

CARLO CASOLO (*)

Groups in which All Subgroups are Subnormal (**)

Gruppi con tutti i sottogruppi subnormali

RIASSUNTO. — Si prova che la serie derivata di un gruppo in cui tutti i sottogruppi sono subsormali si arressa dopo un muntero Siniro di passi.

Let \Re_0 denote the class of groups in which every subgroup is subnormal. All non-nilpotent \Re_0 -groups constructed so far ([3], [4], [5], [6], [7]) are metabelian, and it is still an open problem whether there exist non-soluble \Re_0 -groups. In this Note we prove the following:

THEOREM: The derived series of a Regroup terminates after a finite number of steps.

This improves previous results in this direction $\{11\}$, $\{2\}\}$, and is a consequence of an idea of Brooker, and of a Theorem of Roseblade's [8], which gives a function $\mu(p)$, such that every group in which all subgroups are subnormal of defect at most n_i is nilpotent of class at most $\mu(p)$. An easy cooliary of our Theorem is the following.

COROLLARY: A residually finite Nagrump is soluble.

Our first Lemma is a generalization of Theorem B in Brookes [1]; for sake of completeness we give a proof of it. In the statement, M is a class of groups, such that no nilpotent group belongs to it.

LEMMA 1: If $G \in \mathbb{R} \cap \mathbb{R}_n$, then there exist a positive integer r, and a M-cub-group K of G, containing a finitely generated uniquenp H, such that every \mathbb{R} -subgroup of K which contains H has defect at most r in K.

PROOF: Let $G \in \mathbb{R} \cap \mathbb{R}_0$ and assume, by contradiction, that for any \mathbb{R} -subgroup K of G, any finitely generated subgroup H of K and any positive

(*) Indicizzo dell'A.: Seminacio Mammarico dell'Univarsità, Via Belesci 7, I-35131 Padova.
(*) Nota persentata il 7 aprile 1986 da Giusappe Scorra Dengosi, uno dei XI...

integer r, there exists a \mathfrak{M} -subgroup of K, containing H, whose defect in K is greater than r. By induction on i, we define \mathfrak{M} -subgroups K_i and finitely generated subgroups H_i of G such that:

$$K_{i+1} \not\subseteq K_i$$
 and $H_i < \bigcap K_n$ for every $i \in \mathbb{N}$.

We put $K_i = G$, $H_i = 1$. Let i > 1 and assume we have already defined H_{i+1} , H_{i+2} , and K_{i+1} , Now K_{i+2} G is consists the finitely generated slave group (H_{i+1}, H_{i+2}) , then, by our hypothesis, there exists a \Re subgroup K_i of K_{i+1} containing (H_{i+1}, H_{i+2}) of defect generate requils or in K_{i+1} . Hence there exists a finite subset S of K_{i+1} and a finite subset T of K_{i+1} , which there $T_{i+1} \sim 1/K_i$ where $T_{i+1} \sim 1/K_i$ and other the $K_i \sim H_{i+1}$ in K_{i+1} is the $T_{i+1} \sim 1/K_i$ for any $a \in K_i$ and $a \in K_i$ in $a \in K_i$ and $a \in K_i$ in $a \in K_i$ in $a \in K_i$ and $a \in K_i$ in $a \in K_i$

LEMMA 2: Let T be a subgroup of a group K. If every subgroup X>T of K is subnormal of defect at most n in K, then $K^{(n)}< T$, where

$$\tau(s) = \sum_{i=1}^{n} (\lceil \log_2 \mu(i) \rceil + 1)$$

and $\mu(i)$ is the function of Roseblade's Theorem [8].

PROOF: By induction on n. If n = 1, then $T \multimap K$ and every subgroup of K/T is normal; in this case K/T is metabelian (in fact K/T is a Dedekind group and $\mu(1) = 2$), and so $K^{\infty} \multimap T$.

Let s > 1 and δ be any subgroup of T^0 containing T, then $S^0 = T^0$ and since S has defect at most u = 1, $u = T^0$. By indecisive S has defect at most u = 1 in $T^0 = T^0$. By indecisive hypothesis, $T > (T^0)^{(n-1)}$. Now, every subgroup of K/T^0 is subnormal of defect at most v; therefore, $W_0 R$ osoleholds V flower, $W_0 T^0 = W_0 R$ for $W_0 R$ of $W_0 R$ for $W_0 R$

Proof or the Timonauxi It suffices to prove that hypothelian groups in $\Re_{\mathbb{R}}$ and which I may, and \mathbb{R} the class of monosubolar groups. Assume, by contradiction, that $G \in \mathbb{R}$. Then, then $G \models \mathbb{R}$ and \mathbb{R} the probability groups. Assume, by contradiction, that $G \in \mathbb{R}$. Then, the proof of \mathbb{R} is an \mathbb{R} point \mathbb{R} in $\mathbb{R$

(and so $K^{(n)}$ for every $s \in \mathbb{N}$) is non-soluble. Now $G \in \mathbb{N}_0$ is locally nilpotent, and so H is nilpotent. Let t be the derived length of H and put $d = \tau + t + 1$, then $R < K^{(n)}H$, yielding:

$$R^{(i)} \subset K^{(d)}H^{(i)} = K^{(d)} = (K^{(i)})^{(i+1)} = R^{(i+1)} = (R^{(i)})^i$$
.

But, since G is a hypoabelian group, no non trivial subgroup of G is perfect; therefore $K^{(a+b)} = R^{(b)} = 1$, a contradiction.

REFERENCES

- C. J. B. Buookis, Graps with very sulgrasp subserved, Bull. London Math. Soc., 15 (1985), pp. 235-238.
- C. CASOLO, On groupe with all subgroupe substrated, Bull. London Math. Soc., 17 (1985), p. 397.
 B. HANTLEY, A note on the surrealizer condition, Proc. Camb. Phil. Soc., 74 (1973), pp. 11-15.
- [3] B. Harrier, A note in the mentalizer condition, Proc. Canin. Proc. Oct., 44 (1979), pp. 1979.
 [4] H. Harrier, a note in the mentalizer condition, J. Algebra,
- 10 (1966), pp. 368-376.
 [5] H. HENDEKER I. J. MOSELMEID, Groupe with memalityer analitim, Math. Annales, 198 (1972),
- pp. 179-187.
 161 J. D. P. Mannauw, On the Heimker-Molound groups, J. Algebra, 27 (1973), pp. 437-444.
- H. Surru, Hyperentral graps with all naturals calcurrent, Bull. London Math. Soc., 15 (1985), pp. 220-234.
 J. E. Rossan, Lor., On groups in which energy naturals in absenced, J. Algebra, 2, (1965), pp. 402-412.
- [8] J. E. ROMBLADE, OR graph in state may august a measure, J. Sugarat, A. Correll, pp.