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On the Bilateral Boundary Value Problem
and the Existence of Global Gesrey Solutians
of Lincar Differential Equations (**)
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We deal with the mdsu:[kmﬂ:jpnﬁalﬂnmdn&nqdlml
I, d> 1 for n partial diflerential operstor P = P(D) in R* with constant
coeffcicnts, Let $5-4 be the (r — 1)ydimeasional real sphore and, with p& 5™
non-characteristic, let us denote by o the projoction song the meridians with
poles - v, Fat a polat & in the cquator §-2, first we assume that £ s micto-
hyperbalic to 7 at aay point af the fbre o-1(£) in the sense of (2.1) aad deaote
fishing order in y-3(§) of the principal symbol. In such

& Plemelj problem which are microsnalytic in (R V) xe{(#); and we state
the microlocal unlqueness of the solution o, Then we strenghten the ceslt
and prove the microanalyticity in R"3¢(§-g=(1)), for an open st ['3¢'
(%) Tosiruen d  Analisi dell'Usi vervith, via Bebrosi 7, 35100 Padora, fulis.
{84) Mamoris peesataa 113 Noreanbte 1589 da Giuiepoe Scorss Dipon, us de X1
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in the equator 5%, and the uniquencss modulo o of the solution in case we t
coerespondingly require the microanalyticity in Nx (S-S I)(Iec 1) for
the data.

Second we treat operatoss which are microhyperbolic to st 3 pcharac-
teristic point a5~ and consider their Weicrsrass decomposition £ HE
in 43 &, M sell being microhyperbolic of order u and E invertible. We prove
the existeace, and the microloca] uniquences in R*3¢ (2], of a solution we 1Y, -
1< d< il =1), of PD)u= 0, the aces of E(Djn up t the ordes p—1 1
microloeally eoinciding in A [of#)} with prescribed £ functions. When the
Cauchy daix vanish (a5 microfunctions) ootside NI, 17GE el we ot
in the vanishing of the solution outside R A" fat suitable
‘i gheesthe Gty smodulo:f of e yolveon i fork caic

if P it wiceolypirkolic at all charseterisice wich voriahig order <41 then

KON = for L

(and for any -1 if P it in additien wraker dhay s principal part).

=1 the result is chissical [1]) In fact, given the equation P = f; |
f& 1% we fitit fiod solutioms on compact sers of R* and decompose ther inio |

terms which are microanalytic vutside the clements 4 of a suinble covering
of §-1. By adjusting those tefms with microlocal solwions of Cauchy prob-
lems we make their boundary values agree. Due 1o the above uniqueness,
they agres mod of on compact sets of R so that they define & global solu-
tian in 1¥)+# of the cquation,

Esscatial in the whale exposition are: the theory of boundisy vilues of
‘hyperfuncticn solations of .D.E. [6], [8]; theorems on propagation of sin-
golarity at che boundary [4], [3]; the theary of Fourier hypecfunctions [3], [7): ¥
Results o existence of I'¥ solutions are alio present in [2] (especially for real |

simply runcerisic symbols il n cas of  ration) ad in (9.
Iike t0 express my sincere gratinude to Professor A. Kaneko for
bie il advice during our discussi

st Tokyo University.

Let P P(D) be a differential operstor of order m with constant coefi-
cieas (or even analytic in & domain Ic K%, let Nc I be 2 real analytic
bypersurfice non<hamccerlstic with respect to P, consider a normal sysiem
(B of boundary operators (e.g. Bi(D) = (—i(efa))*-Y), and let

be its. daal system defincd by formula (32) of [§ ’

|
L. - THE CASI OF AEAL TRINCIPAL STMBOL 1

Let f'be a hyperfunction on the pasitive parc 1, of I, salution of

Lo




Bfwn 0; Thea for aay extension f 0 1 vanishing on the negative side 1.,
we can weite in & unique way

an =Bt G50

with g [V, #), f,£ [(N, ') (where 3 and 8 denore
functions in [ and AV sespeeively). As shown in (8] thi
the dual version of the Cauchy-Kowalevsky theorem.
Fullowing [8] we will define ; to be the boundary vakies of f and write

{2 Sy Bifls. -

Besides we will denote by [f], the unigoc extemion with suppart in P, for
which g = 0 in (1.1) snd call it the canorieal extension of /. Note that if fis
extensible a5 4 section of the kernel sheaf #, (= solutions o of Pf—0)
over a neighbourhood of N in 1, thea the product of f by the clracieristic
function 0, of 17, makes sense and moreover we obtin by Green's formulas

{13 Lh=bfe Bl =Bl

Similarly we cn defin the canonical exteasion [f]. and the boundary val
B,fiy. for solutions in 15 we only need o put @ fuetor — 1 in the nghl
hand side of (1.1).

