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Dualities Over Compact Commutative Rings

Dualith su anelli compatti o commutativi

L. = Inenonucrion

‘The Pontryagin duslity fonctor  was chariceerized by Roedex (7] among
the contravariant functors ¢ from the eategory € of the locally compact Abe-
lian groups into itsclf. In fact Roedes gave three sueh characteriations snd
one of them shows that if these exists & contravariant functor ¥: € — € 50
that oy and yog are samrally equivalent to ik, then g is natarally equivalent
0 y. Dualitics between categorics of locally compact modules over a given
discrete ring were srudied by Prodancy [6].

In this paper we study dualities of a cermin type an the category £ of the
Tocally compact modules over a given compsct commuetive ring § with iden-
sity. Mote geacally, following (6], we consider duslities beeween full sub-
ategorics of £, which satisfy some additional conditions, and prove that each
duality of this type is nanurally cquivalent to the Poatrysgin duslity. The main
twals used below are these developed in [7] and [6] &5 well as a theorem of
Kaplansky (3] concerning the strucrare of the compact commutative sings.
We use also some well known properties of the Pontryagin duality.

marphises, The following definitions azc modifications of defnitions from [6].
1L Dumarion: A subcategory M of £, s alled mammwg (resp.
#admissible) S-category, if it han the following properics

() Tt of M wich Compusing Cenper, Dalpasan Acadenmy of Selencs.
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() % i= n full subategory of €y, ke. for each two objects X and ¥
of & the A-morphisms X —» ¥ are exactly the continuous hamomerphisma:
of Xia Y,
(i) if Xed and ¥ i topologieally isomosphic 1o X, thea Yo,
(i) i X and Y is a closed submodule of X, then Y& and
XY e X,
(i) . contalns all compact (resp. disecrete) S-modules.

For cxample the category of the compact S-modules is sadmisible and
the category of the discere Smodoles s dadmissible. The cutegory £, 30
well as the category of all il
cadmissible and d-tdemissible S.categories.

1.2. Diinrrion: A couple (g, %) of contravariant furctors gz &+ X
and gz ' — &, where & is a cadmissible S-cateory and X s a dedmissible
S-category, is called a doality over § between . and X', if it has the fallowing
peopertics:

(3) the compositions goy and veg are nsrumally cquivalent to iy and i,
el

i) 9(7) = () for cach morphism £ in & and each 75,
Clearly () and (i) imply
i) = rpls) for cach morphism £ in ¥ and each se S

We write bricly M <= X' to deaote that (g, y) is. 3 duality berween the
Scategaries X and X *

is a locally compact S-module,

X the one-

Lt i be & character of X and

() for cach e X. The group z(X)

of the chameters of X, endowed with the compact-open topology, becomes

4 locally compact S-module under the multiplication (5, 4) » s, Tot each

morphism f1 X ¥ in €, !U) 2(¥) > 2(X) §s defincd by x(n(-l---f
It is well known that €4+ £, is a contravarisnt funcror and the

(. %) is o duality in the sense ot Definition 1.2. More generally, if J. isa

cadmissible S-category and N is the smallest dadmissible S-category which

contiins 7(¥) for each Xe.K, thea J& == X" i 2 duslity over 5. We call it

Pontryagin duality.
The main theorem in the paper is the following.

1.4, Theoness: Let § be 2 compact commutative ring with identity and
X be a duality over . Then each of the functors  and ¥ is pasrally
equivaleat to the Pontryagin duality funcior 1.
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The first seven secti
theozem, Section 2 conains 4 note on the swscic of the compact
.I‘-mnduhs. Some elemeatary fict about dualitics, taken from (6] and [7], are
given in section 3, It is shown in section 4 that each duality aver S generates
1o & narural way dualities over the quotient rings of § and some consequeaces
from this are obrained. Section 5 deals with dualitics over finite dngs. Tt is
,hmu.mmuhnfwmhMq(,,,-;om:u.emdnkfmuw
lngiully isomorphic ta y(5). The main theorem is proved in section 7.
“The lase section coniains 4 chacierizatlon of 7 among the coatmavariant
functors g M —» &, where A is a cadmissible S<category. Our conditiens
for ¢ are similar to these in Axiom system 1 from [7].
All cings cansidered below are i mmmumy(x‘-oj,
mmmmmm-u copolagical rings and modules are Hausd
we mean an S-homamorphism. Recall that for cach topo-
Ing.u‘.i‘ﬂmdul:xﬁwmhmﬂm (5, %) = x i jointly contiovous. 1f X
and ¥ ase topalogical S-modules, by Hom (X, i']wdmmzhzimadu}:
{withaut topology) of the continucus homomorphismis X -+ ¥. The Pos-
teyagin duality functor is always denoted by 7
'ﬂ!:s\nl:hulvmhnlnthﬂi?mfﬂmrlv Frodasor fos suting the problen
and for many usefol

of the papes are devoted to the proof of this

- REMARES ON THIl STAUGTVIE GF THE LOCALLY COMPACT S-MODULES.

