

Randicceti
Accademia Nazionale delle Scienze dena dei XI,
Menorie di Matematia
101º (1963), Vol. VII, fasc. 3, pagg. 13-28

FERDINANDO MORA (*)

Classification of Monomial Curves (**)

Classificazione di curve monomiali

Stero. — Le oqualoni carrelane delle curve $X_1 = t^{\alpha_1}$, $X_2 = t^{\alpha_2}$, $X_3 = t^{\alpha_3}$ e del loro coni tangenti vengoro classificare in termini dei residui di $s_0 = s_0$ mod s_1 : Inoltre viene data una formula chiusa per le equationi del cono ungente di una singola curva e viene descrimo un facile algoritmo per calcolarlo.

INTRODUCTION

Monomial curves $X_1 = N_1$, $X_2 = N_2$, $X_3 = N_3$ are aften used both to give examples and to text conjectures in Commutative Algebra. So an easy way to determine the equational pattern of them and of their tangent cone, which is the aim of this note, can be of a practical, interest; in this direction the reader may also consult [6] in which an algorithm is described to compute the equations of the projective closure of the same curves, which is very similar to the one here described by compute to conjugations.

These curves have been recently studied by Hernog and Kana, using results in numerical semignoup theory; after the explicit description of their ideal given by Hernog El, it was clear how to represent them as determinantal ideals [5]. This allowed Robbishous of Valla to one their results on the tangent cone of determinant varieties and prove for instance that the tangent cone of these states of the contract of

(*) Indirizzo dell'annore: Intituto matematico dell'Università, via L. B. Alberti, 4 - 26132 Genova.
 (**) Memoria presentata il 15 Luglio 1982 da Giuseppe Scotta Deugoal, uno dei LX.

Herzog's results suggest also another approach to the study of these curves. It is possible to prove that if $X_i = A_i X_i^{\infty}$ is in the ideal of the curve $X_i = P_i X_i^{\infty} = P_i X_i^{\infty} = P_i$ when k and ϵ are uniquely determined by ϵ , and ϵ depends only on ϵ , and on the residuals of ϵ , and ϵ , and on, the visibulist of ϵ , and ϵ , and the provided boservations, it is possible, for a family of curves $X_i = P_i X_i = P_i$

easy algorithm to compute it (0.5, 0.9).

For an assigned 2, when \(\textit{y}\) me grows, one has curves whose tangent cone is CM (Coben-Macaulay), then curves whose tangent cone is not CM, then again curves with a CM rangent cone and so on (and among them also spondical CI (complete intersections) whose tangent cone is not CI), and when \(\textit{y}\) is greater

than a fixed value CI's whose tangent cone is CI.

The numerical insture of these results strongly suggests that a computer be used both for the classification of these curves and for the determination of the cartesian equations of the curves and of their tangent cones. All the algorithms here described have been implemented in BASIC on a PDPHI-V03; for details on the algorithms see [4].

The use of a computer is not new in such situations and more generally in classification problems in Algebraic Geometry: see [1] which describes some FORTRAN programs which study monomial curves through the properties of the numerical semigroups associated to them.

1. - DEPINITIONS AND PRELIMINARY RESULTS

1.1 Let Γ be a curve in $A_3(k)$ with parametric equations

$$X_1 = t^{a_1}, \quad X_2 = t^{a_2}, \quad X_3 = t^{a_4}$$

 $n_1 < n_2 < n_3$ natural numbers, g.c.d. $(n_1, n_2, n_3) = 1$.

 $\sigma: k[X_1, X_2, X_3]_{(X_i, X_2, X_i)} \rightarrow k[t]_{(i)}$ be the homomorphism $\sigma(X_i) = t^{a_i}$.

$$I(E) = \operatorname{Ker} \sigma$$
 the ideal of the curve .