(In the same way we cin define the canonical extensions [f].€ (1) and
tie boandary values. B, 1, € S(N) for disteibution solations in 1/, 1 in yoch
case we need to assume that [ is extensible a5 a disuibucion; and if it i
extensible 45 a disuibution solution we regain (1.3))

1), Kt g be the projection of 574 with poles & & aod let
open convex set in the equator $7-%; deaote by § = (2, &) the coor-
dinates in €% and by § = (¢, &) those In R* Assume, lcaceforth, that P has
constun cocflicients aad suppose that the characeeristic form F(0), (g C*
verifies s
(14)  Pul)e0; Pa o, f—ﬂe:‘. Pecl  implies either
Imi =001 Im{. > Cril]-

Tt s easy 1o recognize that (1.4) is equivalens 10 assuine that Py, 48 locally
hyperbolic at Eep I U £y o the L sdisection (in the sense of
subsequent condition (21): And therefuee If 7, hus real coeificients, simple
eharacteristics, n.ud vesifies

Grd PG A0 i Eeg Yol s) and Pl =0,

then (1.4) is sutisfed.
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Oise ean also sestate (14)
of P

a0 equivilent condition involving the zeros

a5 implics citber

Pu(B)p 0 P )= 0, @,‘sr oo,

lim | < Crl1* " or {Im

<l

wehece i I8 the largest multiplicity of the characteristics in g4I’}
¥ Last we reaall thar conditions (L4}, (1.5) are alto equivalent w the exist-
ence of micro-Jocalfardamental solotions £ in R3¢ e {2) U2 #)), Vel
(in the sense of Section 2), with sing supp £, contained in proper cones of
the balf spaces & x-2 5 0 (see [10T),

In the previous hypotheses we ean solve the Ceuchy problem i the Gevrey
classes modula miceoanalytl solutions of the Plemelj problem; and also prove
the microloral uniqueness of the solution

Tumonest L1, Asawe thot the charasteristic form PL(0Y fo P(E) rerifier (1.4),
dsate by e dargest mulripicizy of tbe eharactenisiics i 6-(I"); et N dae e 3
byperpime 3, w0, dt»brtgmmJMMﬂ (), i FYN I8
(= Gisrey compact wapport), 1czd = pl(a Ty The there scists LE,
wEd RN N M'((l'\JV)Ko"(I")) s dveet, auch that tbe probless.

(1.6  HDw=0; Dialy—(Dirly,—Dloly +0)=0, D<jcm—1,

dar o solution we PR,
Sach @ is mnigoe. il J}(l'\:

)L. = @ SFRX 0N o and
aorcespndingly o is tigue resdi (RN @ (1), (o2 % )}, % AR %51
Mﬁhmlffe)(m-ﬁrlmwbm S

e

Puoor. First let us recall that in view of (1.5), we can find P(;.:_).
b 0,1,2, & For EJ e I, (IecT), [] =4, (¢ lasge), and
for H—1)"%, <0, sulutions of the problem

ol

() FE BYRE x)=0; }.. DLFE, x )iy = da
and with the estimtes.

(1.8)  [DLFE w )<ty

texp e P
(U9)  DLEE, M= B ep [ A ] F (<120, =12
(see [9):

4 " |
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Similacly for &/ 17, 81> we an fiod £ wlutions of
(110) B DYREx) =05 DIRE*=da,
satiskyiog the estimascs (1.8) with ¥ instead of 1#~ ' in the exponent.
Let us decompase the singularity of the Cauchy data w, by sctting
) Al + K ) e
=i} exp [, 1)+ o) gexp [, SYINTY,
IrceIvcc ), wheee
Wl %) =| J’ Wy )’
for the plinc wave component. Iy, o) of #'m 3y (scc [3])
Coocerming ) we claim that the Fouries transform #(4f)() is 1n emice
function which satishes
(L) FIE) = Ofesp [~ e M) when & & R*1 dnd F(af)(8) = O-
“(exp [—0&10). Y40, when £ e Re-D IV, (I¥4 = R3T),
Remembering the formula
F o wexp [ w2 Wo', ) = (o) Fexp [ 23] P, 1) =
- F () (#(exp (=D W, 1)
then (1.11) ensses from the following remarks
() Fu)(EY s entive and F(a)(E) = Ofexp [ Ap(]), £eRt,
() Flesp [- 1)) is emive mpidly decreasing of any espunential
o in R,
() FPx', ")) coincides with the charcreristic function 0, of 1%,
For (¢} observe that if 4¢5** and if its dusl cone A* coincides with "

