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0. - InmonucTion

o1, _r....@ We explicirly build, for every small inverse cutegory K, an

into the « paradigmatic » inveese categoey 3 of suall
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As these amdam. preserve fite dimibutive s of projuerion, we derive
fr6m them an exac embedding for every snall distributive (resp., pre-idwpoterr)
exact category in 3 (resp. in 3,); ratice that 3 and 1, are exact categories (always
. in the sense of Puppe [20,19]).

These results will be wed (o peove that every distributive (resp. pre-
idempotent) « cxact theory » has & clasifying exact catcgory which it an exact
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subcategory of 3 (esp. 3,); actually, various theories of interest in bomological
algebra are (will be shown to be) preidempotent: e, the filtered comples
aad the double complex,

0.2. It is easy ta cobed an inverse semigroup in 4 semigroup S, 4) of
partial endobijections [17, 5; the same eomtruetion can be carried aver &
semall inverse caregory, Moreaves Kastl [16] proved that ery inverse category K
embeds in Set, via the nan<constructive labell-Freyd condition [15, 6], and
derived from this the more interésiing fict thar K embeds in 3 (hence i is
Isamorphic to an inverse subeategory of 3).

0.3. However, we are interested in inverse categories i soomsctios with
istributine exect catggoris ([10, 11); bese: n. 4). Ay exact scquences and exact
functors for distributive exict categories correspond respectively, in the con
tex of inverse Gegoties, to fiil disributios wmions of projestions ind d-fumeters
(i, fanciors preserving these unions), we ned d-embedings K — 3, From these
it Is poseible to derive aver embeddings of distributive exact categories in 3
isclt.

0.4 The phin of the Work is the following.

In n. 1 we recall some definitions and properties of inverse categorics, us
well as their transfer funcwar for projections, Prig: K = Si,

Then a. 2 builds, for every inverse cutcpary K, the spectrum d-fioter
Speg: K =1, which is an embedding whea K i toansfée (Le. the fancior
Pefy i faithful); 0. 3 gives, for K smaf, the extended spectrum d-cmbedding
Spo: K =3,

As a comsequence, 0. 4 supplies exact embeddings Speg: E -+ (E
fratifer distributive exaet caegory) and Spégs €+ 3 (E a smalf distributive
exact categury) n. 5 treats the idempatent cuse: sice every idempoteat inverse
category Is transfer, we can use the resuls of 0. 2, instead of thase of n. 3,
and drop the smallncss hypathesis, We also remark that 3 coibeds exsctly in
every category of moduks (4.5).

Last, 0. 6 sketches natural d-embeddiogs of semilattices and distributives
lustices in lattices of parts.

0.5, The question arises whether every inverse categoey (with small Hom-
sets) has 2 (passibly constructible) d-embedding in 3: this result would steeng-
then boch Kastl's and our, tod would fmply thar every disribative exact
category (with ymall Homescts) cenbeds exacely in 3. As the classifying cate-
Rares of exacy theoeies are (in our futmulation) aecessarily small, our purposes
ate covered by this paper.

0.6, Comentions. A universe AL, is chosen once and for all. Every category C
is wssumed to have objects and morphisms belnoging to L. Moreoves, € i
Ham-small (or: it has small Fom-sets) whenever all the sets CLY, ¥) beloag
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£ "W e Is Hlow fnite if thesc scrs ire also finkte.  C is smalkwhen the whole
st of -:r-ﬂmm (hence also the set of objects) belongs to ‘Ul
Let A be a caiegory provided wubum;».. (e, un iavelutory
ofuacion of A, identical P
intw §: A'— A7) which is rgalar (4 = a3 4, for every morphism 4); typically,
every category of relirions over an exicr category i 5o 4, 31
A i selfdunl; the following terminology will be used. An ismpaims of A
i#/an codomorphism 3 A — A, such that s = £; 3 projecdon 1 § symscirical
idempotent; ¢ <o pe = 7, For every object A we write Prip (1) the set of its
projections. Every morphism o ¢ A(A', A') has associated projections r(a) =
--fr»:,:.q}.na:(.:=..qum-;,m.sm.=¢(, ) every idem-
pateat ¢: the product of the twa projections =u..-;(¢:c-).
il cvgry product of fee projectivas ¢, ¢ is iempoicat (it
Projection iy, ¢ commutc.

1-seamilatrices) Is assursied to prescrve
the product (resp. product and wait).

1. « INVERSE CATEGORTES AND THIIN TRANSFER FUNCIOR

nverse categorics, cxtending the mofmmummp,mmm
mls,o 10,11,12,13,16,21, 22]. ‘We recall bere some resul

1.1 A category K is smeerse if for every morphism o & K(A', A°) there is
3 anique morphism & & K(A", '), the gmeraliced interse of 4, such that:

m w=gie; a=asi

Then the mapping « & supplies the unique cegular involution of K:
Conversely, a category provided with a regular involution is inverse iff its
projections commate, i its idempatents commute, ff every idempotent i &
peojection (0.6 and [8: § 1.25).

