Woairrents of G.




=

222, Dirvaniow: An ordesed pai (4, M) of subsets of {gy, ., ¢.) will
be called a reket ot G

2.23. Derpamon: Let (4, M) be a socket or G, Let b, ¢, with g4,
0,0 M, be elements of K; the linear map o V@ fr — IF defined by

ofe i} = Tholo + 2 0d0,)
e o

will be aalled a fistar Kompasens on the. socket. (4, M).

224, Disvsrios: Let (4, M) be a socket of G, let o be a linear K-com-
ponent on (A, Al), let & W. The ordered pair (g, ¥) will be called a fnear
Konttruit on. the socker (4, M), Let (6, ) Vo @ Lo if a(o,d) = #, then
we will say that {o,4) rerifis the constraiot (7, v).

“Fhe set of the sockets ot & will be denoted by 5(G). Let (4, M), (1, M}e
£5(G): the sacker (AU A', MUY will be called the wwivn ot (4, 30), (1, A1),
3ad will be denoced by (4, M)U (', M); it A A" and MM, then we will
write {4, M) (', M)

lﬂaknlm-mlmﬂnmm M). There are vatious

(', ) such that o may be considered &5 4 lincar Kcomponent on
(A, 31); for instance, every (4", A1) such that (4, M)c L, M),

Let g, 0" be linear K-components an u.gmmu (A M), (4. M), regec-
tively; lot ac R Obviously the linesr maps @+ o, 4u: Wi ® - IF are
linear K-componeats on the sockees (/I Mo, nr) (4, M), respessively.
Hence the sct of all the linear K-componears on the sockets of G, is 4 teal
vector space; it will be denoted by CulG).

225, Provosrvions Lat wa W= There exiot wwigue elemonts v Wy, d€ly
such it w = @+ 4. Wi hase

(@) =0, i=Tw.
() vie) = 8w o) = iw, for d = 1y

Pucors Weite & = O, i = Tw, For every ac [, we have a%o = a70m —
0w — 0; hence pe V. A similas argument proves that i€ Jr. Morcover
v i= (04 Dwm Fir =

Let veVe, #ele. If Obimm, then x=o —wmi—i'e Fanlr.
For every ach®, we have a'z = (pr, @)%z +- (pr, @)’z = 0; hence 2=0,
Ve, Fmi

Since @, T are symmetric matrices, statement (¥) fallows from statement (),
QED.

226, Conoany: Vi b o= W%, Vo= 0}

Puoor: foll
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227, Prorosrion: Lot 0 € Co{G).  Theas
{8) There exists a wnique matrix G e M{1xn; K), b that

afp, §) = i

il
Jor ey (9,8)€ Vad Iy,
) I iy ey By 635y e lemments of K biv that

ofe, i)
Jor ey (0,08 Vi ® fy, then
CELUES YA

Paoor: By (8) of Proposidon 2.2.5, the matrix & defined in () verifics
the condition desclbed in (#). Let o = M(1<a; K} verify the same property.
Since Vi - J w= W7 (sce Corollary 2.2.6), for every el we have g =
o spw; hence = 3, QED.

228, Conotuant: The mup o
wrpbipn of C(G) aste M(1xa: K),
wors The map o - & is obviously lineas and injective. Let @ w oy, ..
s 2] € M1 <9 K); let g be the Hoear K-component defined by

G defivid In Propesttion 2.2.7, it ax ise-

e,
thea & =a, QED,
Let s consider a system (o), wy), .., (7, 8,) of linear K-constmaines on

the sockets (Ay, M, ., (A,, B,), respectively. If there exists (o, 1) € V& Ju
(00 7,), then the system (o, 2,), v, (03, 2,) Will

= Sante) +_$];. io)

229, Rustane: Let Gy...., 5,6 M(1xn; K) be the marrdces associated
with 0y, .., 0,5 let N be the marcix defined by

If, for every solution we 07 of the system
Nt = fay .




we coastruct the ordered paic
(o) = (Ou, Tu) .
then, by Propositions 225 and 2.
which verify the constraints (o,
23, Dieperdence

Lot G = (lows 5 ViJ) be a scmigraph with # branches. Ler IF be
i veaat space over I Let K, A be subspaces of End W7,

sf ey o Gl el sl
a6, not al zero, such that d,

we obain the clements of e ® /i
(o).