Let § be a compact commatative ring with 1. It is known that each com-
pact S-module X has 3 local base of neighbourhoods of O consisting of opea
submodules of X, This follunes, for example, from the fact that y(X) is discréte
anl shen for each i y(X) the subgroup Su is compact and heace finite. In
particalar, 7(X) is & periodic Abelian group which implics (sec [4], Theo- |
cem 242) that X i oully diseonncaed, It s cisly seen ow et the

open submeodules of X form & local base of neighbourhoods of 0.

21, Provosrrion: 1€ 5 is a compact commwitative ring with 1, then every
Ioeally compac §-module contains 4 compact open
Paoow: Lee X be a locally compact Sodule and 7 be 4 compaet nicigh-
bouhood of 0 in X, Set
Y= G;uw Pyiaihy

Cleaely Y is an open submodule of X. Since Y is  countable unioa of com-
pact sets, the structure theotem for locally compact Abelian groups (see [4],
Theorem 9.14) thows thar, 33 & topological geoup, 1 s tapologically iso-
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morphic to R*x2*x K, where R is the additive group of the reals endowed.
‘with the standard topology, % is the discrete group of the integers, K is o com-
pact group and a and » are non-negative integers. Fach elemeat y of ¥ is
consained in the compact subgeoup Sy of ¥, Then m = =0 and ¥ s com-

pact.
By a theotem of Kaplansky ([3]. Theorem 17) § has a representation of

the form

m $=[15,

where A is a sef, . s 4 compact local cing for each A and ] 5. s o

dowed with the product topology.
The following lemma will be nml in section 6.

22, Lisans The set K of the invertable elements of 5 is compact with
respect to the relative topology.

Proor: ider the represcnration (1) of § and deaote by 1%, the uaique
muximal ideal of 5,. Since there exist proper open bdeals of £ and nchnl
them is contained in R, then W, fs open. Theréfore SR, 18
being an union of & finite number compact scts, Cloatly K = n(:\yz.)
aad then X s also compact.

3. - ELEMENTARY PROFERTIES OF THE DUALITIES,
s scction we mention some properties of the dualities which are taken
rmm and [6].
m..u.-:-:rbuauuzymz.ﬁ “These e canonical mappings

¢4 Homs (X, ) ~ Homy (#(¥), 9(X))
for X and ¥ from M and

¥ Homa (Z, T) — Homs (w(T), (2))
for Zand T from X, defincd by /- g(f) and 2 -+ w(gh rqntﬁtdy T fol-

obtained from the categorical defiitions of & moaomarphism and an epimor-
phism (see 1], ch. 1, §2)

31 Lecfi X ¥ be a morphism in i (resps &) Then
() f is'a monomorphism iff y(f) (resp. ¥(/}) s an epimosphiem;
() J is an epimorphism if ¢(f) (rop. v{/)) is & monomorphism.
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By an embedding we a homomorphism 1 X — ¥ so that [ is &
mmpmmbmemx;djm I f(X) = Y, and f is an open aap,
we call f & quotient map. A sequ

@ 0> X 55240
of morphism in €, is called proper exact if f(X) = Kern (), fis an embedding
and g is 1 quodent map. It is easy to see ([6]) that (2) is proper cxac if
— 0, f is & monomorphism, £ is an epimorphism and for any morphisms
B A Yand i1 ¥ - B with fof = 0 and gos = 0 there exist morphisms m
e
Xy,

NN/

s commumtive, A suightforward consequence from this is the following:
| 32, Lex(2) be a sequence of morphisms in A (resp. X} The (2) is proper
exact i the sequence
D p(X) 420 (1) <50 p(Z) -0
(resp: O+ w(X) + =R y(Y) L y(2) -0)
s proper exact.
33. Let f be & morphism in W (cesp, &, Then
(4) [ is an embedding i p(/) (resp- w(/) is & quotient map;
@) fis & quotient map i ¢(f) (resp. w(/)) & an embedding.
Clearly 3.3 follows immediately from 32 The proot of the following
property is the same as the proof of Lemma 3.1 in (7],
34. 1 X% Ya (resp. ), then v(xx?’) (mp. X% Y)) in wopologi-

] Fm(ul]-nuf&ﬁeplmf
of Lemma 3.2 in [7].

35 I X and Y are compact S-modules, then g(f+ )= ¢(f) -+ 9lg),
for any morphisms f.g: X 1 in .
36, Conouany: p and y are additive functors.

Pacor: Tt suffices o verify that v is additive. Soppose fig1 X - Y are
morphisms in X', Then (/). y(g) and ¥(f-+) are homamorphises of y(¥)
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in $(X): ‘Take in clemént we p(¥) and sét B 54 and
A = Sp(f)n) + S} + Sy (f + 1))
Denote by fy, 5 and b the resteictions on B of ¢(f), v(z) sad v(f-+ £}
sespectively and let it A —» p{X) and j: B - p(Y) be the identical embed-
dings. Then the diagrams

W) <= y(Y) PO S r(:\’}"-""ﬁ")

[ I. q T, {

A - B A a2 8 A < B

fim =l

sre commurative and o the diagrams

X L ¥ X —=+ ¥ X L oy
| TR s g
AT (Y] )] (0T prT)
- . [P a
D e D)) T o) al) 2 0B
where ¢; and ¢ are the natural isomorphisms, are alio commutative. Then

g
¥
£
]
3

the other hand, ~1 and B arc compact and 3.5 shows that p{f)) +
+ (e = /i + 4 Hence ¢(fy + ) = g(h) and then /) + gy=4. In par-
ticular,

U 80} = Ay = i) + 8} = v AE) + ade) = (L) + (D} ) -
Since w is an arbitrary element of $(Y), we get w(// 4+ £) = v(f) + vl2).