1.2 As in [2] E = E(S) is the curve associated to the numerical semigroup $S = (n_1, n_2, n_3)$

If for any
$$p = (p_1, p_2, p_3) \in \mathbb{N}^3$$
 $F(p)$ denotes the monomial

$$F(\nu) = X_1^{\nu_1} X_2^{\nu_2} X_3^{\nu_3}$$

and $\varrho : \mathbb{N}^3 \to S$ denotes the homorphism: $\varrho(v) = \sum v_i n_i$ then $aF(v) = \ell^{\varrho(v)}$

1.3 Let M(S) denote the set

 $M(S) = \{ r - w : r, w \in \mathbb{N}^3, \varrho(r) = \varrho(w) \} = \{ (\zeta_1, \zeta_2, \zeta_3) \in \mathbb{Z}^2 : \sum \zeta_i u_i = 0 \}$

If $p \in M(S)$, $p \neq 0$, $p = (\tau_1, \tau_2, \tau_3)$ there is a τ_i such that either

or

In this case, we say that s is of kind i. Moreover if s is of kind i and for any $s' = \langle v' \rangle$ of kind i

v is said minimal of kind i.

p is said minimal if it is minimal of any kind.

1.4 If $r = (z_1, z_2, z_3) \in M(S)$ is of kind i, define $r^i = (z'_1, z'_2, z'_3)$, $z'_i = |z_i|$, $z'_i = 0$ if $j \neq i$; $r = (z'_1, z'_2, z'_3)$, $z'_i = 0$, $z'_i = |z_i|$ if $j \neq i$.

Then $r = \pm (r^+ - r^-)$ and the polynomial $G(r) = F(r^+) - F(r^-)$ is obviously associated to r.

1.5 Let c, be the least natural number such that

$$c_1s_1 = r_{12}s_2 + r_{13}s_3$$

and cases be defined in a similar way.

Then $s_1 = (\epsilon_1, -r_{11}, -r_{13})$, $s_2 = (-r_{21}, \epsilon_2, -r_{23})$, $s_3 = (-r_{31}, -r_{32}, \epsilon_3)$ are mildly and s_1, s_2, s_3 are chosen, then

1) if
$$r_a \neq 0$$
 for any i, j

$$f(\mathfrak{L}) = (G(r_1), G(r_2), G(r_3))$$

 $t_1 = r_{21} + r_{31}$, $t_2 = r_{22} + r_{32}$, $t_3 = r_{33} + r_{33}$

and

2s)
$$I(\mathfrak{C}) = (G(s_1), G(s_2))$$
 $s_1 = -s_2$
2s) $I(\mathfrak{C}) = (G(s_1), G(s_2))$ $s_1 = -s_2$

2c)
$$I(0) = (G(s_1), G(s_2))$$
 $s_1 = -s_2$.

2. - CARTESIAN EQUATIONS FOR A FAMILY OF CURVES

2.1 To determine the carresian equations of the curve $\Sigma = \Sigma(S)$, $S = \{e_1, e_2, e_3\}$ one has to find the minimal solutions in \mathbb{Z} of the equation $\Sigma \in S_1$, E_2 , E_3 , E_4 , E_4 , and the problem can be further reduced to find the solutions of the equation

(1)
$$z_n u_n = z_n u_n \mod u_n$$

if one aims to determine the cartesian equations of the family of curves $\mathfrak{C}_{1a} = \mathfrak{C}(S_{1a}),$

$$S_{1\mu} = (s_1, s_1\lambda + s_2, s_1\mu + s_3)$$

 s_1,s_2,s_2 natural numbers, g.c.d. $(s_1,s_2,s_3)=1,\ s_2< s_1,\ s_3< s_1,\ \lambda,\mu$ natural parameters such that $s_1< s_1\lambda+s_2< s_1\mu+s_2.$

2.2 Let $q_1 = g.c.d.$ $(s_1, s_2), q_2 = g.c.d.$ $(s_1, s_2).$ Let R(1) be such that $0 < < R(1) < s_1/q_2$

$$n_2 \equiv R(1)n_2/q_2 \mod n_1/q_2$$

A set of colutions of (1) is then $(q_1i, R(i)), 0 < i < n_1|q_1q_2$ where

 $R(0) = s_1 | q_1$ R(i) = iR(1) $0 < R(i) < s_1 | q_n$ if $1 < i < s_1 | q_n q_n$

R(s) = IR(1) $0 \le R(s) \le s_1/q_s$ if $1 \le s \le s_1/q_s$ $R(s)/q_s s_s = 0$.