1.2. For every abject A of the inverse category K the set Priy () of its
projections is therefore & cammutative idempotene subscmigroup of K{A, ),
and a L-semilattice in its own right,
We say dut K is Prmali (resp. Prifirite) if all its projection-sets are seall
o o mm-, are Hom-small, bence also
st

1.3, An inverse category K has a aamwitol ender (o deseination) a Qb (be-
tween pamallel mosphisms, agrecing with composition and inrvolution), charc-
tesized by the following cquivalent conditions [8]

W) a=abi,
(2) = (ea) b g
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(3) there exit projections #, 1 such that u = fir,
(4) 4 = i)y
8) a= (aih
14, Every Prismall inverse category K has & prwjecsion fmiter (ot transfer
Sfunctor) (13, § 7.3]:
n Prjg: K --Sit

wheee St i the inverse category of mall 1 i e b
morphisms atc the paiss. @ = (s, 49 X — ¥ puich thass

@ ms XY and ws ¥ - Y are productpreserving mappings,

@) wal=aelt), for vy xe X,

@) wrl)=pall)y far every ya ¥,

and the compasition is obvious: (b, #)(, o) = (e, a'F).

fi lm I:E;,m.:n is defined by 1.2 on the objects, and on & morphism
(5} Prig (4) = (ar, 07 Pej (A') = P (A,

(6) apt Prj(A) = Prj (A7) 5 @) =aez,
o] w0 B (AY) ~Brl(AY:  aftf) = afa.

W also patice that the macphism o = (v, )< SI1 (X, ¥) is determined
by its cqnariant part o, acwally, xo = u(1) nd o can be writte

® xy e X]xcx > afe)<al)]
(] Wiy = max v Xiv gl sle) 7] -
Thas Sit is concrete (and enconcrete).
L. ‘This functor Pri is teivially injective on the objects, but nead a0t be
faithful; if s0, we say that K ks w ramgfer inverse i
16 K is Peifnit, the projection funcror takes values in the full (Hom-
fnite) subcategory SI' of small finite |-semilattices; thercfore. mery sramgor
j-fnite imverst cargery is Hom-finke.
The functorial isemorphism
(1] 121 = Prigy: St =S,
@ () o oy %y
proves thar St is transfes.
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L6, In a l-semilattice X we say that the clement x is the disiusire amina
of the elements x, (1= £) 18, 11] wheoex
) for every yo X, oy is the unkoa of the clements xoy (e

‘The least clement Oy of . when it exists, iy the distriburive union of the
veid il

af 1semilattices will be called a & e I it
p«mﬁwdmbmmmm

sy to cheek that the covasiunt part a.: X - ¥ and the contravasiant

pare av: ¥ = X of a transfer pakt (a, ) always preserve (arbitrary) diitribn-

hnllf-ulll §52)

1.7, We say that a family () of clemenss of the l-semilattice X dgonmr-
ahs X if the anly sub-t-semilattice of X, closed w.r.t. fie disteibutive uaions
and containing the s, is X itself.

One can (easily bir ediously) prove that every finitely d-genemced semi-
lattice is finite. We shall derive this fact from the « concreteness theorem »
of semilattices 26.

18, Every funcror F: K - K- between Pr-small inserse categories defines
homomarphisms of 1scmilastices (prescrving product and unit):

) PripCA): Prig () +Pri (FA)3 geBe (ASOBKD.

1 She denotes the double categary of L-senilattices, their bowemerplies aud
Hheir grawsfer pirs (with bicommutative cells), the hamomorphisms (1) produce
a durigantel of sertical fitens [13]:
@ Priy: Prig = Prig- Kt K = 8ht
e an Shiwise ransformation, sccording 1o
We say thas F is Poifuitifal (sesp. h,-;.m
x

all these
(1) ae injective (cesp. surjective). Every faithfol (cesp. full) funcror e
inverse categorics is 10,

1.9, We say that F froserses finite diirintie smions (of projections), o for
short that it is & dsfmstor, when ail the homomorphisms 1.8.1 ace d-homomot-
phisms in othes words, whenever the transformation 1.8.2. takes place in Sdv,
1 dowble gory b Lt their d-hamomorphises and thets transter

The faactons betweca Sapereevicparion e et st iy
ihe d-fumctors, because of their mmnmmmmmnmm
tive exact categories (see f.