then Jm a3 0 when ¥ w'r (o' 17, rex'}‘ and e ke id and there-
fore we have in the sense of hyperfuncti

(20 fexp i W) B g s st =

A5 (z,,,...nj Il-up[vw ] R e =

= U I s so = {8 Pleegaiso -
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Using (1.11) and serting F(s}) = 4! in the sequel, let us define

(12 e ) (= 120 0

B R x

O<he2, (— 1ylx.<a. (=1 ngei=d),

01 )= =0T fop e lae) B, s
s

Obviously the integrals in (1.12) converge absolutely for (— 1), <0 4ad
definc thicee sections of I (of o for b=1,2) ovet the interiox of such regions;
this follows fmmedistly. from (18), (1.9), (1,11) and Fom the assumprion
11d> (u—1)ju. Concetning by, observe that for [v,] < ¢ we bave in view
of {1.11) and the snalogous of (18) for £}

1Dt [l telenp [l exp [—204 ] de <o
g,

which shows that s, is aalytic. 1t is clear that Py, =0, Y5, and moseover,
in view of (17), (L10)

Dital—(Diily = Dipils - Dirly) = 22y fexp o0 #1610l
irpa

where £, sz entire functions.
Last by raking aa eatire sokution ry of the peoblem

B=0;  Dlefemfis =0 w1,
which s given by the Canchy-Kowalevsky theorem, and by setting
M=t  =[nlt[mlt [l (]

we solve the problem (1.6) for data u, = ).
It remains o find a solution b, € SH((R™ N)xg-3(I")) of the Plemelj
problem

(1.14) Diwly,— Daly =—5F,

since then by putting ® = #+- [sy).+ [6)., we obuin the desired solution
of (16). To this end consider the tegular fundamental solation £(x) defined
by Hommandec; it belongs to. 9" aad also to #*for suitable # (o Fouricr hypes-

funcrinne of exponcntial growth with type 8). By puning 5, = DIE, we H
then have i
L "

(19 DE) Dk =l ERY  frimmdet, ‘

a for ivow—k—1.

e sz



To prove (1.15) first we aote that

16 AE], 4 E1) = E GO Bl DI Bl 63),

am A=« )

where CL(D) colacides with the constant — iF.(r).
Makiog the difercace of these equaltes we obiain for F(F), (=

= (&L + [B])). an expression of type 5 By, fie &(N). On the
other haod we koow that F ean be written

F=ZF@DW,  (bnce supp FEN);

i gl P sl e (11 il
now that ofe ‘2%, V&' = 0, for both terms in the convolution
ditiiag e ek b i T3 St B it

(1.18) S84 lpeii =0,

whete -1 N5 oo 5 the buse space fo the sheat '~ and S.5. denotes
the singular spectrum in the sense of [3]. Since eich £, belongs to &',
A< 8, then we can set

(19) o T F i @)

where all convolutions make scnsc for the same asgument as above,

It i cloar chat Pry =0 in R*\N and i u 14) halds due 1o (115}
Last note that S.5. i ® 4, 0 D xe!(f") = 0, aad o by the rule of $.5.
quoted above we conclude that r, is micreanalytie to ot (") gmn in the
points at o).

I now all data #, vatish, thea nmlng b [.] (], 4 [¥].), we have
P 0 in R*N in additien to 6(,,— 2o that b is extended to
a snlnlmn in the whole R*, Since 4 is mmuaym w g in (x_<m

ity welaed

m -&= existence of 4 good s microlocal fundamental solution quoted abave;
thus —b provides the desired extension of 21, ., Al ohes uniqueacss siate-
menes are obeained by the ssme technique. The proof is complete.