2.3 Le

$$\begin{split} s_1' &= s_1 \lambda + s_2 \\ s_2' &= s_1 \mu + s_2 \end{split}$$

 $A(i) = (iq_i u'_i - R(i)u'_i)|u_i$ $B(i) = \{iq_i u'_i + (u_i)q_i - R(i))|u_i\rangle|u_i$

 $B(i) = (iq_1n'_1 + (n_1)q_1 - R(i))|n_1|$ $g(i) = (-A(i), iq_1, -R(i))$

 $w(i) = (-B(i), iq_1, s_1q_1 - R(i)).$

Then $s = (z_1, z_2, z_3), |z_2| < s_3|q_1, |z_3| < s_3|q_2$

is of kind 1 iff $v = \pm w(i)$ for some i

is of kind 2 iff $s = \pm \epsilon(i)$ for some i and A(i)>0

is of kind 3 iff $v = \pm v(i)$ for some i and A(i) < 0.

24 Let

$$I = (i: 0 < i < s_1/q_1q_1, R(i) < R(k) \text{ for any } k < i)$$

$$K = \{i: 0 < i < s_b | q_1 q_1, R(i) > R(k) \text{ for any } k < i\}$$

 $K(i, b) = \{i: i \in K, R(i) + R(j) > s_b | q_1, i < b\}.$

Then: if v(i) is minimal $i \in I$; if w(i) is minimal then $i \in K$.

PROOF: If
$$R(k) < R(i)$$
 and $k < i$, then

$$s(i) - s(k) = (A(k) - A(i), (i - k)q_k, R(k) - R(i))$$

is of the same kind as p(i) and i-k < i, R(i) - R(k) < R(i) where both equalities cannot occur. A similar argument proves the second assertion.

2.5 Let j∈I be such that A(j)>0, A(i)<0 if i< j, i∈I.</p>
Let I be the element in I immediately preceding j. Then:

- i) A(b)>0 for any b> i, ba l,
- ii) v(j) is minimal of kind 2.
- iii) If A(j) = 0 v(j) is also minimal of kind 3.
- iv) If A(f) > 0 v(l) is minimal of kind 3.
- v) v(j) v(l) is minimal of kind 1.

PROOF: v) If A(f)>0 it follows from 1.5 case 1). Otherwise let $\nu_1==(-\varepsilon_1,r_{13},r_{13})$ be minimal of kind 1 such that $0< r_{13}< \varepsilon_3=R(f)< R(f)$. There exists i such that $\nu_3=\nu(i)$. Since

$$R(j) > r_{13} = s_1/q_1 - R(i)$$
 and $R(i) + R(j) = R(i+j)$

$$R(i) + R(j) = R(i+j) + s_1/q_3$$
 and $r_{13} = R(j) - R(i+j)$

which implies R(j) > R(i+j). Also,

$$w = v(j) - v(l) = (A(l), (j-l)q_1, R(l) - R(j))$$

is of kind 1 and

$$w_1 - w = (A(l) - \epsilon_1, (i + l - j)q_1, R(l) - R(i + j)),$$

where $A(l)-\epsilon_1>0$, R(l)-R(i+j)=R(j)-R(i+l)>0 so i+l>j as $j\in I$. But then necessarily i=j-l and $\nu=\nu_1$.

