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Classification of Monomial Curves (**)

Classificazione di curve monomiali

Scvern. — Le exuailond caneslise dlle Sirve X, = 171, X, = 1, Xy = P & del lore sonl e
el vengoio clawifione in tenmin del seskdel i &, ¢ #, o s, Tnckie vieng dara uns formsla
shius s e et el e amgemte 3 wna vingeds curva < viess

per caloslark.

IsThopucTioN
Monomial curves X, = 1, X = %, X3 = £ atc often uséd both to give
cxumples and 1o test conjectures. in Commurative Algebra, S0 an easy Wiy
0 detcrmine the equational patiem of them and of their tangent cune, which
is the aim of this note, ean be of & practical, interest; in this direction
the reader may also consult [6]in which aa algasitha is des ompute
the equations of the projective closure of the same curves, which is very simi-
It o the one here described for tangent cone cquations.

in numerical semigroup theory ; after the explicit description of their ideal given
by Herzog [2], it was clear how 1o tepresent them as determinantal deals (5],
This allowed Robhizno and Valla o use their results on the tangent cone of
determinantal varicties and prove for instance that the rangent conc of these
enrves It generated by loss than 4 clements if it is Coben.Macsulay; moreaver,
starting from their cartesian equations, they classified these curves with respect
10 the minimal number of generators of their tangent cane and gave a pro-
ecdure . eompute it [3)

(*) T briras deensuee o Ge Univesniah, vis L B, Allen, 4~ 16132 Gesovas
) Moo pemarn U 1§ Logla 13 i Gisappe Sosem Dengnt; ma el 1.
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Heraog's resulis suggest alio. anothet approach 1o the smdy of these
carves. 1 is passible to prove that if X3 — X3 is in the idcal of the curve
Xy= ™, Xy= % Xy = % then b and ¢ are uniquely decenmined by o, and ¢
depends only on , and on the residuals of #, and 4 mod 5y, So with putsly
umerical abservations, it is possible, for a family of curves Xy m £, X, m ittty
Kym 1%, w0y dssigned natusal numbers, 4,4 nasurl pammeters, 10
determine the values of the pacumeters for which the curve is 3 complese fntea-
seetion (2.7) and to give a clussificiion like the one of [3] but which doesa’s
require the knowledge of the cartesiin equations (5.5). Morcover for a given
curve ft is possible to chacacterise its tngent cone (4.2) and 1 give o very
sy ﬂgm.mm i (6.3, 6.4y

1, when pt grows, one has curves whose tangent cane is
CM (Coben! \bnuhvj then curves whose tangent cone is not CM, then agaln
‘curves with a CM fangent cane and so on (and among them alko sporadical C1
(complete intersections) whose tangent cone i not CT), and when j fs greasee
than a fixed value CI's whate tangent canc is CL

The numcrical mamic of these results stromgly suggests that & computer be
used both for the classificstion of these curves and for the determination of
+he cariesian cquations. of the curves and of their tangent cones, All the algo-
sithms here deseribed ave been implemented in BASIC on a PDPI1-V03;
for details on the algorithms sce [4].

“The us¢ of a computet is not acw in such sirartions and moee. gencrally
in clussification problems in Algebraic Geomerry s sce [1] which describes somme
FORTRAN programs which study monamial curves through the propectics
of the numerical semsigroups associated to them.

1. - DEFDAITIONS AND PRELIMINARY RESULTS
10 Let € be a enve in Ay(6) with parametric equations
K=ty Hymt, Xy

o< iy <y marara] numbers, g6 (r, m, ) =
a2 B[Xy, Xz, Xk, x5~ H)y be the usmumnqlhml\ WX - 0

I(8) = Kerq  the ideal of the curve .
1.2 As in [2] £ = £(§) is the curve asociited 1o the numetical semigroup
= (e 1Y
1F for any ¢ = (s, 8, 53)@ N F(s) denotes the monomial
) = Xpxe g
and o: N -+ 5 denotes the homorphism: p(v)= ¥

hen o Fls) = 40,
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13 Let M(S) denoee the ser
M(E) = (=5 7, 7N, o0} = o)} = {(Gor 2o WETs Tim =0}
I s M(5), v 0,

= (g1, 72, 7s) there s @ 3, such that cither
>0, g<0 ifjsi
z<0, a0 ifjei

Ta this case, we say that » is of kind i
Moscover if ¢ i of kind i and for any o/m (7)) of kind
Ril<iil
3 I8 said inizal of kind F.
# 8 said minimel iF it is minimal of any kind,

14 162 = (21, 2o 53} = M(S) is of kine , define vt —(;, PR
= 0 i = R e ek 4 = 0, & = el if 4

e 7 (s o) nod s pabymomial G} Fo2)—F(r) I k-
onsly wssocisted t 7.