1f we consider the problem (1.6) for 4, = !, then  solution is given by
w=ry and w = o defined in the course of the preceding proof. Lty
o Is snalyiic in REN in such case. In the following we will
and @ are microanalytic to p4(3*-#.1) even at the boundary N this wnl
strengthen very much the uniquencss conclusions,




iy

“Treongs 1.2 Ju tbe bypaidesrs of Tororesn 10 thee exicti w e (RN g
(51, analytic slstinn of Poe =0 i RN such that the problens (1.6) for
e w P [ R0, 1), der o sl e PR 4R HE 5 00).
Sk i svique woduls 3£, (R, ., © S (RY)],_<qr w0d commmguently  is mmigoe
ol o/ y(RY).

Proow. First observe that FYE, £, gu = %, - i1, Are eatire fanctions
of t, with the estimates

(8 23] < = exp [e (T Ll D] -
With an fotermediate 1 (Fec £ cel] ser 25w JU IF 3 0 2

have y'-&' = y|[E'], Y& € 17, and so the integral defining r, in
wetges even afier letting

sbexdhpeRY L

Therefare $.5. #c R* <o (1)
On the other hand Fi(&, ), {—1)3,<0, §= 1,2, sccept analytic contin-
wation to (— 1), >0 with the estimates

.21 DL )l < e P benp [l + LD

Because of the term v, ¢ | in the esponcnt, we could not extend », a¢ byper-
i . Nevertheless the traces

the above argumeat. A tesult of Kashiwara [4] permits 1o
conclade that both ry, r; have extensions (scrually the cnonical extensions),
whose singular spectrum does not intersect Wi g-}§"-2. 1) (for analytic
traces this would ensue from Holmgren's thearem). To this ead, first remember
from the definition that

BnL) = GO B,

ndon i 84 o e e PUAL) =0 b M) G the s of
miceofunctions). Since P Is iav ‘microdifferential operator in R*x/

for some n:lghbwlimod s
.22 [nl.=0 in Nx(eHE)n D), £¢T.

On the other hand we know from [4] that if (&, e,]myp I
then §*(E9 ¢ supp (]l Therefore if &¢I we ob

(Nxp-(@)) Arsupp [ ], =0
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due to (122). Sine we could similarly Tandle [r,]. and since:w = w'=
= ). + Il + [':L-* [nl. with 7 and s, amlytic (n R, we conclude
s (RO g YT
When all Cnuhy data vanish we know from the propagation of the micro-
analyicity to -1 that the hyperfunction = —[r] -+ [¥].+ [¥]. provides
an extension. of ], beloaging to FHR eI, Thes by (13, [#]. =
=8 and simibarly o], = 0., [a]. = fla; this gives

b ar(Rexe (I ), (ind 50 be RO (S9)).

for i, e (R~ (=T0Y) by hypmhﬂu At last by Sao's thearem &
is analytic and 50 all wniquesess statements f

Renuanx. Suppose that &, are elements of (DY) whose Fousier traa-
sforms verify

(129  dell,

(124 d(F) = Ofaxpf— ).  PeR,

(125)  for some [7cc 1" and for suitable ¢, 4(8) = O(cxp [—# €]} .
FeR-R,

(1 particular we can take %, in the form =g, Wyl %) with 4,2 1%
s

i such case 4, = ¢, WF(", 1) where the fics factor is entire and verifics (1.24)

whertas the second coincides with .}

Pt 0= p 2 = [yt - [ [, b i the et def
aing the #, we can let ["= T and o m-nwpmﬂmnmma:
tegral (1.13) s convergent only under the condition p-.|<; =i and
consequently #y is defined and analytic oaly far x| < e we obin
in ({0 < v} <e)), x in PR, both nurmnnllyw: @ g-'(,s“-'\m even
in ¥, and solutions of (1.6); in wach situation ¥ is unique medolo

Al <€ Pos @ Srllivid <eDlen

wheceas u is still unique mod /(R
At last notice that the boundary values of o still belong t0 *2 and verify
1:23), (1.24), and (1.25) for any e 0.

Now we show how important role the preceding results play in the exint-
ence of global Gevrey solutious.