2.6 Let the elements of I be indexed in increasing order: $I = \{i_0, ..., i_r\}$ and let $D(j) = q_s i_d R(i_s)$, for j = 0, ..., r-1, so that for any j, D(j) > D(j-1)and D(j) does not depend on λ and μ . Then, combining the results of 2.5 with those of 1.4 one obtains:

If $u_1' = \lambda u_1 + u_1$, $u_2' = \mu u_1 + u_2$, $C = C_1$, then:

a) if $n'_n > D(r-1)n'_n$ then

 $I(\mathfrak{C}) = \{G(u_i), G(u_i)\}$ $u_1 = v(a_1|q_1q_2)$. $u_{i} = v(i_{r-1})$

b) if $n'_n = D(r-1)n'_n$ then $I(\mathfrak{C}) = (G(u_*), G(u_*))$

 $u_1 = v(u_1|q,q_2)$. $u_n = v(i_{n-1})$

c) if $n'_n = D(j)n'_n$ then

 $v_i = v(i_i) - v(i_{i-1})$. $u_i = v(i_i)$

d) if $D(j-1)u'_2 < u'_2 < D(j)u'_2$, 1 < j < r-1, then

 $I(\mathfrak{C}) = (G(u_1), G(u_2), G(u_3))$ $u_1 = v(i_1) - v(i_{i-1}),$ $u_i = v(i_i)$. $u_2 = v(i_{i-1})$

e) if n' < D(Dn', then $u_* = s(0)$.

2.7 The curve £ = £, is a complete intersection iff either: $\mu > D(r-1)\lambda + (D(r-1)x_s - x_s)/n_s$

er: $\mu = D(j)\lambda + (D(j)\pi_s - \pi_s)/\pi_s$

$\mu < D(1)\lambda + (D(1)\pi_1 - \pi_2)|\pi_1$ 3. - SOME LEMMATA

3.1 The techniques of paragraph 2 can be applied also to the computation of the tangent cone of C. In this paragraph, some definitions are given and some lemmata are proved. In the following one the computation of the tangent cone of £ will be achieved.

3.2 If P is polynomial let T(P) denote the initial form of P. The ideal

is the tangent come of C.

3.3 Let $s = (s_1, s_2, s_3), \ v = (v_1, v_2, v_3) \in \mathbb{N}^3$.

Let $|p| = \sum p_i$. Let $v \ll w$ iff $v_i \ll w_i$ for any i iff $F(w) \in (F(v))$.

3.4 If $v \in M(S)$ let $T(v) = v^+$ (resp. v, v^-) iff $||v^+|| < ||v^-||$ (resp. =, >). Then:

> T(G(v)) = K(T(v)) iff $T(v) \neq v$ T(G(v)) = G(T(v)) iff T(v) = v.

3.5 If v is of kind 1, then T(v) = v. If v is of kind 3, then $T(v) = v^+$. If v is of kind 2, any of the three cases can occur.

3,6 s(i) is said T-minimal iff

p(i) is of kind 2

 $T(s(i)) \neq s(i)$

for any k < i, if v(k) is of kind 2, then $T(v(k)) = v(k)^{-}$.

3.7 Let $i \notin I$, $0 < i < n_i / q_i q_i$ such that v(i) is of kind 2. Let b be the greatest element in I such that b < i. Then:

 $i) \ \ v(i)-v(b)=v(i-b);$

ii) v(b) is of kind 2;

iii) v(i-b) is of kind 2 if A(i) > A(b), of kind 3 if A(i) < A(b).

PROOF. i) Since $0 < R(i) - R(b) < \pi_i | q_i$ and R(i) - R(b) = R(i - b), then R(i) - R(b) = R(i - b) and A(i - b) = A(i) - A(b), so v(i) - v(b) = v(i - b),

ii) if s(b) were of kind 3, s(i-b) would necessarily be of kind 2; let then b_1 be the greatest element in I such that $b_1 < i - b$. $b_1 < b$ and $s(b_1)$ is of kind 3; but this leads to an infinite descent.

3.8 If A(i) > A(b), then:

i) if $T(v(i)) = v(i)^+$, $T(v(b)) \neq v(b)^+$ then $T(v(i-b)) = v(i-b)^+$;

ii) if T(v(i)) = v(i), $T(v(b)) = v(b)^-$ then $T(v(i-b)) = v(i-b)^+$;

iii) if T(v(i)) = v(i), T(v(b)) = v(b) then T(v(i-b)) = v(i-b);

iv) if $T(v(i)) = v(i)^-$, $T(v(b)) \neq v(b)^-$ then $T(v(i-b)) = v(i-b)^-$.