T -

4. - Quommees

| some additional assumpticn for the categories . and N, preserve theie validity
for arbitrary locally compact commutative rings 5 with ideatity. We sestrict
our considerations for eompact rings 5.
Let J be a closed ideal of S, Consider the quotient ring & = SJ endowed
with the quotient tapology.
16 X is a locally compact 5-madule with 7- =0, then ¥ posscises a nat-
oral structaze of an R-module—the multiplication is defined by (r-+ £)x = x

The chservations of this section as well as those in the previous one, under E
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E Conversely, for each locally compact R-module ¥ the canonical mappings

XY+ RXY Y

 define on ¥ a siructure of & logally mmpm:mme. Roughly sperking,

i with the

full subeategory of £, consisting of those Xet. rnumma X =1, Cleatly

for cach X and ¥ from €y a maap /3 X — ¥ is 2 morphism in £, iff it &
morphism in t.

Suppose 22 A Is 4 dualliy over S. Sering Ma =Ly 20d Ny =
= X'\ L, we obtain 3 radmissible R-categery and a dadmissible R-category,
respectively.

41, Loooa: 1€ Xedy (resp YeN), then p(A)e Xy (resp. r(y)!
©My). The restrictions of g oo My and of y on Ny define a duality over

Puoor: Assume K¢y, be rx-o “Faking an element | from / we
e i-idy = O-idy ared thea f-id g = 0vid z, = 0. Hence 1p(X) = 0 which
means that §(X) & V.

For Y'e Xy the same zeasoning show that (Y] Ha. The proof of the
seeond pare is stightiorwand,

We ue the noration Ly & Ny for the duslity between Ay aad Ny
genceated by . 3 . Below 'we comsider some appliations of Lemma 41
i will be usefal later.

42, Lassear 1 X is a finite S-module, then ¢{X) and y{X) are also finite.

Pacor; Let £ be an open ideal of § and & = §/f. Then & is finite and
$(R)e Xy, For xcg(R) there exists an ideal J, of R 5o that Kif, = Rx.
Letting

J=NUdxan(B)

we have fp(R)=0, and by Lemam 4.1, J-yop(®) =0, ic. J*
= 0. Siace Ris fne, thece esits o Gnitc number of clements . 5y
owauan =0, Then Rwabemhddzdmﬂ(kﬂjmd:u is-
marphie to the submosule r| R of (pCR)" So thete is & monomorghism
R == (p( ), and therefore - epimorphism % — () in accordance with 3.1
and 3.4, Hence y(R) is finite. Similar reasonings prove that g(£) is fnite
to0.

1f X is n finite S-module, thon X' is a hemomorphic image of a finite pro-
dce of the type ] (5/4x) fos same opea ideals Iy of 5. According to 3.1, 34
and the asscrtion proved above we find that y{X) and (X are finite.
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43, Let I be a closed ideal of § and py2 55T be the quotient map.
Then #(pi): #(577) =+ #(S) and x(p): 4(51F) - 208) are cmbeddings. Set
KpwIm(p(pd)  and  ¥y=Im (x(p) -
Lemema 4.2 thows that these modules are finite iff 7 is open in S,

“The following two lemmata study some properties. of X Similar prop-
cries axe posicased by the modales Y.

44, Lisaaa: For each cha submodule X of () there is.a unigue
cloted ideal 7 of & with X, = X.

: Consider the identical embedding /1 X - ¢(8). By 3.3(s) y(i):
¥(5) — y(X) is & quotient map. Denote by ¢ the narural topological fso-
morphism yy(5) —» 5 and set 1 = Kern (p(ijert). Cleasly T is a closed ideal
of 5 and there exists & topological isomorphism f so that the diagram

w5y e (X)

5w, gz

is commutative. Then the diagram

w9 - X

- u

FRR(S) T g (X)

w n

P(5) ==l (S0
where ¢, and ¢, are the natural isomorphisms, is also commutative, Hence
XeIm() = -nmilm L)) = opleit ).

On the other hand, each topological isomorphism (5) - 5(5) Bas the
fotm -4y, for some inverdible £&5 and therefore e 5(0) = 5-i ., for some
mvanhlc €5, Then X ey X;w X,

se J and J are closed ideals of 5 with X, = X,. Since X; o (1)
(we&!). Lemma 4.1 shows that £-.X, = 0. Then /.X, = 0 and, according
o Lemma 4.1 again, we get 7.5/ = 0 and Jc /. Similarly, Jc / and (lmb—
fore F= .