13,

Then

Lat P have charactoristic fars with veni coefficionts and siveple

T
chiracterisics.

sl

PR = IR

P the remacks below (L4}, we can find 3 family r,e 8%,
PUr)#0, and a fmily e85 VA e =0] soeh tae Ui () covers

i
71 (g, being the projectiuns from L v, alung the meridins) ind such thar
(15) s witlsfied ¥, Leaving out the case o= 1 which is chssical, fix /o I
and take g 1§ solutions of Bgw f in 5= (jx|<v]. By taking x closed
mnringl,]J,n!“" with 4,0 4, =0, o '(1), let us decompose

(1.26) &=Ze=Tpsen P ).

where IFis the curvilinesr wave component of 9(x) (see [3]). Resall here
tha the convoluion by (-, 1,) docs nor give any propagation of lh\gulnﬂ:y
due 0 the estimate S.S. W[, J)c(n]xa Fix /, ke pp= (0, .., 1), I5¢
(= 0} and pick an intermediate Ijcc I, d,cce; (27, Before catbarking
in the us¢ of the Remark let us cmk thar all hypotheses are fulfilled by the
oundary values of the g

Lestsia Lo Dglly serify (1.23),°(1.24); (1.25)

Proor. Observing that

120 FDiglly) = F(Dyg wexp [- 8] Wi, T) ) =
='FDe) e Flexp [ A AN

then we gain the two last properties provided that we prove

(1.28)  FDLNE, %)= Ofexp [ a2 ])

wniformly in x,, and = 0 for large x.,

*F(exp [— W, I(EF, 6.0 = Olexp [ el ]}
for &'e R=P 1, uniformly in ¥, ,

(1.29)
Flexp [~ =W e I ) = 00+ 1)
for 6 R* daiformly in x, .

The first is a0 easy variant of the Paley Wiener theorem for /™ functions.

———— —-—_A
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Concerning (1.29) fist secall that for a-suitable polynomial J
(30 (e st Wl AD)E ) =
) PR [T [ A T
il e e )

Take X, with Ef = 45 then I, intersects the equator duc to. & #¢ I3 and
moreier o(ST)mm (5,054, Therefore from g{SF) cc T we deduce’ that
when § ¢ 15" there It {06 25 with r-§'<—cl|]. Thus lecting
¥ty lyl=¢

in (1. 30). 5 estimate the fntegrand by ¢ exp [~ ri#] — ] which proves the
Heor

Nw“pmw the sccond, For the (global) Foutier transform, first we
claim that

(1.31)  F(exp [~ 2| W(x, A))(§) is exponentially decreasing on relatively
compact <ones of R},

(L32)  Flep -1Vl T30 = 00l + 17

The first can be proven by the same argumen: as above. Since Yjcc X, we
can find ¢ and € such that for g = o+ e B+ Ayl M€ 5, Ly < dy

Vo e d,,

1
oo+ i — =P JJ’I‘

then we kaow that exp [— 8] W, 4 i a disceibution of ocder -+ 1 which
b cr ) Sl Thus we have (1.32) for N<n-t-1.
we write

[ (exp =)W, ) E ) =
= @ fesp L, 17 e [ %] P DO, | =
= (@uys] [ exp i) #Gexn [t G D) |+
gy
et [ el F(e - W 1))@ 4]
AR A
‘where « is the projection l‘a({‘ ) & and Ao A, with Lrgd).

By abserving that (€)1 4, s 2 compact interval of lengih e for
some ¢ and by using (1.32) we estimte the first parc of the integral by 1871,
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Since we can estimate the semmining by ¢ exp [ ¢[8] due to {131), finally we
wbrain the second of (1.29). This achieves the proof of the 1o list canditions
of the lemma.

It remains to prove the regulatity L, for ;(D',gu) Fiat dn:rv: that
since exp [—33)WF(x, 1) ds a seal amalytic
oucside the origin, then (exp [ %] F(x, Z,))u) cceprs lmlr <on-
tinuation to some domain {¢ = £- ins fyl <} [7]; and thus we have the
same. regularity in & for the patis]l Fourler transform. On the other hand
S(D‘g_] is an entire function of §. Then in view of (1.27) we amin the
conclusion.

Exp oF voor oF Trsokrs 1.3, Put 84 = uf = 0 and solve ¥r31 the
problems

Prlyy =03 Dinlaly— (D, — Dl + DU —ghort 8)l) = 0.
Ocham—1,

with
w8 Sp((0< g =al) N (fix]

<) xS
W E PR (R o -0 TT)
and with the boundary values D% [, still fulilling the conditions of the

Remark, This s possible in view of the Remark and th¢ Lemma, Then if
we put # = gl 4+ i, we obuin

=, 1.+[»‘...l-)] coincides with 8, P, —

( o of om0 s m.;hmhwdum

in §, and ths its 8.8 is contained in N[ £ s} there.