PROOF: All the assertions follow easily from:

 $T\big(v(i)\big) = v(i)^+ \ \big(\text{resp. } v(i), \ v(i)^-\big) \ \text{iff} \ \ iq_2(u_1' - u_1) > R(i)(u_2' - u_1) \ \ (\text{resp. } =, <).$

3.9 If $T(v(i)) \neq v(i)^-$ then $T(v(b)) = v(b)^+$. Therefore if v(i) is T-minimal, $i \in I$.

Photo: If $A(i) \in A(b)$, i(t-b) is of kind 3, so $R(i) = R(b) \in A(0) = A(b) + g(t-b)$. Therefore $0 \in R(i) + A(i) - g(t-R(b)) + A(b) - g(b)$ so that g(t-R(b)) = A(b) = A(b) = A(b) = A(b) = A(b) and T(e(t)) = a(t-b) = a(t-b

4. - EQUATIONS OF THE TANGENT CONF.

4.1. We are now able to compute the tangent cone of the curve £_{λμ} = £(S_{λμ}), where S_{λκ} = (n₁, n₁λ + n₈, n₁μ + n₈).
Let:

 $j \in I$ be such that A(j) > 0, A(i) < 0 for any $i \in I$, i < j

 $I \in I$ be the element immediately preceding j

 $k \in I$ be such that v(k) is T-minimal

 $I_1 = \{i \in I: j < i < k\}$ $I_2 = K(l, k)$

 $\mathcal{X} = \{F(s(i)^+), T(G(s_i)), \{F(s(i)^-): i \in I_1\}, \{F(\pi(i)^-): i \in I_2\}\}.$

4.2 T(t) = JE.

PROOF:

1) $T(\xi) = \{\{T(G(o(i)))\}, \{T(G(o(i)))\}\}$

2) {T(G(s(i)))} = 30

w(i) is of kind 1, so $T(w(i)) = w(i)^-$. There are 4 cases:

2.i) If i < k and $R(i) + R(l) < \kappa_i | q_0$ then $\pi(i)^- \gg \kappa(l)^+$,

2.ii) If i < k and $R(i) + R(i) > n_1/q_2$ but there exists b < i such that R(b) > R(i) then $w(i)^- > w(b)^-$.

If i>k and T(v(k)) = v(k)+, then v(i)- > v(k)+.

2.iv) If i>k and $T(\nu(k)) = \nu(k)$, let u be such that 0 < i-uk < k. Then:

$$F(w(i)^{-}) = X_1^{s_1(i-k)}X_2^{s_1(i_2-k)}G(s(k)) + F(z)$$

where $z = (A(k), (i - k)q_1, n_1q_1 - R(i) + R(k)).$ So $F(x(i) - e(G(x(k)), F(x_i))$, where

 $z_1 = (uA(k), (i-uk)q_1, n_1q_1 - R(i) + uR(k)).$

If $u_i/u_i - R(i) + uR(k) > R(l)$ then $\varepsilon_1 > v(l)^+$; otherwise

 $R(i)-\pi R(k) < \pi_1/q_2 \,, \quad R(i)-\pi R(k) = R(i-\pi k) \quad \text{and} \quad \chi_1 \gg \pi(i-\pi k)^-,$

where i - nk < k.

3) If v(i) is of kind 2, $i \in I$, then $T(G(v(i))) \in \mathcal{X}$.