15 Lt &, be the bast nataral wumber such that

Fuafy+ Fuf

¢y, b defrud in @ rimilar Wy
Th oy (g —rigs s o (= =k e ey — s )

waa vy, by are chosen, dhon
1) 0f 7y 0 for any f
1) = (Gir), Gl Glrad)

A A N S SR P
2 athervise, cither
2a) I(0) = (Gln), Gled)
%) 1@ = G, G)
) ()= (G Glew))




2. - CANTESIAN EQUATIONS FOR A FAMILY OF CURVES

21 Ta determine the cartesian equations of the curve €= (5), §=
2185) one has 13 find the minimal solutions in Z of the equation
, and the problem can be furthes reduced to find the solutions of

Zaty = guy mod 1y

if one aims to determine the cartesian cquations of the family of curves
£y, = £(5,),

Sy Ol £y )

. my,wy nawral oumbers, g.c.d. (4. 7
parameters such that m < m 4 1<

) = 1,y <y, <y Ay
e

22 Let gy o= ged (m,8), fy = g.od. (, 4). Lot RQ) b aocd that 0
<RO)< mip

y = R{1)mylgy mod gy
A et of sointiens of (1) i¥ rben (gyis R(D). O <nyfg gy where
RO =mg
R() = iR(1) O<RA)<amlgy if 1<i<mpg
Rimfgig) =0

23 Ln
P
=
Al = (gme — B{i)m)iey
B = (igens - (mlgs — RO, }oy
o) = (= Al ign, — RGY)
00) = (= Bl ey g — R(D)-

Thow » = (xy, tae T Rl <mvigys [l <miy
it of kind | iff = £ w(i) for come i
it af kind 2 0 0= L AF) for same 3 and A0
i1 9 kind 3 iff w == & o(i) for some i and Al) <0,
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24 b
I = (i 0<i<mlng RG)< RO for amy k<)
K= <ffuder RU) > RO for wmy k<< i}
KC7, ) = {iz i X, R)+ RU)=migs, 4= b}
Thens if #(§) is wsimal ic i if w(i) it minimal then ic K.
Puoor: 1f R(k)< R{i) an1 k< i, then

i) — k) = (A) — AW, (1~ K)o, REE) — RD)

1 of the same kind 13 p(f) and § — k<i, RO — B(k)< R(j) where both equa-
lities cannoe oceur. A similar argument proves the seeond assertion.

25 Let jul be sl that A0, A@D<0 - j,del.

Lat b the clemat in T imerecliately preceding j. Thiw:
i) AWE)>0 for amy 5> bel.
o) is minimal of Jind 2.
I A = 0 K7} is alio minisesd of kind 3.
i) If A= 0 6(f) i wvinioal of kind 3.
%) ¥ — #U) ir minimal of kind 1

Proor: v) If A(f)>0 it follows from 1.5 case 1), Otherwise let w; =
B o e el of sk D < R RO
Thete exists § such that #, = (7). Since

RUy>ra=mfg— R{) and  R()+ BU) = R{i+7)

R{i) + R(f) = R(i-+f)+m)gy and ry= R()— R(i+ 1)
which implies R(f)> R(i+j). Also,
j o o0) = 20) = (ALY = Dges R~ R
is of kind 1 and
w—w= (Al —e, (+HI—Na. BU- BRI+

whete All)— sy >0, YY)~ .rcc- §f) = R()— R+ N>0si+iafujel
TR then cossarily §mj—] and v my.