232, Durmmos: A family g,
culled. A-sependent, if there cxise o,
ok A

of elements of M(1n: x) il be
1, not all zewo, such thac dya,

2.3.3. Prowostrion: Lt ay, .y 0, CelG): Jet &, e M{1xn; K) be
arnviated matrices (sce Proposition 22.7). Tle foliawing eovditions are equi-

Proar: The sotement follows from Comllary 2.2.6, Proposition 227 and
Definitions 23.1, 2.3.2, QED,

The information egarding & system of lincar constraints which can be

et by 5 SRy W e A-depeadense, vasies scconding to the choice

For example, if I = {0), the information s void, since cvery family

10, of cloments of Cu(G) it independent: while, i 4 = End 7, the

A-independence of u fumily o, .., 5, is equivilent to the consistency of the

system gy, w), ey (50 2,) for every @y, -, w, IF. Further cxamples are
given in the following subsection.

24, Dependense and migae selvability
. #adi Vo £} be & semigaph with # branches, The d-de-
fve information segarding the unique solvability of a system
of linear constrsints on G. Here ae some examples.

241, Exawree: Let W be a vector spice over B The Sdd R is, in »
@nanical way, 4 subspace of End I, Let K— 4 = R.
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242, Exaupen: Let 2 be an open connected subsct of R; let B = 9(2)
be the space of the distributions in £, The commutative ring R{D] of the
linear diffecential operators with conswnt cosfficients, is obviously a subspacc
of End . Let K = 4 = R[D].

243, Exusre: For every & >0, let fom (—6, 01w @¢): Let C be the
set of the ordered pairs (£, /); where e C(h). Let (1, L DeCs if
there exists ¥ < v, 8, such that fif, = gif,, we will wme(. Y~ (b, g} Le
I e G~ ; obviously W s u vectar space over B

space of the germs in 0 of the C=functions defined in some nelgh-
barhood of 0, is, in 4 cancnical way, & sobspace of IF,

Tet M be the field of the germs in 0 of the fuactions meromorphic in some
ncighborhood of 0. The non commutitive ring M[D] (for every fé & we
have Df = [ 4 {', where f" is the derivative of £} of the lincar diffcrential

tors: with eveficients in M, is obviously a subspace of End IF, Let
K=a=a(D]

244, Lonoun: Lot W, K, A b at describud in Excomple 240, or in Evample
242, or i Eample 243, Lot ar W W be a pom oo dlement of 4 = K.
Thea:

(o) a(WP)= 1,
(i) dim ket @< oo (in particalor: dim kee s == 0, in the cose of Examplr
241

Froov: The statements ate trivial in the case of Example 241, In the

case of le 2.4.2, statement (x) follows from Theorem 3.64 and Corol.
ey 261 of Referonce [ W], Let & 97(@); it Dm0, thtn ' 4 comimnt
fanerion; conscquently seatement (8} follows from Sabscton 1259 of Reer
ence [12].

In the case of Example 2.4.3, observe that solving an cquation afr) = »,
with »& I, s equivalent to solving separarely two opportunc linear diffc-
rential equations with C=-ocficients and leading coeffcicnts withont zers,
on inteevals (—¢, 0, (I, #), respectively, Consequently, the smatemcns follow
from Subscction XIIL1 of Reference [15], QED.

245, Prorosrions: Lt W, K, A b ar deaweibed in Escemple 241, or i
Example 242, or in Bxample 243, Let 0y, . 5, C(G).
(&) I r> my thom ey 0, i 0 ddependmt fomily,

By If v, dbew st exciet dy, oy € 3, ot all gore, mch shar, for wvery
we P, ihe ordered pair

®

serifies the camstraints (g, 0), .., (9, O).