As r(i) is of kind 2, i>j. If j< i< k then $T(G(v(i))) \in \mathbb{Z}$ by assumption. Otherwise:

- 3.i) If $T(v(k)) = v(k)^+$ then $v(i)^+ > v(k)^+$.
- 3.ii) If T(s(k)) = s(k) then $F(s(s)) = X_2^{s_0(s-k)}G(s(k)) + F(z)$
- where $z = (A(k), q_2(i-k), R(k))$.
- $v(i) v(k) = (-A(i) + A(k), q_0(i-k), R(k) R(i))$ is of kind 1 so

 $T(s(i)-s(k)) = \left(s(i)-s(k)\right)^- < \chi \text{ and } F(r(i)^+) \in \left\{G(s(k)), F\left(\left(s(i)-s(k)\right)^-\right)\right\}.$

- If v(i) is of kind 2, i ∈ I, then T(G(v(i))) ∈ X.
 Let b be as in 3.7. There are 3 cases:
 - 4.i) If $T(s(i)) = s(i)^+$, then $T(s(b)) = s(b)^+$, $s(i)^+ > s(b)^+$.
 - 4.ii) If $T(v(i)) = v(i)^-$, then, if R(i) > R(i), $v(i)^- > v(i)^+$.

Otherwise: if A(i) < A(b), then v(i-b) is of kind 3, R(i-b) < R(i) so $v(i) > v(i-j)^*$; if A(i) > A(b) either $T(v(b)) = v(b)^*$, $v(i)^* > v(b)^*$, or $T(v(i-j)) = v(i-j)^*$, $v(i)^* > v(i-j)^*$ and $F(v(i-j)^*) \in \mathcal{R}$ otherwise infinite descent leads to a contradiction.

4,iii) If T(v(i)) = v(i), then $T(v(i)) = v(i)^+$, $v(i)^+ > v(i)^+$, and the same arguments as above prove that $F(v(i)^-) \in \mathbb{R}$.

5) If v(i) is of kind 3 then T(G(v(i))) e X.

5. - CLASSIFICATION ON MONOMIAL CURVES

5.1. The results of paragraphs 2 and 4 allow to classify monomial curves $c_{\rm s}(X_{\rm p,0}, G_{\rm p,0}, M_{\rm p})$ with respect to the minimal number of generators of their ideals and of their negative cones, given only the parametric equations. The invariants for this classification, i.e. the $D(f)_{\rm p}$ depend only on a donot the residuals of $n_{\rm p}^{i}$ and $s_{\rm p}^{i}$ mod $n_{\rm p}^{i}$. This classification corresponds to the one of 513, which is given in terms of the catestian equations.

5.2
$$I_1 = 0$$
 iff $j = k$.

5.3 In cases c), d) of 2.6 j − l∈ I2.

PROOF: j-l < j < k; $R(j-l) + R(l) = R(j) + n_j |q_2 > n_j |q_2$. If there exist b < j-l such that R(b) > R(j-l), then $R(b) + R(l) > n_j |q_2$,

$$R(l+b) = R(l) + R(b) - s_1/q_2 < R(j-l) + R(l) - s_1/q_2 = R(j)$$

and j would not be in I.

5.4 If j = k, then in cases a), b), s) of 2.6, $I_0 = 0$; in cases c), d) $I_0 = \{j - l\}$,

PROOF: In cases a_i , b_i if $\pi(i) = (-B(i), iq_1, u_1)q_1 - R(i)$ is in M(S), then $B(i) > \epsilon_1 = u_2'|q_1$. So $(-B(i) + \epsilon_1, iq_2 - u_1'|q_1, u_1|q_2 - R(i))$ is of kind 3, therefore $R(i) + R(b) < u_1'|q_1$ and $i \neq t_2$.

In cases e), d), if i is in I_2 , $R(i) + R(I) > s_1 | q_2$. Then

$$w(i) + v(l) = (-B(i) + A(l), (i+l)q_1, u_1|q_1 - R(i) - R(l))$$

is in M(5) and, since

$$(i+l)q_0 > 0$$
, $-R(l) < n_1/q_2 - R(l) - R(l) < 0$,

it cannot be of kind 3, therefore it is of kind 2. So, i+l>j. But, if i+l>j, since R(i)>R(j-l) as $i\in I_a$, and since R(j-l) is minimal of kind 1,

$$w(i) - w(j-l) = (-B(i) + \epsilon_1, (i-j+l)q_1, R(j-l) - R(l))$$

is of kind 2, so i-j+l>j, i>j=k and i cannot belong to I_2 . In case i), k=j=1 and $I_2=\emptyset$ obviously.