2.6 Let the elements of J be indexed in increasing order: i
and let () =g R, for j = 0, ..., r—1, so thatfor any /, B(j): DU-I;
and D} docs not depend on 2 and
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“Then, combining the results of 2.5 with thow of 1.4 one obtalas:
If o= Amy -, = iy iy, €= €, bt
a) ¥ wj= Dir —)a} then

1(6) = (G, G)) m=slipg)s )
) if = Dir—1}x, then

Ho) = (G, Gl o Y S T T
&) if & = Dij)s}, then

HE) = (Gle). Gw)) =)=, m=i)

d) if D—N)s<m< D, 1<jar—1, then
A= (Gl0), G, ) =i =il sa= (i),
g = (i)
) if %< Dt} thm
1) = (Gli), Glm)) m=K1), = (0]

2.7 The curve Co= €, it @ complete Imiersection iff eicher:
A Die=1)2 4 (D — 1wy —m)ny
#= D+ (D) n = )i
< DA+ (D(1) by — o, -

3. - Soms Lemstara

3.1 ‘The techniques of paagraph 2 can be applicd also to the computation
of the tangent conc of C. Ia this ph, same definitions are given and
some lemmata ace proved. In the follawing one the computation of the tangent
cane of ¢ will be achieved,

32 1f P is polyomial let T(F) denote the inivial form of . The idesl
T = (TP Pelm))
is the fmgent some of €.
33 Lets = (i, 1), # = (35, 73, B) €NV,
Let o] = X5,
Let ¢ < I #,<, for acy # i B(x) e (F().

34 If re M(S) let TE) =w (respe o) if [rl<lo] (espe =, >).
Ther:

TG = KT if Ty v
T(G0) = GUE) i TG)ms.




o [
3.5 Ife is of kind 1, then T(0) = v ,y.-..._(:uu; then Tle) = v, If x
it of Hind 2, any of the three nizer s
36 #f) is aid Tomisisnal HE
ofi} is of kind 2
T{e()) A )
For any k<, If (k) i of kind 2, then T((£)) = s(8)
37 Let igd, 0i< mldygy sk 1hat #(5) is of Kind 2. Lat & De the greciest
elemant i 1 sach that Ties
i) #() — o) = (i — i)
) #(8) i of kind 2:
) o by i of ind 2 if A A of ket 3 4 A < AG).
Proow. i) Since << R(i)— R{E)<mgy and R()— Rb)y = R(i—b), thea
B()— R(5) = R(i— 1) and Al — 1) = A{)— A}, 30 #0) —#(8) = i — ),
ii) if #(#) were of kind 3, #(/ —4) would necessrily be of kind 2; let
then by be the grearess element in 7 such that by <f— b dy<band s(b) is of
Eind 3; bur this leads o an infinite descent.

38 If A(l) > Alg), then:

D I TO0) =10, TOW)h o) s T0= 1) = o~ b
) if Py =) . T(eB))=relh then Tl —B) = oli — B
) f TEM)=10), Te)=r) s TOG—B)=sti—h)
) if T(e)) = i) T b elby bon  T(o(i— b)) o= o(i — by~
Proor: All the assertions follow easily from:

TEO) =iy (sesp. o(d)y W)} I il — 1) = RO, — ) (respe =, <)

39 If TE@)A i) ten T;.(m_,(.q)n
Therefore s v(3) is T-minimal, ic I,

<A, Wi ) s of kind 3, s0 Ri)— R(})< A()—
. Therefore 0< £() + AW — fui < RE) + A(H) —gib 80
A, 1 AG) = Alh) and_ T(r(i)) = ()" T(»ca))pm'

=8 10 B B3T, Tutiw e sies hich,
e an infinite descent. Al) and TE(0) = #(),
‘.’(.(.b))s-(ﬁ) then T(‘(lfﬂ)]gt .\:75) T{o(h)) # riby)’, and infinite de-
scent

e




=

4. - EQUATIONS OF THE TANGENT 0ONE

4.1, We arc now able to compute the magent eone of the corve £, = £{5,,),
whin: Foa= (g 1y d o+ g, wape + )
Let:

J & be such that () >0, A{f)<0 bor any fal, i<j
i€l be the element immediately preceding

kel be such that o(#) is T-minimal

L= (el joi<i)

I Kl )

= (Flel), TG, [0 ): ehh (Flagy): ieh))

42 T(0) =%

Pacor:
) 76 = ([Tt {rieea)
) (o)}

w(i) s of kind 1, s0 T(s()) = #{i). There are 4 cases:

2i) I ik and RO)+ BY)<mjg; then a(i)y > s{i)".