) eVl In

(B, .o, do]7, Py,

. - Lo i




@I e =m and \-dependens fascily, thew thers excish
i, o ea.mwiw,wmp&wmw in ().

there exist units lell(rxr Jq,v‘m.m. K} sach that UNV has di
form (sce Subsection. 3.7 of Reference [13]).

167 = n, then the last row of UNV s 2cro; hence also- the list row of ON

seady] e the Tast row of U; 4y, ., d, are elements of 4, not

.o+ 8,3, = 0. Then sement (s) follows from

IF <, then the list column of DN Is sero; hence also e lisk coumn
Of NV i aet. Let [, -y 4,17 be the 1ast column of P s v d 810 cle-
ments of A, not all zego, such that N[d,, ... d,]7 = 0. For every we I we
bave Nid, .., d,#]" = 0. Then stement (#) follows from Remark 2.2.9.
Let the hypotheses of (¢) hold; by Propasition 2.3.3 there exist ..., 3, &
not all zero, such dut [3,, N =0; obviously [4,, ..., 4,] U1 UNF-
J such that £, 0. Since 4 = K

N4,
tement (r) follows from Remark 2.29, QIED.

24.6. Provosrrton: Let WP, K, A be ar desiriind in Exemple 241, or in
Ecample 24,3, or in Exaple 243, Lat 0, e 7. € Ca(G). Thow th fellszing
condlitians are equinslet:

oy 90 17 @ Adndependent family.
P, dhwre exists (9,9)6 Vie® T which wrifies the
ar )
-:-1 i waarm(nnar.a!.mﬁw;m-mm
0,0 (o, O o ke S (i is O-dimensintal i
o of B 241,
Let I, K, 4 be as doscribed in Example 241, ir in Escample 242; then K
e a casmaative rivg, and the above condities (o), (0, () ove equisalest 4o he fo-
condition:
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SarM(licn; K) be the matries. asocisied with ay, .

“f-

Pacok: Lei N, U, Fe Miuxu; K) be as deseribed In the Proof of Pro-
position 245 ler #, be clements of K such that UNW = diag (x,
let £, v be the awwomarphisms of 1™ defined by &s) = U, w(ae) = Vv
For every e 1%, we have

{10 1PN = a0} {sa 1P ONBY s = U)o
= (e IPniding (o, 2y () = E{o0)} =
= plze P ding (i, ces w2 = E()

Since @, ase A-independent if an anly (0% 0 O, then il che
statements follows from Lemma 244 and from Remark 229, QL.i)

3. - LINEAR BARAMEVIIG COMPONENTS AND TOMNLOGICAL SINGUL!

s

Bl Linear parameiric cmposents

Let G = ({prs o )5 ¥, 4} be 3 semigraph with i braaches, Let I be
2 vector gpace over R Let K, A be subspaces of End 7.

“The following definition farmalizes the nation of camponents which allow
arbitrary changes of the values of their parameters.

311, Dirisiion: Lee (1, M)e5(G). The space of all linear K-com-
poneats on the socket (4, M) will be called the fisear porametric K-composrat
on the socket (4, M), and will be denoted by Celd, 3)

Obviously Cyld, #)c C(G), and Culfors . 0.}, fs ) = Cel(G).

312, Resanx: Let (4, M)<S(GY; let G (A, M) be the space of fhe ma-
trices associated with the elements of Cyfd, M). By Proposition 2.27, we
Tave

e M= 007 + Tavlie,0 K}
Pt

The follawing definition formalizes the notion of topalogical singalarities.