5.5 Let S = (n₁, n'₂, n'₃), C = C(S), D(f) as in 2.6; π the minimal number of generators of I(C). β the minimal number of generators of I'(E). Then the different possibilities are summarized in the following table.

6. - An algorithm to compute tangent cones

- 6.1 The computation of the equations of the tangent cone with the procedure of paragraph 4 is efficient whenever one's interest is in the classification of a family of curves, e.g. all monomial curves of given multiplicity, but it is less efficient to compute the equations of the tangent cone of our curve. For this reason, here we show an algorithm to compute the tangent cone
- of a monomial curve (such that $\beta > 3$) whose cartesian equations are known.
- 6.2 Let j, l, v(j), v(l) as in paragraph 4. As β > 3, T(v(j)) = v(j). If u∈ M(S) we denote its i-th component with u(j) F₁(u) denotes F(u) if u∈ N², G(u) if u∈ M(S).
- 6.3 Initially: I:=2, $T_0:=\nu(I)^*$, $T_1:=\langle\nu(f)-\nu(I)\rangle$, $T_2:=\nu(f)^*$; $\mathcal{R}_2:=\nu(f)^*$; $\mathcal{R}_2:=\nu(F_1(T_0),F_1(T_0),F_1(T_0))$; $\nu_{21}:=\nu(f)-\nu(I)$; $\nu_{22}:=-\nu(f)$, where the signs are chosen in such a way that $\nu_{21}(3)>0$. The algorithm then proceeds by iteration of the following procedure.

3		Case of L3	8		Mile of kind 3	Min. of kind 2	T-min.
Au	$n_i^i < D(1)n_i^i$ $n_i^i - n_i < D(1)n_i^i$	a	м		6)4	100	(I)a
Au icker	$s_i' < D(1)s_i'$ $D(k-1)(s_j'-s_j) < s_j'-s_i < D(k)(s_j'-s_j)$	a	61	$1+k+ K(0,t_0) $	6)4	(D)	100
4.	$n_i^i < D(1)n_i^i$ $D(r-1)(n_i^i - n_i) < n_i^i - n_i$	a	N	$1 + r + X(0, i_i) $	6)	ę	1(%)
An .1 <r	$D(J-1)a_1^i < a_2^i < D(J)a_1^i$ $a_3^i - a_2 < D(J)(a_2^i - a_3^i)$	-	•		16,00	(%)	600
Ap 1 <br/ />h <r< td=""><td>$\begin{array}{ll} D(J-1)u_1' < u_2' < D(J)u_1' \\ D(k-1)(u_1'-u_2) < u_2'-u_3 < D(k)(u_2'-u_3) \end{array}$</td><td>-</td><td></td><td>$2+k-j+ X(j_{j-1},i_j)$</td><td>16,00</td><td>100</td><td>400</td></r<>	$\begin{array}{ll} D(J-1)u_1' < u_2' < D(J)u_1' \\ D(k-1)(u_1'-u_2) < u_2'-u_3 < D(k)(u_2'-u_3) \end{array}$	-		$2+k-j+ X(j_{j-1},i_j) $	16,00	100	400
An 1 <r	$D(J-1)u_1^i < u_2^i < D(J)u_1^i$ $D(r-1)(u_2^i - u_3) < u_3^i - u_3$	1	-	$2+r-j+[K(j_{j-k},i_j)]$	rQ-9	(6)	1(7)
Ba tejer	$\kappa_i = D(J-1)\kappa_i$ $\kappa_i = \kappa_i < D(J)(\kappa_i - \kappa_i)$	2	77		699*	6.00	60
Ba 1<1 <ker< td=""><td>$\begin{aligned} & s_i' = D(J-1)s_i' \\ & D(k-1)(s_1'-s_2) < s_2'-s_1 < D(k)(s_2'-s_2) \end{aligned}$</td><td>a</td><td>N</td><td>$2+k-j+[K(j_{i-1},i_i)]$</td><td>60-0</td><td>100-1</td><td>r(0,2)</td></ker<>	$\begin{aligned} & s_i' = D(J-1)s_i' \\ & D(k-1)(s_1'-s_2) < s_2'-s_1 < D(k)(s_2'-s_2) \end{aligned}$	a	N	$2+k-j+[K(j_{i-1},i_i)]$	60-0	100-1	r(0,2)
By 1 </td <td>$n_i' = D(j-1)n_i'$ $D(r-1)(n_i' - n_i) < n_i' - n_i$</td> <td>2</td> <td>**</td> <td>$2+r-j+[K(i_{j-1},i_j)]$</td> <td>16.0</td> <td>r(4-3)</td> <td>(1)4</td>	$n_i' = D(j-1)n_i'$ $D(r-1)(n_i' - n_i) < n_i' - n_i$	2	**	$2+r-j+[K(i_{j-1},i_j)]$	16.0	r(4-3)	(1)4
0	s(> Der-10s,	a	**	2	r(3,-1)	r(f,-1) or 17(L)	100