4.5, Leana: Let [ and J be closed ideals of 5. Thea:

() Im (1)'c X; for each quotient map s #{S/1) -»1m (f) < ¢(8);




=0

{#) X, i the unique submoduls of p(5)
#I0:

(A Ic] i XX
@) Ko Xy o Xy 0d Xk Xy o Xy
Proor: (¢) Suppose 7¢ J and conskder the canoical epismorphism 2 317 -+
. Since p, = popy, we bave s{p.) = {pJon(p) and theseiore kn (3(p.) >
ST (0 0
16 X, ¢ X, Lerama AL immplies 1-X) = 0 and then I:5[] w= 0. ‘Thiss 7c J.
() Since Im (/) 15 a closed submodule of ¢(5), Lemma 44 shows that

“ X, for some closed ideal J of 5. Clearly /Im(f) =0 and then
According w Lemma 4.1 “gﬂf(}znd(:)lu?ﬁmk’,JX,

m Follows_ immediately from (a).

By Lemma 44, Xin X, = X, for some closed ideal L of &
mmgtr)nlmn TcL and JoL. Then Iy Jcl. Again by ()
Xin X, = Xic X,

On the other hand, Jc £+ Jand Jc £ + [ imply X,.,c X, and X.c X
‘jxem Hroe Xy Xy X
The proof of

mzlmd'plnaf(l]hmhx.

- DuAuimes ovin FoaTE mINGS

~ Throughout this section R will be o finite commutative ring with identity.
Omlmhnnumpmvcﬂnll'mnchd\-hry(,.ﬂmek () o 7(R).

Let us note first thas if & is & local ring aod F o R/, where 3 ix the
utique maximal ideal of R, then g (F) and y(F) are lsommﬁn:lnffmud:
 duslity (y, y) over B. Indeed, ¢(F) and y(F) are simple modules, becavse £
hms 0o non-trivial quotient modulcs.

5.1, Lisan: For any local ring R the following are equivaleat:
(@) #(R) 22 R for cach duslity (5, ) over R;
(i) there exists  duality (g, ¥) over & with 7(K) o B;
(1) there exists an unique misimal non-eto ideal of R,
Proor: Since Pontryagin M‘yh-dﬂhrf.0=v(ﬂl
“To prove (ii) = (i) set #= R/, where M is the unique maximal ideal
of R Bhﬂy&n:mmlmlmunldnhnfﬂmdndﬁofmu

isomorphic to F. Assume £ and J are such ideals with 7% J. Then [+ J =
| S FxE Let (5, p) be a dualy over R with o () o 2. Siace () £,
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J.umul show that there is an epimorphism R - Fx F which is fmpos-

l= remains 10 probe (i) (i), Suppose / is the unique nom-zero minimal
ideal of £ and (5, v is a duality aver R. To show that there is a monomar-
phism R —» () assume the contrary. Then for each x & p(&) there is a non-
stro ideal ] of R with Jox = 0. Since Ic J, we have F.x = 0. So 1-4(R) =0
and by Letmma 4.1, J*R = 0 and { =0, contradiction. That is why theee is
+ masomorpkitm R - 4(K) m m“ an cpimorphism fi R - y(R). Lemn-
ms 4.1 shows that Kema ()=

5.2, Prorosmions: Let R be a finite commutative ring with ideotity, Then
#(R) 0 g(R) for cach duallty (g, v) over &.

Pagor: Remember that 7 s the Pontryagin duslity functor,

Suppose ficst that R i3 & local cing. In this case we use an induction on
wm card (£), Assume that the stasement fs true for all jocal rings with cac-
dinality less than r, # > 2. Let cisd (R) = a0d (5, ¥} be a duality over B
There are two cases.

Cate 1. 4(R) 2 R. By Lemma 5.1 we have also y(H) & R and then
w(R) o g(K).
Cnie 2. g(R) is not isomorphic to 2. Lemma 5.1 shows sow that there

ase two dificrear pon-cero minimal ideals / and / of K. Clely T0f— 0
40d, sccording to Lemma 4.5(d), we find

@) ek X=Xy = Xy = w(R)
and X, N X, = X, Sicailacly,

@) Yo+ Yy = 1B
and Yon ¥, =¥,

By Lemama 5.1, (7, ¥) defines a duality over £/{ and the indsctive bypoth-
cais implies that (/1) = 7(RIJ). The definitions of X, aund T, (see 4.3)
show thar ;o Yy, Similarly, X, o ¥,. Taking scbitrary isomorphisms
Ji X, X and g2 X, - Y, we ger, according ro Lemma 4.5(5),

Sy = p(Xiis) = Yy

Since cvery automorphism of /(7 + /) is 4 multiplication by an invertable
clement of K, there is an inverable re R with f(u)= ra(a) for we Xy,
Set b= rog, then bs X, + ¥, iz an ssomorphism and f(4) — b(s) for any
4@ X, Now (3) and (4) show that it is possible to define an isomorphism

w3 §(K) —» £(R) which coiacides with f on X, and with § en X, Hence
#(8) == x(H).
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o proe the genctal case aote st that R = [] K, where &, is 3 fnite
set of local rings, By Lemma 41, {r,y) indoces a duality over £, for
cach j and the abowe staement implies 7(K,) = p(R). Using 3.4 we fiad
#) == 2R

6. - T sTavcrows o g(8)

Let § be a compact commutative ring with identity and suppose & = 1
s dality over 5, We ace gola; t prove that {5} is topologically isarorphic
o 2(8)

Remembser that 2 direce system in €, 35 8 see (X, ), whete A s 2
directed set, Xoo G for x4 and if x<f, thea fusi Xa = X I8 3 contin-
uous homomorphism and for each a<f<y fivefun=fiy. The inductive limit
lim X, fosla s aléo an clement of £, Note that it is discrese if X, s dis-

Grete for each . If fus: Xa— X atc continuovs homemorphisms for x<j
.ndj.-/.,uj.,-hmmu <fl<y, then (X, furly Is called an Invecse systemn.
limit is denoted by lim {X..J.u}‘ I X, s compact for cach &,
.:mum[x.,_,r.,}.ndmmnpm. ficts concerning inductive and pro-
fective imits which are used below can be found in [2).