313, Demvmos: A family Ce(d M), -, Cad,, M) of linear pars-
metric K-components will be called A-dependint if, for every ayeCaly, My, ..
wers 0@ CalA,, M), the family ay,...0, is J-depeadeat.

it B
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“Ihe topalogical chancicrization and the structire of the 4-dependent fa-
milies of linear parametric K-components, will be given in Subsection 3.5,

32. Tie popelugival digree of w wocker
Let G = (foy, sveils Vi d) be a semigraph with  branches.
3 Dnmrrws LechelmbwaHh.

K= iy Wil gy, < e < iy, w0 et 7z

defined by a-.(-; ls(v.). » 8(eJ]%. The spaces r,(V] #4l0y will be called
the spaces of the restrictions of 1 and 1 to. X, andt will be denoted by VEX),
X)X =0, we will write 1(X)= I(X) = {0}

322 Dermon: Let (4, M) e 5(G); the non segative integer
dog (4, M) = dim V() -+ dim ()
will be called the opalsgical degree of the socket {A, M).

323 Reuami: Regarding the topological meaning of deg (4, M), observe
that, if € s the semigraph sssociated with 3 graph /1, then

dg(,t.mum‘dnfwn:gwnc:,

where 7 denotes a tree and € a cotree of F.

Lot Xcfpyesode Thons dim 17(X)= dim (8,10, & X,
dun.'(.\‘; dlm (\-.\n.en

Proor: 1f X =0, the stutcasents are tivial. Let X 0; write

Aot} with o <<

Obriously VX) = {re8y i re8u); hence

dim V(X) = dim (i, ., 18,5 o= mank a2l

Since @ is symmetric, we have [l
i V(X) = mank 8. .
A vimilar aegumene proves. that dim F(X) = dim (g8 X3, QED.

325, Prorostrion: Lot (4, M)eS(G). Tiens deg (1, M) = dim 8, v,
loy € Ay 5, @305,

7e8,] = [8),..1:18,]7 henee
0]~ dim 8,fm, € X7
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Proor; Since 1 and £ are exch the omhoganal complement of the other,
the strement follows. immediately from Lemma 3.24, Q.ED.

3.3, Some afgebraic tosls

In this subseetion we introduce & notion of dependence for subpaces
R, and prove a certain number of relsting results, which supply the algebeaic
backgroond for the prosis in Subscetion 3.5.

331, Durvrnios: A family i‘;u ey &, of subspaces of R* will be called
dipendent it exery Farnily ements of R, with @, = B, .,
i lincarly dependent.

332 Prorostrions Let By, £, be o foilly o o | B
cesty et X, e a at of goarators for ;. The fallawing eonditioes are squi-

(B). There exisis @ M.m.; indeprndeat family x,
with ge X, ...zeX,

of aloments of B,

Let (4) hold Then there exist 2 lincarly Independent family
w8 B, and an rmuliilinear akiernating map #: R*@,. @R R,

333, Provosrmion: Lat E,

J E, bt « fanily of subspacts of R*. Thers
+ 51 of e of P, wbich verfy b fliing

exist a field F, aud & family 2,
conditisn:

Far very J ] e fanily (E,UEJ)ljnnpm of R" i independest
i ond only if the famtly (511 J) of v of = is dmarly dadeprudin oer F.

Proors For e 1, ....r, let 4, be a matrix whost columas arc a sct of
geaerators for £,; lex x, be the number of columns of 4, Let

Gl

be & family of independent variables aver R (sec Subscction V.3 of Refer-
€nce (L1 e be th ol g i thse vacbie, ad F e -
tient field or R, Forj 2= A6 P,

Let ¢ {1, ..., ). Without loss of generality, we may clearly assume that
=tk

Plsisa)

ﬁ—#
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L E, is independeat. Then there exists o
m\. ‘homomorphism i R —» R, with iR = i, sach that the family A, f (), ..
A, (5) of elements of R, is lieacly independent over R, Henee these
exists an 17 submattix M of [4,1(x), ., A,f(%)], such that det M0,

Converscly, assume that the family 2, nfvh:-m of F* is lincadly
i pry nm.mmwmx”.mmxorm,z,. A,x,]
such that det M 0; obviously det M= R. Since R is an infinite field, there
cxists & ring bomomorphism f: & -» R, with /R = 4, lndnhn](dnmdﬂ
{sce Subscstion V.4 of Reference [11]). Hence the family 4, f{x)e £,
vo A, f(x) & E, is linearly independent oves R. This proves that the family
By, ..., E, is indepenent, Q.ED.