('J l*u-"l -(E" L+ l'¢..l) iz wmlm‘ to g HENT)
w of (1)

-::-4) T W ok ot F N 19 opiation o€ sy
Therefore again by propagtion ar regularity and by the fact that v, Is
we conclude #.y—# is nalytic in S, ¥y = This
P T e F¥ar, V), and ic 5 clea that = ¥ Vs
4 solution of Ph fmod of. Siice we know that P-‘(w-}.. SR,
we can find & «crue solution 4& 1 of the equition.

2. - THE MIGRORYPERBOLIC CASE |

A hypecfunction £ which verifies PE — 86 #/"(R* % 4) for some
bourhicod 43§ will be called & microlocal fundsmental solution at §%.
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When P admits miccolocal fandamental solutions £, at £ whose siogalati-
ties are conmained In proper coaves coues of the half spaces x#3-0, then
we will call P(D) «microhyperbolic ac & (o i,

This is equivalent for some J28 and for same £ 0 to the slgebmic
condition

@1 Pttm=0 -ﬁ“" [Fl<rif] = Imrm0

see [ml: this peoperty for F(8) will be called wloeal hyperbolicity at #

l.a P be loally hn)nhnli:n?m v let L= J((P ) ) ((.",.),— localiza-
tion at £ d of (P) )= 0;
then all ¢/ make (2.1} Hm!:d (ma- e I
Po(6) # 0 (otherwise choose another o & 1), put ¥ = (0, .., 1), and lust denote
by i the multiplicity of & as a zero of £, By Weicrstrass's theorem we can
find & complex neighbourhiood D3 and 1 decomposition

P)= HE) B oD, 2 aege,
where f and F are polypomials in ¢, with analytic cvefficients of orders i
S S el eeR ol S et AR - E G e e i ok
Pelicipal syeabal of J2 baving a root of Goe & sy $% Mareoves we have

@2 He, -D-mfa’ftﬂﬂﬂl"‘) & lasge = [T £ < elf et

(In cise P< P, we can replace ([ by ¢ in (2.2)). We cin canoni-
aally associate with F(2) and Ei(Z) two microdifferential operstars {of Weier-
strass type) H(D) and E(D) on the sheaf of microfunctions ¥,y (see

For a hyperfunction f which is microanalytic 1o £ # in N e fx-s = 0f,
Let us denate by w(f) the resteiction to N of all DLf; 0<j<u—1. Nom
that if f is & microfunction In #],..,, and if g is proper when restrict
wppﬂ,.lkn“mlmmddne Ff)E 5, . Tt suffices to mke an ex-
rension [ whose support is the closure in R 5" of supp f due (0 the flab-
biness of #; since - o ¢ supp [y then 3* is well defined on any
‘yperfunction. It is obvious that the result of such process does mot depend
a5 an element of "], , of the chalce of the extension and of the representa-
tive.

Now we state the microlocal version of Theorem 1.

Tiavoness 2.1, Lat P be micrapperbalc at 8 (i o), it o bethe mislipliity of
B a root of Py, atiwme P_(5) 4 0, consider tie WWeitritrass decemposition P=HE
ot e ray tireugh 0, and tehe (4)yoq_o 0 Tos 1< &< pfla—1). Thes thore
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exists' w6 IH(R), miceotocal ssfivion a3 8 of ahe prebiem
(23) #(E(DW) = ()

e senss that e equality Baldy in "1, for some 1°5 . Such It wigoe oo
AR A), 438

Proor. ¥
Hg;)n:z_.

and EGY=ZhH{e):

put H() = Fafey B Ok p Lot us define for £1iE}e L £ large
&
exp (12, v, ] Hi- 1
o[RBT E

whiee I is 2 curve surrounding the p zeros of F(8, £,) =0 for £, Clearly
P sacisfy (18) in view of (2.2).

Serving u! =u, & Wy(-, "), Ice I', then =, 8 miceofunctions in N J™,
Now if we define # by (1.12) for =0, thea obvivusly Pu= 0, Besides u
belongs t5 2, @, (sec Appendix) and it his x, a5 amalyric parametcr. - By
Lemma 25 in Appendix we have

(¢ ) PE,

Bl = S DT BB <3, jﬂp I 1) DL ) =

=3 Jﬂﬂir-r iy TR BT E L
A "

FrecIrecl, (1% sulubly wumeared) ,

and so D} Euly equals af in N> I* and thus #, i A1 (due to slight appli-
caion of the residue theorem [9]).