6. Lo (t)lu(ﬂ,fn}heumvm:ymmlnwumnﬂis
fnite for cach @ and F = lim (F., fulss 'ﬂu@{}’juwpolowl,nﬂm
phic to lim (o052, fol)s and B it is. discreie

mLn(z,,,,.),bndm:mmm.n-m.hng. finite for each &
and £ = lim {E.,_g,.]. “Then w(£) is topalogically isomoephic o lim (v (£
(g} 30d hence it in compact.

Th=|nmvfulhnmu the proof of Lemma 43 from (7). We use also
Leruria 4,2 above and the fact that Fol as 3 eompact S-module and E ¢ N
44 & discrete S-modvle. {

Below we use again the modules X, and Y, which ase defined in 4.3. )

6.2, Conoctaky: The module ¢(5) is discrere and
(o] o) = (Xiles),
where ¥ is the set of all open ideaks of S

Baooes For aty v clomoars [and J from T with £¢ /et b s
e the Since 3
for § (see scction 2), 5 i mpdav:lllg isomarphiic to Lim (511, prlz- By
Lemma 6.1(s)

S

#() 2 lim [ (5D, ¢ {p




e
and hence it is discrete. Furthermore, Lemma 4.5(#) the above show that (5)
holds.

Clearly we have also
© H9=Upies).

“This is known and fallows, for example, from Corollary 62 with replacing ¢
b

Y %
The following lemena is the central moment in this section,

63, Leanax: ‘There exist isomorphisms g2 X) - Y, for esch Je ¥ so
chat the diagram

@

S
u

X, -4 Y,

is commutative whenever 7cJ.

Proor: ‘The ring 1 is finire for cach /& ¥ and Lemma 4.1 and Proposi-
tion 5.2 show that p(51) = 2(511). Since X, s isomorphic 1o (S} and Y;
—t0 z{S]1), we have X e ¥,: Choose an isomorphism fi: X, — Yy for
exch Te .
Let Jand L be two clements of § with Lc J, then X, is contained in X,
by Lemma 4.5(). Since
FACOEE AESE

and ¥ is the wnique submodule of y(f) which is isomorphic to z(S/1) (see
for example Lemma 4.5(8)), we obtain f,(X) = ¥,. Then f; and the restric-
tion of fi o6 X, are two isomarphisms between X, und Y,  Since each auto-
motphism of /2 has the form r-idy, foe some lnvertablc clement 1 of 5, there
is an invertable clement s(Z, /) of § &0 that

®) Selw) =1L, D):filw)  for any we X,

Set s(L, ) =1 for L¢L. Thos we have 2  oup (L))~ AL, ) of $5 3
into the set K of the invertable clemens
Consides K7 endowed with the pmdun Inpﬂ\ug’ 1;; Lemma 22 K i3
compact and then the Tichonov’s theorem shavws. that K7 is also compact.
Letting x = (s(L, 1))+ we obtsin a ger {yg. Hete 7 is being con-
sidered as a directed set under c. The compactness of K7 shows that there
i a deosity point x = (D) ey OF f¥idpey in 5
#(1} s an invertable element of S, then i X, = Y is an isomorphism,
78 ] be o ckanenus of F with Zc . Ja 6edes o prove the com- 4
mutativity of (7) eonsider the neighbourhood

U= [0+ D) 0 K] X [((4+1) 0 K] x K20




7,

of xin K7, &mxha&mqwm»&(xgw.m.mdmmz of &
with Ll and x;eU. The last

2 #(L, yex(D) 4T
Jand

(10) AL, Nea+ T
Since 1Y, =0, according to (8) and (9) we have

i Fuly o iy 1)) = 1U0) filo) = ).«
.\ Likewise, (8), (10) and J-¥, =0 imply

o= L) = S = )
Hence £,(#) = £.(0) for we X, which meass that (7) I eommutative.

64, Conoutanx: () asd 7(5) are wpologically isomorphic.

Pacor: Taking isomorphism g7 X, -+ ¥, foc T& 3 0 that (7) s com-
mvhmlc}.urmg(i}m,d(ﬁ)wmlbkm an isomor-
phism sz g(5) = 7(5) which colncides with g 0n X, for each T 7. Since
#(9) and 1(5) ate discsete (sce Corollazy 6.2),  is a tpological isomoephism.

7. = CORSIRUCTION OF NATURAL PQUIVALENCES:

un.d.éx\*-uu.uqm.r In this section we will construct natural

vﬂmoulmwmv-pd;lndpmrudxvﬂthumwnplne
Ibepm(n('ﬁloorwn

Brws,qm-uu-mw dsm o 1 9(5) — 2(5).
For X6 X' consider the following chain of algebraical isomarphisms ([61)

(1) 9(X) " Homs (8, (X)) — Homs (p(X), () -4 Hom, (X 2(5),

“where p is defined by p.(s) = and g is determined by o and the natural iso-
marphism gy(X) -+ X. In a similar way are defined the isomorphisms

() 2(X) - Hom, (5, 7(X)) 5+ Hom, (zx(), 2(5) - Homs (X, 1(5) .

