

Rendiconti
Accademia Nazionale della Scienza detta dei XL

Manurie di Matematica

104- (1980, Vol. X, fasc. 18, pagg. 207-212.

ESTEBAN INDURAIN (*) - PAOLO TERENZI (**)

A Characterization of Basic Sequences in Banach Spaces (***)

Una caratterizzazione delle Successioni Basiche negli spazi di Banach.

Surro. — Una successione di uno spazio di Banach è basica se e solo se ogni sua blocco-perturbazione è M-basica forte.

Let (x_h) be a sequence of a Banach space B and let (f_n) be a sequence of B^n (the dual of B), we say that (x_n, f_n) is bist-thogonal if $f_m(x_n) = \delta_{nn}$. (Kronecker indices) for every m and n. Let (x_n, f_n) be biorthogonal, we say that (x_n) is

- M-hasti of B if B := [x_n] (= span (x_n)) and if {0} = [f_n]_± (= {x ∈ B; f_n(x) = 0 for every n);
- ii) strong M-basis of B if B = [x_n] and if [f_n]_i = [x_n] for every complementary subsequences (s_n) and (s_n) of (s);
- iii) haste of B if $x = \sum_{n=0}^{\infty} f_n(x)x_n$ for every x of B.

Moreover we say that (\mathbf{x}_a) is M-basis (basis) of $[\mathbf{x}_a]$. If $(\mathbf{x}_a) \in B$, $q_b = 0$ and (q_a) is an increasing sequence of positive integers, we say that (\mathbf{y}_a) is

block perturbation of (x_n) if $[y_n]_{n=0,\ldots,+1}^{\infty}=[x_n]_{n=0,\ldots,+1}^{\infty}$ for every m.

Our aim is to prove the following

THEOREM I: A sequence is basic if and only if every block perturbation is strong M-basic.

(*) Deparamento Geomeria Topologia - Universidad Zaragous.
(**) Dipartimento di Manematica - Piazza Leonardo da Vinci, 32 - 20133, Milano.
(***) Memoria presentata il 18 febbesio 1986 da Luigi Amerio, uno dei XI.

In § 1 we shall prove the theorem by means of a geometric characterization of the basic sequences and by a recent result of Plans.

In § 2 we shall give another direct proof of Th. I by means of the concept of unitary position.

1. - A NEW GEOMETRIC CHARACTERIZATION OF THE BASIC SEQUENCES

We shall prove the following

THEOREM II: Let (x_n, f_n) be bisethogonal in B, then

$$(x_n) \text{ is basis } \Leftrightarrow \cap \left\{ \left[\sum_{n=1}^{\infty} f_n(x) x_n \right]_{k=1}^m; \ (w_k) \subseteq (a) \right\} = [x] \text{ for every } x \text{ of } [x_n] \,.$$

In [4] Th. II is proved for the reflexive case. In [3] it is proved that Th. II implies Th. L.

PROOF OF The II: Obviously it is sufficient to prove the inverse implication. Let $x \in [x_n]$, by [6] (p. 146, Th. 13.1, a), $1^0 \Rightarrow 3^0$) it is sufficient to prove that

$$(\nu_n)$$
 weakly converges to x , where $\nu_n = \sum_{n=1}^n f_n(x) x_n$ for every m .

We affirm that (x_n) is bounded, because if $\lim_{n \to \infty} |x_n| = +\infty$ for a subsequence (s_n) of (s_n) , $(x_n/|x_n|)$ would not have subsequence weakly convergent to $x' \neq 0$ (if $(s_n') \subseteq (s_n)$ with $(x_n/|x_n|)$ weakly convergent to $x' \neq 0$, it would be $f_n(x') = 0$ for every n, which is impossible since (x_n) is obviously M-blasic and $x' \in [x_n]$, therefore it would follow by $\{T\}$ ((p, T]) that

(1)
$$\cap \{[s_{n_k}]_{k=1}^m; (w_k') \subseteq (w_k)\} = \{0\},$$

which contradicts the hypothesis.