Notice that every m&uw Pejfull fanctor preserves and reflects (arbi-
toary) distsibutive uaions. In particular, the projesion. fuscitr Prig: K -+ Sit
of every inswrse category doer.
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1,10, The paradigmatic fnverse ategory is 3, the caregory of {small) sets
s pardiel iictivns (%, whose morphisms are the triples

0] o= T S~ T

wehiere 5,05, Tyc T and a2 5, T, is s bijective mapping. The composi-
tion i3 obvious, and the generalized inverse of (1) is:

@ = (TS s T8
We also consider the fall (inverse) subeatcgory ¥ of (samll) fnite sets.

2, - THE SHECTAUM AGPARSENTATION FOR TRANSFER INVERSR CATKGORTES
We define her, for every Prj-small inverse categoty K, & spectenm dfuactor
Spox: K = 3, which s an embedding when K is transfer. The construction
is based on 4 «sandard » specrrum Spe: Sit - 3, which will be extended in
5. 6 0 & barger cutegory of semilaitices.
21, First, we notice that the projection funcror of 1
o) Pej: 1 - S

s canoaically isomorphic to the funcser of party (with obvieus actica oa mor-
phisms):

(@ 1 1--Slt
win:
@) x: 4 = Pej: 3+ S,
A = (Fo Syrid S): -8 (for S,c8).
We shall ideaify Pej with & via .
22 We build now the spwtrusm fimerr:
y Spes Slt-»3  (Spe: S+ 3)

associating to every lsemilatrice X the ser Spe(X) of d-homemorphisms
of Iusemilattices s X -+ 2 = {0, 1},

") Parvial hiectioan (as> eslied paseial injections) ar¢ wred in wesnigroup theory 10 Tepresl
veee semigrapn 117, 5. The caegery 3 was sudied I 2 6, 12}
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On & marphist o = (g a)i X == ¥ we sets

@ Spe(a)= (Fo, Gyt ad: Spe (X) = Spe (Y},

3  Fo=(peSpeXiglaeti =1} Gy={veSpe Yig(sl) =1},

(O O Ol o8
“Thus, for g&F, and xe X:

6 sl =plenl) =gty =1,

©) i) = e = el e} = o) =40

which, with the dusl propertics, prove that s Fy = G is & bijection.
It will be proved in 2427 that Spe is & d<mbedding.

ide the st Spe'(X) of priee 1)

Bl i (i
1) 0 bl ok b (e s
81y . o e o, £
) i %= 3, vy, 18 0 distributive union in X and X e, then cither
085 or 3, 53 morcoves Oy x (when Oy cxs
s the: e S () O o kil m g31) o 3
) e X s suble for Gnie distributive unions,
13y, in X and x,0 8 then w0,
) B 3= Ay and e then citber 3, of € 33 morsover 1 ¢4,
Ta oth st one pete fusccbi i e Isomosphlc o S, a3

0] S =S (X): g i),
@ Spe(X) S (N) ;g (O

We shall use, according to convenience, the ficst (Spc) or the second (Spe’)
wdescription » of the spectrum functor.

u.wepmeuwlmsw it 3 preserves i

Let X be a f-semi mncpbltml’rl(xhhu!. ‘Therefore,
I fy = #\ieg I3 3 disteibi i BAGL) o b i (A
and x, = x, /%, i3 3 distributive union in X,

Now e Spe (o) = (., £,z id F) whete F, = {5 0 Sp< (Xeloe) = 1).
Sinee, for every g € Spo(X), gl = (%) V) in 0, it Follows that gx) =1




0

1 fn othee words, Fy = F; uF m o Spe (A7) and
7 it P Spe (X) = ¥ Spe (X)

Analogously one verifics that the least element of Pej m. IF it exist, I
turned into the empty part of Spe (X).

25, Alea in otder to prove that Spe s mmm (27). we introduce the
hotizontal ransformatina of vertical funceos

{1} wi W ->PejSper Sit—Sdr,
@ s X Pr Spe (X) = 4(Spe (X)) .
@ AX(x) = fy e Spe (X0lp() = 1},

where Sdt s defined in 1.9, and 17: Sit
1 18 the composition

= Sdt is the vertical inclusion; indeed.

@ W — s Prigy Mo, Prj- Spe: Sit—=Sdt

of the hotizoatal isomorphism ¢ associated (o

= Prigy: Sit -+ Sit (1.5:1)
and of the horizontal ransformation Ptis, (1. N

19, 2.4)

2.6, Theorem (Cancrete ropresentation fer somilatices). Enery I-semilittice X
deembeds vis g X': X — #(Spe (X)) (25) in & semilattice of parts (y is point-
wise injective). X' is finite iF it is finitcly d-generated (1.7), iff Spe(X) is
Ginite.

The last assertion is an obviows consequence of the fist, aod of
the fact chat if X is Fnitely d-generated, Spe () s Biite. Thecelore, atwming
that <, in X, we only peed to show that 5 X(x) %5 X(x).