By {11) and (12) we get an isomorphism pips $(X) —» 2(X). It is easy to
see that p s narual In the secse that i 2 X'~ ¥ is a morphisen In , then
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PO =20 4(X)
wn iw.
»(¥)—22 1Y)

is commutative. We omit the detailed verificarion of this fact.
To prove that s is & natoral cquivalence we have to show that gy is o
homeamorphism fur any A& N, To do this we need the following lemma.

7.1 Levata: ‘The fanctors g and y take compact modules to diserete and
discrete modules 10 compact.

Froor: Hach compuct Semonl J s 1 peojcive [t of s invese
21 fos) with finite modules Fy, sinee F has 5 local base of aeigh-
Voo o consisting of open submodules (sce section 2). Then, by
Lemma 6.1(a), ¢(F) i¢ discrete.

Similarly, according to Lemma 6.1(}), we fiad that y{5) is eompact for
any diserete Somodule F.

Suppose now that X €. and X is diserete. By Proposition 2.1 there is
& proper cxact sequence

a3 0= Yhg(X) 5 E+0

of morphism in " so that ¥ is compact and £ is dicrewe. Then by 3.2 the
sequence
0 4 ¥(¥) + T g (X) 2 (5} 0

s also exact. Since yyp(X) is discrete, a5 it is topologically isemorphic to X,
¥(E) is dicrete toa. On the ather hand, it follows from above that v(5) is
compacr. Hence y(£) is finite and Lemms 4.2 shows that £ is also finite,
Now the exscmness of (13) and the comprciness of ¥ show that 5(X) s com-

.
In & similar way one can prove that y(Y) is discsere for cach compact
Yea.
The next statement s possibly known,
72 Prorostrion: For Xe L let fi: X - ry(X) be the natural isomor-
phism defined by f{x)(x) =#(s), where xe X and we z(X). Then (fr)t=
(o)

Proar: Tt is suffcient  show that frer( /o) = ir,.
IF e z42(X), then u: z5(X) T is & continuous group homomorpkism
and y(fe)(e) = wefe. So we have to prove that

() Suxloofz) = u.
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* For » @ zx(X) there cxists an xe X with fylx} =r. Then
as) () = a{ f(x])
and
(16) Srn(wofie) = sluofs) = fel)(umfs) = wefal) .
Clearly (15) and (16) imply (14).
We are able to prove our

pmu.-rmn We are going 1o show that s is & topological
isomorphism for any X € X

Snm::rmnu:x;udimu.\‘mdnk Then w(X) and 7(X) are com-
pact. Since z(X) has & local base of neighbourhoods of 0 consistiag of open
eubrmodules (sce section 2), to prove that rg I continuous it is sufficent to
show that u3*(1] is epen in y(X) for each open sabmodule 1 of z(X),

Let 1 be an open subodule of 2(X) and U = uz'(1), Cleadly U s a
submodule of y(:X} with a finite index in it (which is equal 0 the index of 1
i..,m). S0 to prove thit U i open in () it sufficies t see that £ is cloted

O et e i s Vo 20 Then 10 21001 207
i e . et~ (1l < e X () e
Iomarphism, ws obisin the commustive
0"1(")*sz(2)
an NN
x
The nasurality of s shaws that the disgram
{18) O s (P -2 (X}

nn -
0 (V) 220 2(X)

s communarive oo
To werify thar I (y(p)) = 1/ eonsider the diagram

0+ ¥ - 0

” an
0 s x4 -2t x2p(X)
e

A
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wheee fy and foo are the nuuml isomorphisms. The commumtivity of
the squaze follows from the propertics of 7 and this of the triangle—from
the commutivity of (17). By Proposition 72, g(/e)efs, = idyey. Hence
Im (z(p)) = Im () = V. Now (18) shows that &/ = Im (y()) and then &/
s compact. “Thus U s closed in (X). We have proved thae iz it continuous.
Siace () is compact, it is 2 hor m.

Let now ¥ be an abitrary clement of X, Since ¥ is locally eompacr,
according to Proposition 21, we find 2 proper exac sequence

0 ZLYE Xeal

of mocphita in X' so dhat Z is compact and X is diserete, The saurality of
and the propestics of y and  imply that the diagram

04 p(Z) = p(¥) +Ey() =0
. ,. -

0 2(2) <20 Y] <2243y -0

is commatative. It follows from above that s i 2 topalogical isomorphism.
Since w(Z) and 7(Z) are discrete, we obuin that gy s also 3 wpologieal o
morphismm,

Thus we have shown that 4 s & satural equivalence between ¢ and 7.
It semains o construct 2 natursl equivalence between ¢ and 7,

Let ¢ and / be aacural equivalence between yog aad idg, and is
sad yoy, sespectively. For each X6 we have 9(X) € X and then py iy,
wo(X) = re{X) topolagical is Hence the posi Hyrdty
is & tapological isomorphism which implics. that