334, Prorostrios: Lat By, ..., B, b o minimal dependout family of b
spétes of R®, Theo:

T E —r—1.
=
Proor: Obvioutly 15rSe+1. If =1, or r=wif-1, then the stace-

meat is trivial, Hence we may sssume 250 % n.
Let 4, ., F e i the Prof of Propenion 3.3

of over F.

o 1y et A; be the mateix formed by the first r — 1 rows of 4,
A;z] has 2 aon singlar (r— 1) — 1) submateix.

w6 F, all not rero, such thiac [m A5, =0, thea,

o BB B By AR 0.

[Bare o B [Ny s A8 ] = (133 o BB ]

Az]=
= (BB Bt BBy




by Cramer's theozem, we have
[N
Comsequently, fi,,,

A

imy o AL ¢ cows

1Ay ase linearly independent ovee K. Then the mok of u- |4.]

| £ 1. Since 5 £, is the space spunned over R by the columns of [4,] . 14,
=

I our statement is prived, QUED.

I 3.35. Proroson: Lat B,
Jaing. canditiser et eqinalins:
(4} The family £,
() Thre. axics Je f

e fmily of subepaces of R*. The -

E, ir depmadent,
o} sk shot dien 3 By < ]

Proor: Let (4) hold. Thea there existy /o {1, ., r} such that (Elje f)
s & minimal dependent fanly; by Proposition 3.34 we oban dim 3 £, £
= |J|=1. Obwviously (8) implies (a), QED.

34, Colersst spacer of . peraters
Let ¥ be a vector space over R ket K, 4 be subipaces of End IF,

34,1, Deewsrrion: K will be called a d-sabrons space of linear operators
GF W if, for every 4, M{1s; K) vesifis the following conditionss

| () there exist J-independent £tuples @, .., a, of elements of M(1 313 K)
{ice Definition 2,

(i) every r-tuple ay,..., a,, with r> s, of elements of M1 K) s
A-dependeat.

Here arc some cxamples of d-coherent spaces of linear operators.

34.2. Provoscion: Lot W, K, A v ar deacribed in- Esamphe 240, ar i
Example 242, or in Example 24.3. Then K ir o A-cabersas spose of lvesr apere-
nore of .

Proow: Obviously M(1xs; K) verifies condition () of Definition 34.1.
‘The argument used in. the peoof of statement {s) of Proposition 245, proves
that M(1x5; K) verifies condition (if) of Definition 3.4.1, QED.

343, Prorosmion: Lot W, K b ar desribed in Evcomple 241, o in
Eixcample 242, or in Esctaple 24.3; Jot Awalind W, Then K is a A-coberent space
of fivecr aperators of W (regarding the meaning of End W-coberence, se Sub-
section 2.3},
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Proor: Obviowly M(1:xr; K) verifies eondition () of Definition 3.1

Let r =, and let @y, .., @, € M(1is; K); by Proposition 342, a,, .
& K-dependent family, bence @, ..., @, & also an End W-dependent family,
QED.

Provosrrion: Let W be o fisitedinmsions] wectsr spue; et K be w
n‘a,emnjmw ot A End IF. The folfawing conditions are. eguivalens:
(a) K ir w Aalarent spaie of dinear operators of W.

(&) Jun K thore. exicts an awtomorpbive of W,

Proor: Tet (4) hold, Sinee M(i31: K) verifies condition () of Defini-
tion 3.4.1, there exists a € X such dhat, for every non-xceo element ¢ End IF,
we have da4 0; bence (B — TP Sinee dim P < os, then a is an wwmor-
phism of W,

Let (8) hold, and let ae K be an autsmorphism of W. The family & =
=i, s e @, = [0, ey 0, ] oF dnncms o{ M(ts: K) i obviously
Windependent, Let ¢, 40d It @, oy family of clements of
; let v W'—-V‘hd‘ilwr\'mp&ﬁrmlh;

wiw) = layw, .., g w]".