Consider the fltes w, and the ideal 4, of Xt

w=freXiron), o fre Xiax)

and the set A of those filters of X which contain & and do not intersect .
By Zorn's lemma, A kas 2 maximal clement u; since ¥, € a and ¥, ¢, we
need anly to verify that x is a prime filter.
If xca and & =y is a distributive unioa, we may assume (possibly
ing  and ) that yAx' £, for every yea: otherwise, the existence
of 3, Em such that y A%<, and ¥’/ <3, would give

FAYAxEx and - pAF A= (PATARNI AT AN <,

which is impossible. Therefose the Elter generated by (yA¥[yu] s in A
and by the maximality of «, & a.




= =

+ 3 is an embedding.

27, Thtorem. The specieum funcior Spes Sit
Prosf. The functor Spe is obviously injcctive on the objects. ‘The faith-

fulincss e an easy consequence of the previous Theorem 2.6: if ¢, be SILLX, ),
the commutative squarcs

X FLX)
[0} .u. nﬂn
¥ F(Y)
where F = PrjSpc and 5Y it infective, show thar Faes Fh implies @ = b,
2.8, For cvery Prj-small inverse category K we define the spectrum dficter:
a Spey = Spe P
It takes values in 3 whenever K is Prisfinite, and is an ewbedding when K is

Speg: Kis 35

Norlce thit; for K = Sit, Spew Spc

by 151,
29, Finally we notice that there exists & <simplers faithful functor:

F18k-=3

m

which rarms every 1-semibaice X into its underlying set F(X), and every
transter pair @ = (s, a): X = ¥ ino the pastial biection:

@ Fie) = (X, Yo )z FOX) = F(Y).
® X, ={veXpecal Yom (pe Yiy<ally))s
“ afxp )i ') =)

The faithfulness of F (%) is an easy ennscquence of Sit being trassier (1.6).
Hawever this functor docs mu prescrve finite disteibutive unions of pro-

P

o,uq..a.s-.r...-.l.ummsnu l-—.u-bl"vl) (t»-»s

smuc,mr}w the undestying set FIX) = pay F'LX) !
Repbpeiierk st i

e i (1) and s o
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their Fimages fi= Fle)= (X, X;1): X
have distributive aion in Prj (FX) = 3(£X):

SiVfe=(Xoy Ko 1e): X = X,

=X, with X,

with
K= Ky X, = (we Xives, or xnd ;

genenally, Xoo X and fi\f#1

3. < T EXTENDED SPECTRUM RIPRESENTATION FOM SMALL INYERSE. CATIGOWIES
Let K be a small inverse category, possibly non transfer: we build an
xitmied specirom d-ombviding Speg: K -

3.8, For every object A call Vang(A) the {small) set of parishie points (or
wariabli) of A, Le. the mosphisms of K haviag codomain A, provided with
the multiplication

o % oy—xiy

and the distinguithed clement 1 Aa.
The order relation €1 (1.3) ) % desermined by &

Vay,
= x Ay besides = Var () g px.,.mm (of A) iff xa1

Every morphism a: '~ A" 4 pais Var (a) =
mappings:
@ g Var A9 - Var (A apl) =
® 75 Var (A7) = Var (A SO)=1.

3.2, Therefore we introduce, as & codmmm for the will-be functor Vary,
the catcgory SIt of sbowi and mongr poi
U . ) proridod vk & e Al '

) & s assaciative and idempoteat (x & = x, for every x),
) 1is e left unie for 8,
) XANAx = Ax AN, for every x, 5, 5.

Its morphisms (sangfer paies of -bonds) are pais (s,
) s K= ¥ and s ¥ > X are Ahomomorphisms,
) a(xdar(y) = ) Ay, for every xeX and ye X,
1) @y amia) =a) ax, for every xe X and ye ¥

The composition, as usual, is: (k, #o(, u

X+ Y where:




==

33, Thorem. ST} is an inverse category ; its projection functor Prj: St -
= Sit s ixomorphie to:

P: S Sit,
Py Ky e Xy =, A1) = (v A Lo X)
Plo,oy= (s mb)=(exdal;  L0d=(r2)al,

4t P—=Drj: SE-SHt,
() = Ca b Xy 8=hs (XY=l

anmr,.s.=c..--) X =Y is in SR and Pla)= (s, o) is the asso-
ciated marphism in

© A =mieal), for every xe X,
@ e()aTmat(yal), for everyyeY.