2Penex): 2zp(X) — 2(X)
is also a topological isomorphism. Finally, set
Ae xltiostadfoinn

Then 4z §(X) -+ x(X) is 3 topological isomorphism, A straightiorward veri-
fication thows chat 7 is 2 nawnal equivalence between ¢ und 7,

Rmuans: It follows from Theotem 1.4 that for compact rings 5 each
duality berween the category €, of the compact S-modules and the category D,
of the discrete S-modules is narunally equivalent to the duality e.]ém
Prodsnov [6] shorwed hat the anslog of this statement for topological gronps
(k- for § =% with the discrete topology) is sot true.
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8, - ANOTHER CHARACTERIZATION OF THE FONTETAGIN DUALITY

Let 5 be 4 compact commutative ring with identity and W, be a cadumis
sible S-category. In this section we characierize the Pontzyagin duality functor
on . 33 the only contravariant fincior i A —» £ Which satisfcy the fol-
Iowing axiom system, similar 1o the Axiom system 1 in [7]

() wS) = x5,

(B) #isf) = r(f) for cach ra§ and cach morphism f in M,

(C) ¢ takes proper exact sequences in i fako propes exact sequences,

(D) if X is a compact S-module and jez X'— XU are the canonical
quotient maps, then ¢{X) is discrete and

#2160

where U runs over the open submodules of X. Likewisc, if Ye® and ¥ {
s discrete and for esch submodule 5 of ¥ iyz £ Y is the canonical em-
bedding, then g(¥) is compact and

(e (r) = O

vhmcv:r 5 runs over the finite submodules of Y.
1y speaking, (D) says that g akes lim (F, fuss with fiadie F, to
u.n(.m)..u..ol. " L (e e I it beloegs 10 & 48 E are e,
m (g (). gl f
e ht ki section s £ wil b Contoevicant fonecor which |
satisfes the conditions (), (), (C) aed (D). if

BL If XxYed, thea (X% Y) suq(X)xe(¥).
The proof is the same us the proof of Lemena 3.1 in [T}

8.2, Lisowia: g is an additive functor.

Pagor: Let f,g: X -+ ¥ be morphisms
WW#U-H) #(/) + wle) aa be estal

ppnnxudl’nud.wmm “Take 3 fnite submodule £ of X and let
F o f(E) + (). There exist morphism f; and g, o that the diagrams

0 XY X—=sY

o ].. o T [

E—b-F E-5_F

For compact X and ¥ the
shed 35 in the proof of Lem-
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where 4y and 7, arc the identical embeddings, are commutative, Setting
b= o)+ ol — N!+Jlxnd osing that ¢(f) -+ ¢lad— (i + ) =0 we
have that the diag:

#X) 1)
wa I
#E) +—5(F)
is commurative and then Tm () ¢ Kemn (s(/2). By (D), 1) Kemn (s(ia) = 0
*
where E runs over the finite submodules of X, Fence Im(4) = 0 and
'(!+x)zvfn + wle).

n the gencral casc let K be a compact open submodule of X and L be &
mmp-:l open sobmodule of ¥ with f(K)+ 5(K)c £ The exisience of &
and L follows from Proposition 2.1, There are morphisms £y, fy, g, and g, 50
that the diagrams

0% K- X4 XjK 40
L

0—L%Y S YL .0

0~ K4 XL K0

ook
Ol S Y5 VL o0

tiere and  are the canonical maps, ate commutative. Now it follows
from abave that p(f; +.2) = #(f) + p(e) for i= 1,2 and thesefore the dia-
gram
0 p(R) =22 (X) 2 G XTK) - 0
. ttvesttein) [0
0 (L) T () 472 G(Y]L} — 0
is commutative. Heace g £+ £) = w(f) + wlg):

Let w: (8) —+£() be a topolopical isomorphism, such exists by ().
For each Xg M, sequence of

(1%) A% Hom (5, X) £ Hom, ((X), p(5) % Homa (#(X), 2(50)
£+ Hom, (22(8), (X)) = Homis (5. zp(X)) - 290X
where p and # are the cinonical isomorphiscs, g and r are induced by o and

the matunal isomorphism yy(5) -5, respectively. By (19) we find homo-
morphisms X = zp(X) 30 that for each marphism f: X Y la S the
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X —tew 9 (X)
. Jiwn
¥ e gp(Y)
is commutative.
We ate going to prove that s are topological isemorphisms. To do thiy
we niced some tecknical preparation.

8.3, Let 4 be a closed ideal of 5. As in the proof of Lemma 4.1 we sec.
that if X and J-X =0, then Fg(X)=0.