Concerning the uniqueness of &, aote that = rgsuppaly and therefore the
following equalities hold in # (R gX(17)

@5 D8, Eny= 0,0 () —iEaly 50,
{26) #(D_){0, En)=0,a(D,)Ex.

The first Is obvious whereas the second ean be proved by using the kernel
A foc, ) associated to a(D,) and the formula

Jtot 30, o, o o ) o ) i e
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“Therefore if u w0 in N T, then supp H(8, Ba)l = 0; this iplics.
sspp ity s 0 the. mirohypesbolciey of H in g}(I), and st
|np|1hl,,—-8 due to the invertibility of

Trronnse 22, et P be micrbyperbolic 19 5, (Plf) #0), of auy poimt in

A28 devatiug by the sultiplicity of & et s fox Ccly n(.,': (8 Wy

(e 131 < d< plla—1), T cc o). (Or el uppee thet (i) sniisfy

(133, (124), (125)) Thu for IV dhre sre eighboniveds 4/, 123 1185,

awnd furetivmr W rﬂﬂq T (R (5™ ) el aoiie (2.3) modly St (NI
Soch i are migue wodly 7.

Pacor. With F2 defined us in Theorem 2.4 and F} defined a3 in The-
orem 1.3, let us define u by (1.12) for b= 0 4ad #, by (1.13). Obviously #,
is amalytic in 2 neighboorhood of IV and besides yACE#) — y(s5) = (&) thus
r'(E*) ) in e

ing the proof of Theotem 1.2, we want to prove that  is miaw
u.L,m nnl aaly to §<P g (17 but even to SR, A7 ¢ g i) with
asbitearily suiall depending on 1% In fact, since by hypothesis. (L)) # %
thea for

w {" ("(m 51))

thece ace, cascely i #eeos 2, = K)o P(C' G = 0 which verify

A 5

l il ’5'|“"
idearece Khey

t
[i-e]:

Since such zeros are the zeros of the principal symbol of M, then we have
the. Following, eslmabe o the netas. £, = B o H(E,2) =0

o [cle [t

Thus by lesting 5 v+ x + i in (1.12) and using (22), @4), (2.7), we estimae
the imegrand by

cexp [y @ = e B el W
provided that
'-sr:-[|§7'v£'E<%.srl>r.].
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Let 2 e the set of all (', y) ed*~" which satisfy x84 r, 18| = Ly i1 =
Sl ¥ € 1L, Then we sce that the part of the integral (L. |z) aver 11 eon-
verges and defies an salytic fanction in

ilyer
ez
a0d 50 the $.5. of such part is contained in the rneighbourhond of §* with
#30 for ¢{0. 1 I" e I such Integral eoincides, mod entire functions, with a.
The uniqueness of u modulo fonctions mictoanalytic to. 4 is duc to the
aleady quoted propagation of regularity; however, since by hypatbesis u is
micromalytic 10 S+ 4, A'ccd, then it is unique modulo
This achleves the proof.
Let ue apply the preceding machineey to the theary of the I¥ solvability.

Trwonest 23, Let P be wicrsbyperintic o any charachrictic med 1t o be e
Aurgest maliiplicity of its choracteristics. Then

HDPURY = AR, for 1d< 2y (o1 e PP

Proor. Seeing I¥= (P(§) =0}, let us choose » finite covering
(28 vas-cGR,  ansi=0, dlecd;,

in such way that for some 5,6 U, P, is locally hyperbolic to ¥ at any point
in . Let P = H,E, be the Welerstrass decomposition in 4, , the degree
ok H, 0, the proption of 1 fom be poles ez Ny the byperpane

0. Last let vs assume that the covering (2.8) is 5o fine that with an
s 4, (ice diee 4), djcorcespoods to :,—,,(.1 ) a8 in. Theorem 2.2,

Fix fal"; d'pEI 221, solves the equation Py = f in S, let us de-
compose
Lemil+ B mgwesp =W S NUT) + Sewenp (2 G 7).