In other words, the homomorphisms of Abnds w X1 X » P(X), xrexal,
functors.

form n horizontal transformation of suitable vertical
Proof. SRt has an favolution:
(L] Gy )= (s )
which is regular, since:
@) vl ) = a1) dal) = aell Ax) = afx) .
Maseover, for cvery A-band X we have a bijection (¥).: X, —=Prj (X)
between P(X) = X, and the set of projections of X in Slt given by the for-
mulas (35): indeed, I xye X, we X and o= (n, )@ Pej (X):
(10 g dl=a,
an (1) 3= 61 5 () = rax) = afa)s
Now X, is a commutaiive wha‘lﬂglmql of X, henee - 1-semilattice
::..xx,==.unn|m.u..u =, ) and (uX). turns the a-product of
Xy into the compasition-product of Prj () (a5 (v Ax)) A— = A (M A-)) s

thiscfore the projections of X comaute, and SR ls invecse,
The « will-be transformation + ¢ turns the mapping P iato the funcor Prj
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bectuse, for o= (n, )} SR (X, ¥) and xpe

(12} (XX () = (1Y) (g A=) = (X" )=
= afrae(D) =a{x)4

“This praves at the same time that P is o functor snd ¢ is o functorial fso-
morphism.
As to the last aseertion, if v e X't
(1) gl A1)l A1) 81 == ) (1) & 1 om (1) St 31 =
=aflaal=a(xal.
34, Now,
some easy ves

every small inveese caiegory K, the definitions of 3.1 (and
) produce & Functor

m Vary: K —Sit

which is an embedding (3,(1) = 4, for cvery morphism )
Morcaver Vary rewrses und refecte arbitrary distributice miows. Indeed, the
functorial iso ¢ in 334 produces, by horizontal composition with Vane:

,
@ K s TED si

the functorial des:

@ =1 Varg: P-Varg -+ Pej-Varg. A

As the fanctoes P-Viry = Pri and Prj in (3 preserve and refiect asbitrary
distributive unicns (1.9), 5o does Vs

35 We want now to define the vextended spectrum » of 3 A-band X
of course it has o be larger than iis projection-spectrum Spe Prj (X) =~ Spc(x.] |
otberwise we should get for K nothing more thin the preceding spectrum |
functor (1. 2): Spe Pej-V Spe (34).

Deinc the celation <y in X by:

m x<y  ifxexay

It is casy 1o sec that it is an order reltion, consistent with the product 3, pre-
served by &-bomomorphirms, and th

@ xeX, ifx<l.

Say that g ia the dirfribative smine of x and y in X (ors = wVyisa
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dirtributive smio) if:

PESITA
8 g8 1= (v 2 1)y(y A1), distcibative unfon In X;-
By 1.6 and properties 33,67 the covariant ad contravariant parts of 2

transfer pair of a-bands preserve o ndnﬁ:ﬂl-ﬂ:h!rydhﬂlbnﬂ‘vcm

3.6. Amlegously 10 2.2, define the extmded spectruse SpE (X) of & aband
 fn be he i of Shaemarptis g X =0 ={0,1} preserving
distribugive unions and 1.

Bquvdmﬁy.munmﬂ:dﬁlhelﬂ S§pe' (X) of prime filters @ = g7'(1)
of X, charcterized by

-)nch'w:mhln for -products and 13,
B if mp<xs in X and x 6 then %5

4 i g = ¥V 48 distributive saion in X and gew, then either xca
ot yea; moceover g ga (when Oy exists).

O also the e Spe’ (X) of pries idals = g-1(0) of X, having @ chamc-
terization similar to 2,34}/

37. We consider now the functor
(o) Spe: S—3

assaciating 1o every A-band. xu:e(mui)w Sp (), and 10 every transfer
pair = (e, )2 X =1 the parvial bi

@ Spete) = (Fe Guind: ﬁm« pe(¥),
B E=eSREpe) =t G lyeSRMpEm) =11,
W an=pes g,
so that, e.g. for g€ F and x0 Xt
6 (% Al = gl = wlah ax) =

= gle(t)) Be(x) =1 A9 = #(x) .
% i 4 dfimctors the proof is suriedy analogous fo 2.3,

38, Thus, every smali inverse casegory K has an ectadd specirim dem-
deddig:

m Spoes =33 §pey = Spe-Varc.
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When K is finite, this functor takes valucs in 3.

39, Like in 29, we notice thac STt has a simpler faithful fusctor
m F: Bt -3

which (s an extcasioa of F in 2.9.1, with an snalogous description. OF caurse
F is not & d-funcror.

4. - REFWIXENTATIONS FOR DISTRISUTIVE EXACT CATEGORIES

A disteibutive exaee category € canoaically embeds in an inverse category
(E} [10]: together with the d-embeddings of n. 2, 3, this produces exmct
embeddings of E in 3 (which i distriburive exset) when E is transfer and
Sub-small, oe respectively small.

41 Let E be an exict category, in the sensc of Puppe [20, 19]: it has 2
#erw object, kernels and cokernels und cvery map factorizes via 4 conormal
epi and a normal monic. We refer to (13, n. 1] for & short review of reslis
on exact categorics.

We write

) Srmgs E -~ Rel ®) 1

the cawemical symmeseization of E, ie. its embedding in its caregary of rela- ¥
tions [4,3, 7], provided with the usual involution (which s regular).

