

RENGIOSOSI
Accademia Nazionale delle Scienze detta dei XI.
Monorio di Matematica

164+ (1986), Vol. X, fasc. 23, 251-254

ANGELO BELLA (*)

On the Number of H-Sets in a Hausdorff Space (**)

ABSTRACY, — In this note some upper bounds for the number of H-sets in a Hausdorff space are given. An example shows that the number of H-sets can be greater than the number of compact sets even for H-setolood spaces.

Sul numero degli H-insiemi in uno spazio di Hausdorff

Reasserro. — In queeta Nota sono dass alcune utime per il numero degli H-insiemi in uno spasio di Hausdorff. Un esempio mostra che il numero degli H-insiemi può in effetti superare quello degli insiemi compatti anche in ispazi H-chiusi.

0. - INTRODUCTION

In [2], Burke and Hodel gave some upper bounds for the number of compact subsets of a topological space in terms of other cardinal functions. In particular they obtained the following three inequalities:

(0.1)	$ \mathcal{K}(X) < 2^{-\epsilon}$
0.2)	$ \mathcal{K}(X) < 2^{\log x}$;
(0.3)	K(X) -25000

pact ones consists of the so called H-sets (see [7]).

where X is assumed to be Hausdorff and K(X) denotes the set of all compact subsets of X. For any topological space a class of subsets larger than the class of com-

(*) Indirizzo dell'Aurore: Dipartimento di Matematica, Città Universitazia, Viale A. Doria 6,

1-95125 Catania.

(**) Nota presentata il 6 maggio 1986 da Giuseppe Scorra Dragoni, uno dei XL.

255N-0912-4106

A subset A of the topological space X is said to be a H-set if for any family $\mathbb Q$ of open subsets of X such that $A \subseteq U \mathbb Q$, there is a finite subfamily $\{U_1, \dots, U_s\} \subseteq \mathbb Q$ for which $A \subseteq D_1 \cup \dots \cup D_s$.

H-sets play an important role in the theory of H-closed spaces, in fact a

the largest possible, i.e., |K(X)| = |X| and $|K(X)| = 2^{|X|}$.

Hausdorff space X is H-closed if and only if X itself is a H-set. In this note we show that the above three inequalities remain true when X(X) is replaced by X(X), where X(X) denotes the set of all H-sets in X.

For any topological space X we have $|X| < |\mathcal{K}(X)| < |\mathcal{K}(X)| < |\mathcal{K}(X)| < 2^{\infty}$ and in general the middle inequality can be proper. The example in section 2 will furnish a H-closed space for which the gap between $|\mathcal{K}(X)| < 2^{\infty}$ and $|\mathcal{K}(X)| \le 2^{\infty}$.

1. - Some definitions

For notations we follow [3] and [5]. The cardinality of a set S is denoted by |S|. The following cardinal functions will be used here:

— d(X), density, i.e. the smallest cardinality of a dense subset of X;

 hL(X), hereditary Lindelöf degree, i.e. the smallest cardinal number m such that any family \(\mathbb{U}\) of open subsets of X has a subfamily \(\mathbb{U}\) of or which \(\mathbb{U}\) \(\mathbb{U}\) = \(\mathbb{U}\) \(\mathbb{U}\) and \(\mathbb{U}\) of \(\mathbb{Q}\).

 - e(X), extend, i.e. the supremum of the cardinality of a discrete closed subset of X;

 — Ψ(X), perfect degree, i.e. the smallest cardinal number w such that any closed set can be expressed as the intersection of w open subsets of X.

A subset of a topological space is said to be regularly closed if it is the closure of an open set. The number of regularly closed subsets of X' is denoted by a(X).

Let Y be a Hausdorff space and X C Y, Y is said to be a H-docled extention of X if X is dones in Y and Y is H-docsed. The simple extension V^* corresponding to Y (see [I] and [6]) is the topological space having the same underlying set as Y, but $U \in Y$'s defined to be open if and only if $U \cap X$ is open in X and for every $p \in U \cap X$ there exists a set V open in Y such that $p \in V \cap M V \cap X \cap X$.

 Y^+ is again a H-closed extension of X and, moreover, $Y^+ \backslash X$ is closed discrete in Y^+ .

2. - RESULTS

We begin by showing that a Hausdorff space can actually have a number of H-sets greater than the number of compact sets.

Example: Let I = [0, 1] be the unit interval of the real line. Let Y be the Alexandrov double of I, i.e. the set $I \times \{1, 2\}$ topologized in such a way

that a point of the form (n, 2) is include, while a point of the form (n, 1) has a final familiar layer of neighborhoods the sets V(N) $(U(N, N)_N) (N)$, hence U is an open neighborhood of X in I with respect to the Endfelden topology. Ye compare Hundorff, hence H-closed extension of I (N)is in done in Y. Thas we can think of Y as x I-closed extension of I (N). Let Y be the single extension corresponding to Y (one exciton one). We claim that $(X(Y^*)) = |Y^*| = x$ and $|X(Y^*)| = 2^{N^*} = 2^n$. To prove $|X(Y^*)| = I$ we consider the following form:

- Let A ∈ I. If x is an accumulation point of A with respect to the Euclidean topology then (x, 1) ∈ A × {2}^{1*}.
- (ii) If A is uncountable then it has an uncountable set of accumulation points.

(i) and (ii) clearly imply:

(iii) $|A \times \{2\}^{Y^*} \cap I \times \{1\}| > \aleph_0$ whenever $|A \times \{2\}| > \aleph_0$.