Since. dim U< dirn 1P, then v Is not sucjective ; hence there exist & .., d,e
e Ead W, not all zezo, such that g, 5 4 A, 8= 0, QED,
3.5, Dupondence theorems mder coberence asussprions

Let G = ({ty, -, 82} V, 1) e o semigraph with » branches. Let IV be
& vector space over R; let K, 4 be subspaces of End U7,

351 Lessis Lat (dy, M),
ihe follawing conditens are equiveions:

(0) Celilys M)y, Calidys MY e Mesepustent famly of v parametric
Kecompanerts,

(A, MYES(G). [f K ir dwioberent, then

ity A,y 0,5 M) it a dopeudont fu-

(UL LR T AN
iy of st of R

Puoor: Assame (5). By Proposition 3.3.5 there exist/, -
<% r, such that

jovith 15 3 <

dim( T8 vine e,



— B

Yous woos Yo, De @ basis of

;‘("u R AR A

hviousty o dasn
o5& Ca. Jovios 8,8 €l ). By Remark 3.1.2, there exists
Ac Misx (T +n)i K) such that

i, 4, ot all zero,
heace dyoy 4.+

4] 4= 0; e &G, + v+ 4,5, =
=0. We have 0 proved that (#) implics @

Convessely, sssume that the family described in (F) s independent. For
J= L, there exists m€ 0, yalps € Ay, pac M), such thar the family
w, 15 Lineacly indepeadent. Since K is A-coherent, then there exists 4
lependent clement « € K. By Remark 3.1.2, we have saleCx(dy, My,
-w!sc‘(t,.m Let &, ..., 4, be elemeats of A such that dysal +
-+ d,aal = 0. There exists a non singulac £ submateix M of [a;,
consequently we have

[ty iy g} M= 0, [,y ) = OMS =0, g =g e

Smlls.]mﬂqw_ndr_nlwe d == d=0; then se], .. anl s
- family. l’!ﬂpﬂ:uon zm.dxrmm Culehy, M),
Gy, M) B8 J-mdrv:nﬂnn

352, Twmonnst: Ler (4, M),
then Hhi foiliwing sonditions ave aquisaleni
(6) The family CafiAy, M, .y Gl MY it A-dependont.
(6) Thore axiite ¢ {1, vy 1} sneh thot degl) (4, M < |J1.
s

(e MYeS(GY. If K ir A-ivberent,

Proor: By Propasition 3.2.5, for every /¢ (I, ..., v}, we have
deg U €4, M) = dim (0, v, i€ U A 0,01 36 =
- G
=dim ¥ (8, yalosed, pue My
&
Hence, by Prapasition 3.3.5, condition (i) holds if and only if

W viene A, e,

Velpie Ay, pae M

< i el
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3 dpendsn tly of vtwpaces o T oo st s 4 comegence
of Lemma 35.1, QE.
| 353 Conpuanxs Lot G B (e MY ES(GY. Lt K B drebron.
() If e, shen 2e famsily Cul Ay, M e, Calddys ML) it A-dependens,
8y If the fawily Caddy, M), ooy Celdy

M) is Aindependent, wud <,
.*'f*mml..a Moy s (s M, .55 srch tht tbe fumly oy, A,
s Cal AL, M) is Avindspeadent,
Proor: The stusement is & consequence of Lemuma 3.5.1, QED.
354, Tusoxuu: l-rf (A M)y oy (g MYES(GY: et the family Gl
Ay, e, M, A-drpendent. i dovlerent, them:

(@) There mm maxcimal N-independent  mbfarilies of Caly, M), ooy
Cifdlyy M)

0 Thn ol kg by Wb D b i 8, e g
(el M)\J!ﬂ is & meimal A-iadepesent subfunitly of Culyy M) s
Gl M), then || =

@ Let (Gl u,)js)) b macimal ddndepesiont

ependent  swbfamily f
ey, M), ooy Caldys M) Fﬂ'm'lll 27} =y the family (Cotdy, M)
e U ) dar a weigee simiseai quhnq_ﬂ

Proos: The stutement is  conequence of Lema 3.5.1 and Proposition
333, QED.