Rel (E) is artiodesx (1. idempotent endomorphisms are stable undee
position [8]) I8 E is disribunive (that is, bus distributive hattices of sub-
objects) [10; §1.10]. In such a case Rel (E}is provided with u priorder ac1d,

ides with the canonical one (1.3); the componition of Symy (4:1) with
the quatient functor Q: Rel (E) —~ O(E) gives the camwical inveris. srmmirigs-
i {or gymutrization) of the distzibutive cxacr category E:

(0] Symg: E - 6(E) — Rel ()
studied kn [10]: it is still an o .

The inverse eategory O(E) is smiall i E §s 5o analogously, B(E) is Pr-small
T E is Subemal) i.c. well.pawered), O(E) s transfer i E is 30 (i.c. the transfer
functor Subg: E—~Mle of E [13] is faithful),

43. Now, Jet F: E—~E be a functor berween (Subssmall) exact cate-
gorics. F is called ot wheaever it prescrves kernch and cokerncls (or,




-1 =

<quivalcatly, cxict mqmmc:). e can be proved [11; §6.2-3] dhat, if E and E'
distibutive, F i exact i

a) F is @.qmueirizable Bl unique) functor
BF: B(E) ~ GCE) mndum

B OLE) s u. dfonct (L9).
Thws. finite disiritative welens and d-fiostors surrogate evact soquescer and excadt
Jasctars for inwerse categories (for further details sec {11]).

44, An exact casegory E is inverse i it is sadens, i.e. bas boslean laitices
of sabobjecis (see (12, § 64], whese other chaccterizations ase given),

Far an exact inverse category €, ane can assume that 6(E) = E, and thar
Symg: E = B(E) is the identity [10].

45 T s not diffieuls (o soe that 3 iy boolean exact (123 thuss

) IS Rel () —+ 0 OSyme=1.
Moreover, notice chat 3 has an exact cmbedding

@ Fi 3s R-Mod

i the gy of el Rmodulr, whers 1 i may iyl ey oy
Indeed, for every small set § aod cvery o o= (8, Tyi w35, ), et FUS) o

be the free R-module on 5 and F{a)¢ £ = RT the unique R-homomor

such that:

3 Fa)x)=mlx),  for xS,
@ )y =0, for xS,

mu 3 is isomorphic o its Fimige J, an exict subuum of R-Mod;
et embelding 1 3 yields n sact emboddig i4 R-M

M We arc also interested in the modular q‘.\lnl:nn 7= Mdl() [12,
141(- , the (distributive, non boolean) exace category of semiiopalsgical spares

and ch-cloed partial bnmprworpbines: an object s u pair (5, X) wheee § it @
o 50 B of 99 coiang b aad S twbioe dermits we @l
chosed subsets of 5); & motphism & = (5,, Tys w): (5, X) = (T, ¥) is & homen-
morphism &, from an open sabsce S, of (5, X) anta s closed subser T, of
(. y) the compasitiog Is obvious.

‘There are functors:

m Dia+3; UG X)=5.
@ 3 =2 Rel (3)—+ 6(2)

() e ¥ o b, § coinekdes with the ditcbunive expanice D 1) of 3 {13].
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and the inverse categary 6(3) can be described 35 the category of smitspe-
dngical ipaies aad Pariial boversmrpdicms beiwren ocally chsnd mdspacer the descrip-
tion of Rel (3) i more complicated (see [12]).

4.7, Our interes in 3 comes from rh: wniversal property of modular expan-
sions [14]: every exact funcior F: E -+ J, where E s #n cxct category, has
3 unique Sabfall lifting

o) P E3i F(A)= (F(A), Soby (Suby ()
verifying UF'= F.
1n particular, there is a onc-to-one correspondence between the exact sub-

categories of 3 and the Sub-full cxset subcategories of § whose objects have
diffcsent underlying sers.

48, Reproseatatives for Sadesmoll frawsfer. distribudive exset catgerivs. Fwery
cxuc categoey.E bas xact fascions (dasiing Froe e

Suibsmall disteibutive
spectrum d-functors 26.1): |
m Spegz E+1;  Speg = Spog-Symf, &
&) Speht E—=35  USpeh = Spey,

which are embeddings whenever E s transfee; the second is always Sub-full

Actually, the exactness of (1) Follows from 4.3: Speg has clearly @-symme-
tizition Spege, which is a d-functar by 2.8,

Remark that, whea € is both exset and inverse, Symg = 1 {4.4) 5o that
there is no ambiguity on the functor Spe.

Notice also that the functors (1), (2) ke values in ¥ and 3 when E is
Sa fite (every object has a finite lattice of subobjcets).

49, Representutions for small disiribuiive tsct categeries, In the same way,
every il distributive cxact cutegory has- extouded specivam escort embodiings |
(deriving from the extended spectrum dcmbeddings 38.0): |

L Spegi B2z §peg = Spte Sy £
@ $4:E-~3: U-Speb=5piy- )

These embeddings tke values in 1, 3/ when E is finite.