Then (μ_n) weakly converges to x_i otherwise by the ethird Frécher's actions [1] there would exist a subsequence (x_n) without subsequences weakly convergent to x_i , these without weakly convergent subsequences, (since if $(a_n) \subseteq (a_n)$ with (x_n) weakly convergent to x_i , it would be $f_n(x_i - x_i) = 0$ for every a hence $a = x^i$); therefore, since (x_n) is bounded, it would follow by [7] (p. 172) (1) again, which contradicts the hypothesis. This completes the proof of Th. If

2. - On the concept of unitary position

Given (κ_n) we say that $\kappa \in [\kappa_n]$ is in unitary position as regards (κ_n) if there exists a subsequence (a_n) of (a_n) such that $\kappa \in [\kappa_n]$, $1, \kappa \notin [\kappa_n]$, $\mu_{r,r}$ for every k.

In [5] (see also [2] p. 121-126) it is proved, in the frame of biorthogonal

sequences, that

(x,) is strong M-basic - every element of [x,] is in unitary position as regards (x,).

Then in order to prove Th. I it is sufficient to prove that, if (x_n) is not basic, there exist $\tilde{x} \in [x_n]$ and a block perturbation (x_n) of (x_n) so that \hat{x} is not in

unitary position as regards (\(\xi_n\)).

Firstly we prove the following

PROPOSITION 1: Let (v_n) be a basic regiment of B and let (u_n) be a required of a finite dimensional subspace U of B; then, if $v_n = u_n + v_n$ for every u_n it follows that:

(x_n) is M-basic
$$\Leftrightarrow$$
 (x_n) is basic.

PROOF: Indeed suppose that (s_n) is M-basic but not basic. By [6] (p. 58) there exists a block regimes (s_n) of (s_n) (that is there exists an increasing sequence (g_n) of positive integers so that, setting $g_n = 0$, $s_n' \in$ $s \operatorname{span}(s_n)_{n=1}^{\infty}$, if for every m) such that

(2) $s'_s = s'_s + s'_s$ and $|s'_s| = 1$ for every s, with $\langle s'_s \rangle \in U$, $\langle s_s \rangle$ basic and $s'_{2s-1} - s'_{2s} \rightarrow 0$.

Since (n'_n) is bounded (otherwise $(n'_n)(n'_n)$) would have a convergent subsequence, while it is basic), there exist $(n_n) \subseteq (n)$ and $(n'_n) \subseteq (n_n)$ so that

$$H'_{t+-1} \rightarrow H'$$
, $H'_{t+1} \rightarrow H'$;

then u'=u'=u (otherwise by (2) it would be $v'_{kk_1}-u-v'_{kk_2}-u'-u'=u'=0$, impossible since (v'_k) is basic), hence by (2) $v_{kk_1}-v-v'_{kk_2}-v$ 0, that is $v_{kk_2}-v-0$ and $v'_{kk_2}-0$ since (v'_k) is basic; therefore by (2) $v'_{kk_1}-u$, impossible since (v'_k) (block sequence of (x,u)) is M-basic. This completes the proof of Proposition I.

PROPOSITION II: Every M-basic but not basic sequence bas a block perturbation with a subsequence which is basic with brackets but not basic.

Where (x_a) is basis with brackets if there exists an increasing sequence of positive integers (q_a) such that, setting $q_b = 0$,

$$N = \sum_{n=1}^{\infty} \left(\sum_{n=0}^{n_n} a_n N_n \right),$$

with (a_n) unique, for every x of $[x_n]$.

PROOF: Let (x_n) be M-basic and not basic.

We shall prove that there exist a sequence (j_n) of B, $1 < k < \infty$ and an increasing sequence (g_n) of positive integers so that, setting $g_0 = 0$, for every

(i)
$$(y_{0n-1}, y_{0n})$$
 is block sequence of a block perturbation of $(x_n)_{n=n-1}^n$;

(3) (ii)
$$|y_{2m+1}+y_{2m+2}| < 1/2^{m+1}$$
 and $|y_m| > K2^{m+1}$,

moreover
$$|y_1 + y_2| = 1$$
;

(iii) dist
$$(y, [y_n]_{n>2n}) > |y|/K$$
 for every y of $[y_n]_{n=1}^{2n}$.