. Proroson Laf (M, U M €SO0 bt Cully M),
r:..<,1,,m b o el Adepenaent family, 1f K i docobern,

d:g}}l(.i,‘ Mywc—1.
Puoor: By Lemuna 351,
W, Yalpa € Ay 00 E My B, Yaln €y, o€ My
is  minimal dependent Eamily of subspaces of R, Since
d-g"u ()= i 5 O, e Ay e M

(see the Proaf of Thearem 3.5.2), the statement follows from Praposition 3.3.4,
QED.
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36, Some. remarks.regamiing colerence asmmprinns

In Subscetion 3.5 we proved tha, if & is a I-coherent s o i e
tors of IF, then the d-dependent families of linear paramerric. K-components
are characterized by the topological condition on their sockers dmlh:d in ()
of Theorem 3.5.2, ion holds oaly if K is .1 as sharen
by the following theorem:

36,0, Tuwonnsc: Lot W be a vcter spove over B Jir K, A be sbspover of
End ¥,

Lo, fir ey awigraph G and for every family Cufly, i), o, Cold fex ) of
linar parasmetric Keoowpontnts of G the fallowing comiiions be emiatms:

() Clityy M, ooy Sy, M) s 0 Acdepesdins famity.
1) s thot degl) 1. M) <

lestly, assume that there exises 5 such that every stuple of elements
x) ddqulduu Then every ac K s eat.

€34, M) = leatia K|, Then, the family c.(a Ay Veri i N
but doesa’t vesify condition (4).

Sccondly, asume that there exist s and 4 -independeat rauple @, ... a,
of elements of M{lxs; K, with r

Let G = (o, ot 21V 1; m sonlgsptivich s
socket of © such thar deg (A, M) = r. Wekte (dy, M) =

= (4, M), and consider the family Caldy, M), oy Calys M.
Let 0y, .o, be a basis Of <, y,/aue 1, pue M3 let

L a
Fl il
. L5
By Remack 3.1.2 we bave thy £ C5( Ay, M), ., e Cxid,, M), Let by,
be clemeats of 4 such that d, + - + Ay = 0. Let

let (A4, M) be a
M) =

&

= s s ]

2 &]7 = 0. There esists 2 non singalar £57 submatrix

comsequently we ave [0y vy 8,1 M= 0, [3 ..., ),
Since the famlly. g, ..., @, s d-independent, then

0. Hence the fumily by, s Arindepiodens
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By Proposition 2.3.3, the family Cly M) ..., Gl M) doesa'r verify
condition (s}, but verifies eondition (#), since &!U (g, M) = deg (A, My =
=r<r, QED.

337, Dependence and smoid change

Let G = ({n, 2.1 ¥, 1) be a semigraph with » branches. Let W7, X, 4

be 35 described in Example 241, o in Example 24.2, or in Fxample 243,

874 Demarmats Lo G M@ UG T Uik =i U, 30
be called an lementary soc

372 Lesua: Lt
(s B, oy (A MY ES(G) .

e, M) s Acdudepindrat, then rbm oxist rlemen-
M) which verfy thv follmwing conditio

&) deg() (i, 3) = .