410, Reproseatations of diiributive RE-setegorier. 16 A in 2 dissributive P
smail RE-caregory [14], we have spectruw RE-fomctors (the second being Pri-
fll):

0] Spea: A —= Rel (3),
@ Spehi A - Rel @),
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given by the composition [14:56.8]

@ At For (A} —== Rel (E) 20, -

where £ = Z{Prp (e () 3 i)

cl:tdmA.M::fulhndFllmpm]wl,S‘x‘mS?q “These functors ate
e wheoever A b tranfer [14: §7.3],

Amlogously, every small distributive RE-category A bay ectesded Jpecirase

{the second Pri-foll):
| (] Speat A = Rel (3,
(0] Speit A = Rel(3).

411, These results will prove that every dwmw. exact theory has a
clasifying cxact which Is an exace subcategory of 3 aod 3 Sub-full
exact subcategory of 4. Analogous resulis bold for RE-theories.

5. - REPRESENTATIONS FUR IDEMPOTENY INVESSE CATHCORIES
AND PRU-IDEMPOTENT TXACT CATEGORIES

5.1, We say that @ caegory A, provided with a regular invelution (or,

more passiculacly, fnverse) i idempoten (9 whe al its endomosphisms are

saj this happens £ A is onhodos and the inverse category A/ is idempotcar

(ne 4 2 or [8]).

1ay i the e categury i e empotin when s ctcgory of sl

given in [14; Thm. 8.8]);

I:y:hz:buv: remak this luppens Iff € s disribotive and its canonical inverse
symmetrization B(E) (£2) is idemporent,

5.2, Here the parsdignatic ase is %, the categacy of small sz ond comawen

parés (ar partiel identitier): the vbjects are the small sets, while 2 morphism
L § - T'is a common subset of 5 a0d T; m: compasitions is given by the
intessection.

‘We ideatify the morphism £: § Tvlma\:p“ddb‘].monu Ll
S+ T, 80 that 3, becomes a Sub-full pre-idempoteat bo aleass exact subcategory
of 3. wanxt-rm.m" boolean e
of small finite secs aad common parts
For a small set § we wite i.m {eesp. 74689) the full subcitegory of 7,
whote objccts arc the subsers (resp. inite subseis) of S it s @ prc-idemposent
‘oalean cxace subategary of ¥ (esp. 3).

) ity s end o o Ko iy e ety + casegory in
which eveey moephiam. hey romy gencralaed verss m..u..q-l-nhlln s that cvery
cobomorphism in idemporeot.
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53, We alio use 3, = Mdl (3) = Dst (3,3, the pre-idempostent exace cate-
gory of small maiispoisgical spoces snd spen-ciosd ribspoces (o5 spen-cvsed partial
identities); & mospiism Li 5= T is here given by & common subspace L
of § dad T {aame Induced semisopalogy) which is open in § and closed in T
the composition is again by intersection.

We sex

N=0na.

5.4, Lowms (9. Lat
If K is idempatent, F is fai

- K be a functor between inverse categorics.
Ful ifF it is Prj-faithful.

Preof. Let Fbe Pri-faithial,uosd 4, ' be parallel morphisms with e = Fa'y
then F{u) = Fla's) and i =

We ‘an asume that acle’ (otherwise consides ..-.(..;.=(..q.-<n;
which is dominated both by « and «', because the endomorphisms
are idempoient). Then a= (a3}a'm o'@'a'se @’ (13},

5.5, Corollary. Eesy idempotent inverse category K s transfer, Morcaver
K is Hom-finite iff it is Prjfinite, iff every Priset of K is finitely d-gen-
ensted (17).

Prsaf. The transfer foncror Prig: K - Sit is faithfal by 54, IF K it Pej-
Bt b o ks valos i the Hom-inve sbaaegory S th on-
clusion follows from 2,

5.6, The Gloeing Thearem for idempatent iumerse covgerivs. Tovery idempatent
inverse subcategory K of 3 has an cmbedding in 3, which preserves (finitc
on arbitrary) distributive unions when the inclusion K- 3 doss, 16 K is small,
this embedding takes values in 3,02, for a suitable small set 22

Proef. Let Z be the (possibly poo-seall) disjoine tnion of all the sess
which ar objects of K, and define the equivalence relation ~ in £ by sssuming
that xES=Ob K is et 10 y € T'e Ob K if there Is some parsial bijec-
tion in K(S, T) which trns x into ). Notice that, K being idempotent in 3,
overy cndomorphism of K is & pastial dentity: therefore ~ uborders the
exquality an every object of K.