8.4. Lussua: For any finite Samodule X0
@0 card (p( X)) = cxed (1)

Proor: We will use the represeatation (£) of S (se¢ section 2) with com-

local rings §». Denore by 8%, the uaique maximal ideal of 5.
“Taking we A we want o dhaw frat that ¢(S./B) v 0. Assume the con-
wary. Then p(F) = 0 foe each finite Sw-modole F. To prove this we use an
indiction on n— cazd (). Suppase the statement i true for all finke Si-
modsles with cardinalicy less than « and let cad (F) = s, I F is & simple
Swmodule, then F 2 5Dt and p(F) = 0. Supposing F is ot simple, we 4
find an exact sequence

0 E% F5 FE=0

with cacd (E)<< # and card (FE) < w. By (C) and the inductive hypothesin
we get p(F) = 0. In particular, (S./f) = 0 for each open ideal f of Su: It

FE) =10,
©n the other hand, £ = Sy %] Ss and (A) and 8.1 imply
B

xa)mmaw.)x.('[ls.)- v(g_su)-

According to 8.3, we have Surg( [152) =0 and then Su-7(5) = 0. The last

‘means 5, = 0 which is a contradiction.
Hence (T.)M.)# 0. Set T.—l.xﬂ-fa, then S/t 2 5] T, It fol

lows from (A) and (C} that there is a monomorphism
Si ST > 25« £
By 8.3, T (5/Te} == 0 and then Im (f) = ¥, (e 4.3 and 4.50). On the
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other hand, card (7) = card (3(2)) for each finite S-module Z. So we have
card (p(8/ 7)) = cacd (37 = card ((8]T5) = card (/75 .

Thus we have proved (20) for X = Su/¥t, and arbitrary we /L.

Further we use an fnduction on # = card (X), -Suppose (20) is trae for
card (X< » and ket ¥ be an S-module with card (¥) = w If Y is simple,
then ¥ o S, -n. fn- s0me a A and the above seasanings imply card ¢(Y) =
— card (¥). Assume Y bs aot simpls, then there is a non-sero proper sub-
module X of 1’ Bf the inductive hypothesis card (X)) = card (X) and
card (§(17X)) = card (V/X). Since there s an cxace sequence

0= (%) = §{¥) = 5(¥/X) =0
we have

casd (V) =l (p(0) card (p(¥1) = casd (X) cnsd (K) m cad ).
85. Conouany: 1f XeK and g{X) =0, then X' =0,

Pagor: For fnlte X this follows immediately from Lemma BA.

Lot X be an debiseey slecias of X with (3= 0. By Proporition 21
2 contsing 2 compact open submodale Y. Since there exists 4a eplmorphism.
FX) > §(¥), we have (¥) = 0. I ¥'#0, then there will be an cpimor-
phism of the type ¥ — F with finite F 0 which is clearly impossible, Thus
X is discrete. All finite submodules of X are 0 and therefore X = 0.

We are able to show that dei X -» ¢(X) is 8 monomorphism for cach
Xed.

8.6. Lusnsca: IF f is 2 morphism in X, with (/) = 0, then /= 0.

B Lo 2L Kb w surln ik vl o1 01 e
J#0. Thea f(3) 0 for some xe.X. Define a homomorphism 3
with f(s) = o5 and set = Ketn (o). Obvicushy, I is a propee closed i
of § and there exists 2 unique monomorphism & In A 50 that the disgmm

i
5 —-~.n!.r
where fy is the canonical epimarphism, is commutative, Then the disgrazn
#X) 2 (1)
o vy
#S) T (ST
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s also commutative which shows that ¢(plep(5) = 0. Since g() is a meno-
mq.l.hmwgcrv(t) w 0. On the other hand, {#) is an epimorphism and
thesefore (5iJ) — 0. Contradiction with Corollary 8.5 Hence f= 0.

Now Iooking at the definition of A;: X —» zp(X) we see that it s 1 mono-
morphism for each A'e.X. This coables us to prove the main theorem ia

this section.

8.7, Trmonrsts Let 5 be o compact commutitive riog with identity, & be

& cxdmissible S-category and ¢ M — £, be 3 contravasiant functor which

sacifies the conditions (), (8, (C) and (D). Then y is naturally equivakent
o the Ponimyagin duality functor z.

Proor: Wahﬁmmmdlmdmd!dgchﬂ:allnmmwphknl

e monomorphisans for any X'e M. It

open submodules of . The commarativity of the diagrm
{ X e py(X)
) riret
XU 2y yo(X]0)
and the fact that Aze arc isomarphisms. imply
AulU7) < Keen (g9 (o))
and then jy is continuous. Hence Im (As) is compact, Since
() = Im () -+ Kemn (rp(pe)}
for each open submodule I of X, we find Im (4s) = 3¢(X) and therefore
Smlllrmmmllgmut.::lfwmm module X, 4 is again 2
topalogical isomorphism. Let X be an arbitrary clement of A By Proposi-
tion 2.1 there is 3 proper xact sequence.
0+ YLXHZH0
in M with compact ¥ and discrete . Then the diagram
B ¥ —L5 X —te Z 40

shisiatr v

0 s 3p{¥) B (1) By yy(Z) = 0
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is commutative and the sequence oa the secoad Line s also proper emact, It
follows from above that 4, and i, are topological isomorphisms. This clearly
implies that 1y is alko a topological isomorphism,

Thus we have shown thar J is 2 nataral equivalence between iy, and 7.
Let.f be a natural equivalence from i, to gz, Setting pe= y(Ax}afn we
abtain & natural equivalence between ¢ and x oa M.

Resanc: Let . be a dadmiseible S-cuegory. Using reasonings similar
) these in this section ane can prove that any contravariant faoetos g1 J -+ £
which satiskies (B, (C), (D) snd

(73] w(S/F) = yiS/7) for every open ideal I of 5,

s natunlly equivaleat 10 y on K.
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