We can suppose (κ_a) in $C_{6\rightarrow 1}$ then, if (ϵ_a) is the Schauder basis of $C_{6\rightarrow 1}$,

(4)
$$x_m = \sum_{n=1}^{\infty} \varepsilon_{mn} \varepsilon_n$$
 for every m .

Since (x_n) is not basic, by [6] (p. 58) there exist y_1 , y_2 so that (i) for w=1 is true moreover $||y_1|>2^p$ and $||y_1+y_2||=1$.

Fix a positive integer p>1.

Suppose to have $(r_n)_{n=1}^p$ of positive integers and $(y_n)_{n=1}^{2n}$ of B which verify (i) and (ii) of (3) for 1 < m < p; moreover for every 1 < m < p and for every y of $[y_n]_{n=1}^{2n}$

dist
$$(y, [y_n]_{n-2n+1}^{2n} + [\epsilon_n]_{n>\epsilon_n}) > (1-1/2^{n+1})|y|$$

where $[J_n]_{n=1}^{2s}$, does not appear if m=p. By (4) it is easy to see that there exist a positive integer s_p and numbers d_{mn} so that, if

$$x_{pm} = x_m + \sum_{k=t_0+1}^{t_0} d_{pmn} x_k$$
 for $n > t_0$,

then $(x_{gn})_{m>r_0} \subset [r_n]_{n>r_0}$. By Propos. I $(x_{gn})_{m>r_0}$ is not basic, hence there exist q_{g+1} and (y_{gp-1}, y_{gp+2}) block sequence of $(x_{gn})_{n>r_0}$ so that

$$\|y_{2p+1} + y_{2p+2}\| < 1/2^{p+1}, \|y_{2p+1}\| > 2^{2p+1}, \|(y_{2p+1}, y_{2p+2}) \in [N_n]_{n=p_p+1}^{q_{11}};$$
 finally there exists a positive integer r_{p+1} so that

$$\operatorname{dist}(y, [\varepsilon_n]_{n>n}) > (1-1/2^{p+2})|y|$$
 for every y of $[y_n]_{n=1}^{kp+2}$.

So proceeding we get (y_n) as in (3) for k=2; which completes the proof of Propos. II.

 2^{ik} *moor or Ts. I: We consider the particular case of $[\kappa_i]$ norming, that is (see [7] p. 174) there exist $1.e^k < \infty$ and a not decreasing sequence (j) of positive integers so that $|\kappa| < K$ dist $(\kappa_i | \kappa_i|_{k > k})$ for every ∞ of $|\kappa_i|_{k = 1}^{k > k}$ and for every m. Suppose that every block perturbation of (κ_k) is strong M-basic. If (κ_k) is nor basic, by Propos. II we have a sequence (j_k) as in (j)

for (ii) and (iii), moreover with $y_n \in [x_n]_{n=\infty, j+1}^{\infty}$ for every w_n then set

(5)
$$\bar{x} = \sum_{i=1}^{n} (y_{2n-1} + y_{2n}); \ v_1 = y_1, \ v_{n+1} = y_{2n} + y_{2n+1}$$
 for every $n > 1$.

If $x \notin [s_n]$ the theorem will be proved; indeed setting by (3)

$$z_1 = y_1$$
 and $z_n = x_n$ for $2 < n < q_1$;

moreover for w>1

$$\label{eq:continuous} \begin{split} & z_{n,n+1} = y_{2n} + y_{2n+1} = r_{n+1} \quad \text{and} \quad z_n = x_n \quad & \text{for } q_{2n-1} + 2 < n < q_{2n+1}, \end{split}$$
 then it follows

 $x \notin [\xi_1 \cup (\xi_{t_{2n-1}+1})_{n-1}^{\infty}],$ while $\operatorname{dist}(\delta, [\xi_1 \cup (\xi_{t_{2n-1}+1})_{n-1}^{\omega}] + [\xi_1]_{t_{n-1}+1}^{t_{2n-1}+2}) \le \|\hat{x} - \sum_{i=1}^{n} (y_{2n-1} + y_{2n})\| \le \sum_{i=1}^{n} \|y_{2n-1} + y_{2n}\| < 1/2^n$

for every
$$w$$
; that is \hat{x} is not in unitary position as regards the block perturbs tion (τ_n) of (x_n) , which contradicts the hypothesis.