2ii) ¥ i<k and R()+ RU)>mjgy but there exists di such that

R(#)> RG) then w(i) > s(b)
2l I iz and T(o(h)) = (A", then =) = rid)e.
i) 1f ik and T{e(A)) = (), lex # be such that 0<f —mk < k. Then:

ey

Fluli)) = X HX MG 4 F)

wheze g = (AR), (/— £y, oga— RE) + R(E)).
So F(w(iy) e (G{ri8), Fiz)), whese

= (AR (= m&)gs. mqy— RE) +eRE).
I /gy — R{T) + uR(E) = RO then g > #()*; otherwise
R —wRU)<mlgy, RUY—aR(E) = Ri—uk) sad g,% o(i—mk),

where i — k< k.
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3) lf.(',\ i of kind 2, de, Hhee TIGEA)) e3¢
;(;J s uf kind 2, inj. I j<i<k then T{G(s{A))) =X by sssamption.
3 I T{:(k)) s (k)" then #(i)* > 1(A)
i) I T(rkY) = #(k) then F(i)*) = X3
where ¢ = (AR, qifi —£). BE))
#0) k) = (= AG)-+ AW, 60— K. R — R() s of kind 1 50
TU) — #U0) = (o) — Ay < 7 sk Pty Y (ot FIGri) sty ]}
4 .'fr(‘) i ﬁ_{wz igt, r&n ﬂc(-(r:))sx_
Let b be as in 3.7, There
43) IF T(6(0)) = o(iY, then T((8) = o, 001> (B
Ail) T T(o(f)) = oy, then, if R()>B(). #(i) > st
Othierwise: if A(f) < (), then #(i— ) is of kind 3, R(i— §) < R() w
By > 2(i —j) s 3 AG) > AW either T(r(h) = o(b), o(iy > ol
TUe( ) = (i) (i) = #li—f) and Fle(i —)) a2 otherwise in-
Finite. descent leads to & contradiction.
diii) l€ Te(i)) = o), then mt.e)),.f(r)-. n(d- > HOy, and the same
s a5 above prove that F{e(i))
5) 4F #(i) i of &ind 3 thew T|G(wii))) e3¢

SGEA) + Flo

5. = CLASSIFICATION O MONGMIAL CURVES.

5.1 The results of paragraphs 2 and 4 allow o chassify monomial curves
£ 0080, 5 = (. 4, 7) with respecs w the minimal numbes of genesators of
their ideals and of their mngent cones, given oaly the pasametsic cquations,
The rvaciaats for dhis clasification, i.c. the D(/)'s, depend only on ay and
on the tesiduals of #} and # mod s This classification corresponds to the
one of [3], which i given In terms of the cartesian cquations.

52 L=0ifj=k
53 Jn sans ), d) of 26 j—ledy.

Paoor: j—l<j<k; A=)+ RU)= RU) + sjgy >wigi. T there
exist b<j—{ such that R(d) > R(j —1), then R(B) + R()> sy,

R(I+8) = RU)+ R — gy = B0+ RO) = mfgs = RUS)
and j would not bk in I
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54 1fj = &, therin car ), 4), ) (26, Iy = 8 i camvt 3, d) Fy = [ — Pl

Faoor: In caes o), i 200 = (= 0 .l — D) i n M), e
By = w50 (= BU) 6y, ity — w9y, mty — R(D) is of kind 3, there.
fore B()-+ R(b) <y and iy,
In cases o), ), if £ 3 in Jy, BE)+ RU)> mfgs. Then
w0} 0{l) o (= Bl 4 AU, G+ Fgg, migs— RO — ROD) I

is in M(5) and, since

(i+ ey = Rl < migy— R@ — R(fy=0,

it cannot be: of kind 3, therefore it is of kind 2.
Sa it lsp B, \Enaj;;,!sua RG> R(j—1) ws iy, and since
—J) i minimal of ki

#) —wi—) = (— B0+, U —F+ D, RG =D —RE)

i of kind 2, 30 i —j 4 dj ij == & and | ot belong 10 J.
In case o) & =f=1 and Jy= 0 obviously,

5.5 Let 5= (s, o, #), €= C(§), D(/) as in 2.6; « the minimal number
of generators of X(£), f the minimal number of generators of T(5). Then the
different possibilities are summarized in the following tble.

6. = AN ALGORITIM TO COMPUTE TANGENT COMES

6.1 The compuration of the equations of the tangens cone with the o
cedure of paragraph 4 is efficient whenever one’s imterest is in the

of a family of corves, e.g. ull monamial curves of given multplicity, lm it

in less efficient o compute the equations of the tangent cone of o curve.