Set Z'e= Zif~ and let Z be the disjolnt union of Z° and Ob K; natice
:Im when K is small, the sets 2, 27, Z are so, Moreover, for every S,c5€ .
€ObK let Z; be the image ur.r.cz in 2= Zj and Zyw Zyw{SiCZ;
7, and Z, arc abways small.

%] This sexsb catends, with. snalogoun pree a0 invouion persecving fancon berween este-
orles with (egula invodvion: see [L3; § 74] ot tha trarndee funcror of voch caregories,




Finally we define:
[0} 2: K3,
@ =4,
@ 2o Taimds S+ V)= H: 2, =2, (H=Zp=23),

24 a funcro: if £= (o Tyi o)1 §— T and b= (T, Uy )t TU
are in K

) 200 2y = Zp 0 2y = 2y Zile)
where the second equality comes from the above remark on ~, applied to
the object 7.

2 s teivially injective on the objects and Priuihful; by 54 ic is s
embedding; its preserving disuibutive unions is again # diseet consequeece of
the above remark on ~. Finally, the st assction has already been checked :
Z i small when K i 0.
5.7, Rapresenistion. Theoress for. deoeptent coterier,
4) Every Prj-small idempoten inverse category K has a d-embeddiog in
3, which takes valics In u suitible 4,055 when K is small
§) Every Sub-small pre-idempotent exsct category E has an exact em-
bedding in 3, and n Sub-fall exser embedding in 2.
&) Every Prj-small idempotent RE-category (14] has a RE-embedding in
Rel (3) and & Pri-fuil RE-embedding in Rel (3.
In the Pef-finite case (Sulvfinite for ) these cmbeddings take values fa 3
and 50 on.

Preof, The sssertion 4] follows immedintely from 2.8, 5.5 ond 567 8) fol-
lows from «), 4.3 and the universal property of 9= Mdl (3); ¢} follows
from b), via the full RE-embedding 4.9.3. The last remark follows from 2.8.

5.8, “This sesult will prove that the classifying exact category of every pre-
i theary is an cxict subeategory of 3, and a Sub-full exact

dempoteat cact
abeategory of 3.
Various «homological s thearics will be proved ta be (prefidemporeat.

6. - NATURAL REPRESENTATIONS
FOR SEMILATTICHS AND DISTRIICTIVE LATIERS

The possibility of embedding semiftices and distsibutive latices fn lat-
tices of pans it clissically known, We use here the representation 26 for
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ilait ketch embeddi with regard to & category S
of 1-semilattices contrining both Sld and St, or respectively to a category DI
of distribative 0, I-lattices cantaining both Dih and Dic.

6.1. Call S the category of 1-semilattices and d-bomsmorphisms of seasilatties

(possibly ot presceving the unit). Sld 1t 4 sbcategory of Sl
Moreover, alio the functor:

m Ut S-Sl X=X; (o) —a
is an embedding, becatse of the kst remarks in 14 and L6,

6.2 Now, the specerum funceor Spe: St =3 (2.2) extends to:
) Spe: S1—-Sfh*,
2 Spe(Ny) = vf, for those v o Spc (Codl f) such thas yf(1) =1,

where Sin® is the dual of the caccgary of sl sois ond fuvctions (1. pactially
defined mappings).

63, Analoguuly, the fusctor Prj=: J--Bltc SIt () extends to u
nctoc:

W T St Bl
@ AT+ (e 55 = 3T) 5 TfES) =75
where Bl is the category of Boulean algebras and lattice homomorpbisons.

6.4 The horizontal transformation y (2.5) becomes 8 naturs] transforma-
tion {where £ is the inclmion’ fuactor):

ay At U= Spes St-= Bl
@ () = [y & Spe (X)iptx) =13 .
which is pointwise a 1-preserving embedding

6.5. As to distributive lattices, call DI the category of asmall disiribmiive 0, 1-
Lattices wud bmasvorpbisme of datthies. We shall use the Macneille funcior [18, 1]

4] DI .81

% Hene Bt i the il swbsasegocy of SH of wrall Boctéan algebess (13 §7.3),
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turning every distributive 0, I-fattices X into the 1-semilattice. Mag ()=
= L Xyt canoni 10 the idempotent 1-semigraup:

Ky o 3)e g
G . ) = () Ve, (aAsDve)

Notice that Mac scnds Dih into Sid and Dic into Skt moreover it can be
proved that -Spe-Mac: Dic -+ Bit is isomorphic to the composed functor

Die = 6(Dic) —=» 1 =L Bt
which is exact, by 4.3,
6.6, We also use the natusal embedding (whece U is the Inclusion functor):
m 7 U" = Mac: DI =8I,
@ X () = )

The horizontal componition of 4* and 4 in 6.6 and 6.4 gives the narural
transformation (where U'e DY s the suitable inclusioa fancior):

(€] '= s U= 3-Spe-Mac: DI - BI,
(] oK) = fp = Spe (Mac (XN (ET) = 1}
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