Now let $Z \in \mathbb{X}(Y^a)$. As $I \times (1) = Y^a \setminus I \times (2)$ is closed discrete in Y^+ we must have $|Z \cap I \times (1)| < \mathbb{N}_0$. Furthermore $|Z \cap I \times (2)| < \mathbb{N}_0$, since otherwise $|Z \cap I \times (1)| < \mathbb{N}_0$ by (iii) and the fact that Z is closed. This shows that $|Z| < \mathbb{N}_0$ and therefore $v = |Y^a| < \mathbb{N}_0(Y^a) | < |Y^a|^2 = e^{R_0} = t$.

To prove that $|\mathbb{E}(Y^*)| = 2^s$ we recall that a regularly closed subset of a H-closed space is a H-set.

Every subset of $I \times \{2\}$ is open in Y^* and, moreover, for any two A_1 , $A_2 \in I \times \{2\}$ such that $A_1 \neq A_2$ we have $A_1^* \neq A_2^*$. This clearly implies $\varrho(\hat{Y}^*) > 2^*$ and therefore $2^* = 2^{(Y^*)} > |\mathcal{R}(Y^*)| > 2^*$.

THEOREM 2.1: If X is a Handorff space than $|\mathcal{K}(X)| < 2e^{(X)}$.

PROOF: Let $H \in \mathcal{K}(X)$ and let $p \in X \setminus H$. For any $x \in H$ choose an open neighborhood U_x of x such that $p \notin U_x$. The family $\{U_x\}_{x \in H}$ is an open cover of H and so there exists a finite subset $\{x_1, ..., x_n\} \in H$ such that

$$H \subseteq U_o \cup ... \cup U_{e_o}$$

 $U_{s_i} \cup ... \cup U_{s_s}$ is a regularly closed subset and $p \notin U_{s_i} \cup ... \cup U_{s_s}$. This shows that H is the intersection of a family of regularly closed subsets of X and thus $|\mathcal{K}(X)| < 2^{q(X)}$. q.e.d.

Recalling that for any topological space X we have $\varrho(X) < 2^{\varrho(X)}$, we obtain

Theorem 2.2: If X is a Handorff space then $|\mathcal{R}(X)| < 2^{2^{640}}$.

We need two elementary lemmas to prove our next result

LEMMA 2.1: If X is a Hausderff space then for any $x \in X$ there is a family of open neighborhoods (0, of x), closed under finite intersection, such that [0, of x] and $\bigcap U = \{x\}$.

Lemma 2.2: Let X be a topological space. If H is a H-set in X and $(U_s)_{s,s,t}$ is a collection of open inhests of X such that $H \cap (\bigcap_s U_s) = 0$ then there exist u_1, \dots, u_n for which $H \cap U_n \cap \dots \cap U_n = 0$.

THEOREM 2.3: If X is a Handorff space than $|\mathfrak{X}(X)| < 2^{kL(X)}$.

PROOF: Let n=ML(X). By formula (0.2) in the introduction we have $X_1/2$ -and by Lemma 2.1 for any $n \in X$ there is a family of open neighborhoods, Π_0 of X_1 , closed under finite intersection, such that $|\Pi_0| < 2^n$ and $|\Pi_0| = |X|$. Let $U = \bigcup_{X}$ and let Y be the set of all minos of C a membras of C in the centre of C in Cataly $|\Pi_1| < 2^n$. Let $H \in X(X)$. By Lemma 2.2 for any $x \in X \cap H$ there exists a neighborhood $U_1 < x \in X$. By Lemma 2.2 for any $x \in X \cap H$ and $X \in X \cap H$ is $X \in X \cap H$. Since $A(X) \in X$ are we have $X \cap H \in X$. This establishes a one to one may from $X \in X$ into X and $X \in X \cap X$.

THEOREM 2.4: If X is a Hansderff space then $|\mathfrak{X}(X)| < 2^{\epsilon(X)\Psi(X)}$.

PROOF: Using Lemmas 2.1 and 2.2 as in the preceding theorem, the proof can proceed as in [4, Th. 9.3], thus we omit the details.

The author wishes to thank J. Porter for his suggestions in the construction of the example discussed at the beginning of this section.

REFERENCES

- B. Banaschawser, Eschwicks of topological spaces, Can. Math. Bull., 4 (1944), 1-22.
 D. K. Bonam R. E. Houns, The number of compact solvents of a topological space, Proc. Amer. Math.
- [2] D. K. BURER R. E. HOREL, The number of compact robests of a topological space, Proc. Amer. Math Soc., 58 (1976), 363-368.
- [3] R. E-ROBLEINO, General Topology, Warnew, 1977.
 [4] R. H. Homer, Cardinal function I, in: Handbook of set theoretic topology, Amsterdam, 1984.
- [4] R. B. Hobert, Gardinal function I, in: Handbook of 1st theoretic topology, Amsterdam, 198
 [5] J. Juranez, Gardinal function—ten years later, p. 123, Math. Centre Traces, 1980.
- [5] J. JURENE, Gerdinal function—ten years later, p. 125, Math. Centre Traces, 1980.
 [6] J. PORTER, C. VOTEN, H-disad extensions I, Gen. Top. Appl., 3 (1973), 211-224.
- J. PONTIB, C. VOTKW, E-chaid extension—I, Gem. Top. Appl., 3 (1973), 211-224.
 N. VILLESKO, H-during implaying impropriate property (112) (1966), 98-112 (in Russian); English transl.: Am. Math. Soc. Transl., 78 (2) (1968), 193-118.