Fist note that g2, — g i microanalytic in R*x 17 by construction, and I
S (§20 1) because P(gt, g e (5, )nmmm..mmhmu,w
does not give propagation of singularity); therefore £¥,, — gbe #(5,). Coa-
ceming the terms with £ 0 set b, m (0, . 1) by simplicity, take s =0,
and solve in view of Theorem 2.2 the problems

Puy =03 B =B gl ) i Flye

with &, , beloaging 1o I¥(R%) A a(R*x (5B A1), (1 < d < f(u, — 1)), and
with yA(E,,) still sarisfying (123), (L24), (125). Seuing Him gi-t 4,




we obtain
@9 Bu—B=0 i Wi
@10) EL(0,Eih — M) =0, B~y ECUDA By~ Wiy 2,

for suitable mierodiierential operatoss C; = C(D,) given by formulas (25),
@8).

\ou;huhﬁmmmﬂ:ughlhﬂdlhk of (2:10) s null in 5,7
und the second in R*xo"(1}). By the microhyperbolicity of 4y in 4, we
conclude that Ey(l,,, —#) vanishes in S5,d;, vy v, and by the inver-
sibility of £, H,,— b} also vanishes, Morcover the last vanishes in R'x
RSB A)), djccd; in view of (2.9) and = #,, —He #(5)

ccbering he cquli Ba#(RY) = a(RY) which is classical, we then
conelude us in Theorem

Arrenpix 10 sECTION 2

Fo & real cone 4* and a positive constant 8, let us consider a set in the
form
D= (et e Crde A, Il < 01+ 0} 5
e s ot By (/) € W10 5 = (5 1 RO, the germ of £t

If F3) Is an analgtic funcrion on the coae D (even iromeated) with poly-
romis] growth, let s define

@1 FDY -(M--j exp 661 FOT6) ),
where d* is possibly trumcated and wheee f i & Fouricr hyperfunction of 2
the image of f in @ being f ncar x* (dvc 1> the fiabbiness of ¥ and %),
Fisst we prove
Lt 24, If 3 #5537 ohor 378 S5 femp lix- e PO f0:

Proor. By inversion of the integration csder

iﬂ?{k-ﬂﬂﬁfﬁm- .w[&‘elf’w[ I-pwr-nf(a)b)as-

[ 7ed [erte—n-are4)




—e—

In the part of the incegral with w oear %, we can Jet w5 Ja,
-£3< 0 and corcespondingly we cun make the substiration - 4 fa with.

ag for ¥ near X, and
thus by settiog § = &+ i, e — ..)>r|§\(l + [af). with » depending on »
and g = x-+ b, [y|<¢, we cstimate the second integrand by

exp [~ 8 — il <exp [ e — o] 4 For ¢f>¢

and so bath integrals coaverge for suitably samll . This show that this pars
defines an anslytic function neae . The proof is complet.
Let now F be in the form

(2.12) Fig]

PGl

with ,(¢') amalytic in some conical complex (trumeated) neighbourbosd G*
af I ¢ Rt When is 12id 10 be a symbol of Welerstaass type
with sespeet o {,: For fr‘l’|l.., ury 808 % & R g '(17, lex us define

(213 FDY e ((2,‘ -<---";‘[¢xp|w y,mmy":e’.x..)-e')._

where f is an clement of the sheaf #, 8, (= Fouricr hypesfunctions with
hypecfunction pammeter) which has x, a3 an amalytic parametee (due to the
fabbiness of # and 4,8, ) and which coincides with / in ® nea x¥,

We can prove as in Lemma 2.4 that F(D)(f),. is well defined and thus
we can obtain by means of (2.13) an opertor on @lya., e In the following
we zelate the two formier definitions.

Lewain 25, .';i.'. of e (212) dhen tde operaters difined by (213) and (2:11)
egrer in 9]

Proor. Ta handle this situation we necd 1o be very caeful In the choles
u( the representitive J of (), i

Dxd s, (D3, ed in R®x g=(1) first fet
fei‘ whose 8.5 is the closure in R*(5"1 of supp /], the image of J* in ¥
being f in I. 'imwf is analytic outside 0, then it sccepts & modification
mod #(2) to [ & 27 which is 4 section of the sheaf #~* of modificd real
analytic fuactions which decrease with, exponential rate 0. This is 2 conse-
quence of the fabbiness of 342 ¢ and the fact that the sheaves #~¥ and
o agree in R". Thus in view of the formula

&f@= 0o,
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which can be casily peoved by dulity, we obain
(@) fexp a8, 188 = DLSEL XD,
whese all enteics make sense because
(e f 15 smalyic in (22 fql <801 4 4] For some 8,
(#) ' has x, as an analytic parameter.
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