‘or this ressan, heze we shaw an algorithm 10 enmpute the fangeet cone

of & monomisl curve (such that - 3) whose cartesian equations are known.

62 et /4 o/, (i) 35 in paragraph 4 As 83 TG(D) =
If we M(5) we denote its ith componens with u(f) Fiin) s Fia)
i s N0, Gla) i wo MCS).

63 Initially: /3= 2, T,:=o{l), =) Tyim eliys Fpim
= (P TR, BT, Fy(TD): w3 M) —(0); s = — (), where the signs
are chosen in such n way that w,{3) > 0. The u\gnmhm then proceeds by
iteration of the fallowing procedure,
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64 Let /.

G L: W w1 of kind 2 (in which case 87, mmust be of kind 1), T(g)=
#(3) < wp(3), then:

T b3y myuap i s, Wy paim vy = (wohich is of kind 1);
7,

"Gepar T i= ¥+ (R(T)).
The procedure is sepeated.

Gt 25 1 wpy s of kind 2, Tlwn) = 375, #2(3)> 4,3), then:

Timjtl, w

w—*n (which i of kind 2);

COR N

Thowi= Tyunds Ry 0,4 (BT

The procedure is sepeated.

is of kKind 2, Tms) v, then the algorithm terminates.

Gt 4: Wz i of Kind 1 (in which case w) is oF kind 23, and »,(3) > s (3)
hens

Loty myupyima, M=

i (which iz of kind 1y;

Thiam miomm, Fypntm %+ (F(T0)
The procedure is repeated.
Gase 5: 1wy is of kind 1 and w(3) <oy (3) thens

Timj by Wypim v, wyy vy~ (which is of Kind 25

7

T@ysnd e Eypyrm %+ (FUT,0)-
The proceduse i3 repeated. 2

68 Termisation of the slgoritha ks ensured by the fact that for any /i
€ M) and F(T)PE, .

We omit here the proof of its correctncss which relies o showig that if
elther a #(1) or & »(]) is a0t generated by the 4]

A8 for its complenxity, it sequires less than 6(f—2)
tha 44/ — 2) condlitioan] srtcmcats, to chéck which of the thind components
of 2, s less, aid to check which is T(aa) if w i of kind 2 (the kind of
#g is ot 0 be checked as it can be predicied at any sep),




= Exaumrs

m.r-[s-+|5r+2.12-+53.!‘-. HS).
=g +1. B@)=n+1, R =1; Af)m

A (G(’(Z)) G('(DLG(P(S) —#(@))) whese
2= (et 1,2, —n—1)
)= (-1,3,—1)
H3) =) = (=20, 5)
(L) = (X3 XX, (KX = L), X3
Fmrt3

Let S, = (30, 3011, 6a 1), £,= £(5)).
fi= g 1; B() = da—i; AG) = F—6ak1:

(L) = (CTr{2— 1), Glo(28)). G(w(24) — o(2— 1))

(1) (2,201, —u—1)
#(24) == (1,20, —5)
w(28) —s(2n—1) = (=3, 1, 1)
= (A, XA (XTI O — 2], AP - AT,
a’ﬁ.—i‘-rz‘

7.3 Example 7.1 is probably « minimals and example 7.2 « maximal s, in
 the sense that machine computation. suggests that if & curve has multiplici
00t greaer than 3s, its tangent cone can be genersted by ar most w2

* clements.

| 74 The rosults of 5.5 show that the clissification of curves €, = £{8,)
8 regards the equations of the curves and of their taagent cone, can be ge-
duced w the solutions of linear systems of inequalitics in 4 snd g Such &
classification can be casily performed by 3 computcr. For detsils about the
algocithe see (4], The classification of all monomial curves of multiplicity 5,
petformed by  BASIC program (sbout 200 instructions) is given in the fol-
lowing uble. The first two aumbers give the valwes of a and f; the last
Leescrs indicate the appropriate equations of the curve and of the tangent cone,
which can be found ar the bottom of the tble,
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Patterns of Carteslan egustions éclements of M(S) are given; values of exponents
of X, xhich arc not given arc casy to compuse for & given curve)

03
(=i 0.9

=ra =10
ot =1.3)
tru =21
Cr L3

frae =1, =)

=1 =1y

g asessns s
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Pattirss of tangest one eguations (ot given values of cxponents of X, are essy
1 compute for 4 given cueve)
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