Fi By Peoposition 342, K Is A-cohesent, heace Lemma 3.5.2 spplies
10 (i, My)y s (A, M) then

B Yuler €Ay pu € My el € A e €M

s an independent family of subspaces of K", By Propasition 3.3.2, there exists
2 linearly independent fumily By, ., B, of elements of B, such thar

Bie B v, medl)  forf= b
1€ B, =8, with o, 4, writ (.l‘.lll-(la,lJ’J: 3By, with
opy M, write (A,Jﬁ = (0, {g,)). Oviously the Fumily (4], ML),..., (47, 4)
werifies conditions (s), (8), QE.D.
s . Tomonr: Let :,1..3.)
mily of dfwsr Kecompammbs o o, E
Sareily Sy, M), v C:{JL. H’.) it li--imi-f then,
(§) for evury familly (A%, M), M) of elementary sockets which verify
condibionr (o), (B) of Lemees 392 with respect dn (Ay, My), oeey (A, M)

(i) for every family Tyury Ty of vaboets of €y M), oy €04, M),
respecisey, b bt [T 1y ey (T 221,
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the et 1, €Ty, 1, T, o thot the family o,

Kecourpanents om the mhll [ (A M), :qp-mul h
r: Let (rl.,!f') ,(41,,.“)

bed in (i), (). f“

lf M M')- @ fe. ),

d T,
dhat a;

T, werify the conditions
i (4} )=((n"I @), writc a, = 8,,,
. Let a8, 4 of R* such
@iy @, 15 4 basis of 3 0, yalgu €4, 0 0 M)
L&t 5 oy 5, € M( s K} bt the atrices assoiated it
Remark 3.1.2, there are clements 3, K. such that

3 Ik-}'
o 177 be the sets. of marrices associated m&! the elements of
ively. For every 1 e 7), by Remark 3.1.2, there exists be K
We contend dhat, for b w1, .7, .omunuu tamily 3y, of elements
of K, which verifies the following cond
() bl T7, o, bale 1T,
@) the family of the o of

b L
: o | ding (B e )
LY L

s independent,

Let s prove dhs stateemcac by inductiva on b If b= 1, the statement is
wrivial, since 4 = K b 4 domain of integrity, and {7y} > 1, Let ar be an integer
such that 15 <

Let the family by,

et s assume the statcmeat proved for b .
T v o
2, let by be the jith row

vesty ooeilidons (4}, U for b= w, Fet = Ly
of

1 G e
: 2 |+ di oo By
['-- ¢ ‘_] g (s ooy B}

tet By = [huerss imle Let
i 2 these exist dy L, d e 4 sues that "5 48, 0
Obviously, #7 is a left ideal of 4. Since 4 Is & principal ideal domain, there
exists d, 1€ 4 such thag e 0], Since Kis
tioa 342), and by, .., b, -
then M {0]; hence 4.
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b= 0 Lt dy oy b clemeats of A such thar :u..c there
exists Ged such it = 8, ; heace zi,&, Fod;8,. Since B,
R e
[ i g} = 94,

Far j e 1, oy, let B b the fth 0w of

by LT
: T + [diag By, e £00]
e b b,

1, for cvery be K, the family
b= b, basps ]
s Aeindependent, then, for every by K such that buyal @ 720, the f-

il by, -, by bysy verifics conditions (o), (§) for A= m--1. 1f here exists
IEK such that the family

i Audependent, thea these exists d&.1, 440, such that X 45] =0 in par-
ticalar =t
A Z b+ daib)
sipes 8 m K b o et divieor, ased b 0, 15 o ros— 5 o By Sl
Fanl>1, 4L, 0, and A= K bas no zero-divisor, there exists by K
such that bury@l o8 75, and that
LA - ‘-nli*;“«"n-u-
Then the family by, ovey bay buyy verifies conditions (a), (5) For bem w4 1.

previous argument proves that there exist by, .., b€ K such that
baTe T, for j= 1. r, and that the family of the rows of
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Forj = 1yt let , b the elemeat of 7, puch that 3,

be clements of 1 tach hat z.qg., +5)= 0. Since $4G, +3)=0, we

.,([“ m@;,...*,,a.___.,,) Un

=06 M(1xu; K).
Since the family a;,
such that

vt is linearly Independent, there exises I € M(gx 1 W)

@l
s (W= reditnn.
o

- r———

Since the family of the rows of |

| s iy,
| : | ding )
by

s drindependent, then dy = ... = d, = 0. Hence the family w4,
is deindependent, Q.ED.
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