In order to prove that $\mathcal{E} \notin [F_n]$ it is sufficient to prove that

(6)
$$\left\| \bar{x} - \sum_{n=1}^{\infty} a_n \bar{r}_n \right\| < 1$$
 implies $|a_n| < 1/2^n$ for $1 < n < m$;

indeed, if (y_n, b_n) is biorthogonal, by (5) $b_n(z) = 1$ for every z, while by (5)

$$b_1(\sum_{n=1}^n a_n v_n) = a_1$$
 and $b_{2i}(\sum_{n=1}^n a_n v_n) = b_{2i+1}(\sum_{n=1}^n a_n v_n) = a_{k+1}$ for $1 < k < m$.

Fix $1 , setting <math>a_{m+1} = 0$ we can suppose true the thesis of (6) for p + 1 < m < m + 1 and we shall prove the thesis for n = p. By (3) and (5) we have that

$$\begin{split} \left\| a_{p+1} y_{2p+1} + \sum_{n=p+2}^{n} a_n v_n \right\| \leq \left\| \sum_{n=1}^{n} a_n v_n \right\| + \left\| \sum_{n=1}^{p} a_n v_n + a_{p+1} y_{2p} \right\| \leq \\ \leq \left\| \sum_{n=1}^{n} a_n v_n \right\| + \left\| \sum_{n=1}^{n} a_n v_n \right\| K. \end{split}$$

Hence by the hypothesis of (6) and by (3)

(7)
$$[s_s, j_{2s-1} + s_{s+1}, j_{2s}] < \|\sum_{i=1}^{s} a_i s_a\| + \|\sum_{i=1}^{s-1} a_i s_a + s_a, j_{2s-1}\| + \|s_{s+1}, j_{2s+1} + \sum_{i=s-1}^{s} a_i s_a\| \le \|\sum_{i=1}^{s} a_i s_a\| (2 + 2k) < (|s_s| + |t\rangle(2 + 2k) < 4K(|s| + 1).$$

Moreover, since the thesis of (6) is true for a_{n+1} , by (3) we have that

- $\begin{array}{ll} (8) & & |s_{p}g_{p-1}+s_{p+1}g_{pp}| > (|s_{p}|-|s_{p+1}|) \, |\, g_{1p-1}|-|s_{p+1}| \, |\, |g_{2p-1}+g_{2p}| > \\ & > (|s_{p}|-1/2^{p+1}) \, |\, g_{2p-1}|-1/2^{p+1} > (|s_{p}|-1/2^{p+1}) \, 2^{2p+4}K-1/2^{2p+1} \\ \end{array}$
- By (3) and (5) $1/2 < |\hat{x}| < 3/2$; hence by (7) and (8) we have that $|x_i| < (4K(|\hat{x}| + 1) + 1/2^{kp+1})|2^{kp+4}K + 1/2^{p+1} < 1/2^{kp} + 1/2^{kp+1} < 1/2^{k}$.

This completes the proof.

BIBLIOGRAPHY

- [1] K. KURAKOWKKI, Topologie, Polish Academy of Sciences, 1932.
- [2] E. DEDWARN, Dieleral Their, Universidad de Zaragona, 1985.
 [3] A. PLANN, A simularization of basis requires in reflection Basach spaces, Collected papers dedicated to H. Schaeffer, Tobinseen, 1985.
- [4] A. Reves, A geometrical characterization of Schouler basis, Arch. Math., 39 (1982), 176-179.
 [5] A. Reves, A geometrical characterization of strong M-basis, Rev. Room. Math. Pures. Appl., 30 (1985), 499-461.
- [6] I. Sivora, Bases in Basus's spaces I, Springer, Berlin-Heidelberg-New York, 1970.
- [6] I. Siveann, Bases in Banach spaces I., Springer, Berlin-Heidelberg-New York, 1970.
 [7] P. Terrister, Biorthopous systems in Banach spaces, Riv. Mat. Univ. Parma, (4) 4 (1978), 165-204.