6.4 Let I = j.

Case 1: If w_{I1} is of kind 2 (in which case w_{I1} must be of kind 1), $T(w_{I2}) = w_{I1}^{-}$, $w_{I3}(3) < w_{I3}(3)$, then:

I := j + 1, $w_{ij+1j1} := w_{j2}$, $w_{ij+1j2} := w_{j1} - w_{j2}$ (which is of kind 1);

$$T_{i+1} := u_{(i+1)1}^-, X_{i+1} := 3c_i + (F_1(T_{i+1})).$$

The procedure is repeated.

Case 2: If w_{st} is of kind 2, $T(w_{st}) = w_{st}^-$, $w_{st}(3) > w_{st}(3)$, then:

$$I\!:=\!j+1,\ \, \nu_{0+10}\!:=\!\nu_{i1},\ \, \nu_{0+10}\!:=\!\nu_{i2}-\nu_{i1} \ \, (\text{which is of kind 2});$$

 $T_{j+1} := T(\nu_{(j+1)0}), \quad \mathcal{X}_{j+1} := \mathcal{X}_j + (F_1(T_{j+1})).$

The procedure is repeated.

Can 3: If w_{tt} is of kind 2, $T(w_{tt}) \neq w_{tt}^-$, then the algorithm terminates. $T(0) = \mathcal{K}_{t}$.

Case 4: If w_{t1} is of kind 1 (in which case w_{t1} is of kind 2), and $w_{t2}(3) > w_{t1}(3)$ then:

$$I := j + 1$$
, $w_{ij+1|1} := w_{il}$, $w_{ij+1|2} := w_{il} - w_{jl}$ (which is of kind 1);
 $T_{i+1} := w_{ij+1|2}^{-}$, $\mathcal{E}_{i+1} := \mathcal{E}_{i} + (F_1(T_{i+1}))$.

The procedure is repeated.

Case 5: If w_{in} is of kind 1 and $w_{in}(3) < w_{in}(3)$ then:

$$I := j + 1$$
, $w_{(j+1)1} := w_{j1}$, $w_{(j+1)2} := w_{j1} - w_{j2}$ (which is of kind 2);

$$T_{i+1} := T(w_{(i+1)0}), \quad \mathcal{K}_{i+1} := \mathcal{K}_i + (F_1(T_{i+1})).$$

The procedure is repeated.

6.5 Termination of the algorithm is ensured by the fact that for any j, $w_{i1} \in M(S)$ and $F_1(T_i) \notin \mathbb{R}_{j-1}$.

We omit here the proof of its concernes which telles on showing that if either s(t) or s w(t) is not personated by the algorithm, then $t \notin I_1 \cup I_2 \notin I_3$. As for its complexity, it requires less than t(t) = 2 subgrations also shown in the short instance, to check which is $t \in I_3 \cap I_3$

7. - EXAMPLES

7.1 Let $S_u = (3u + 1, 5u + 2, 12u + 5)$, $E_u = E(S_u)$. Then $q_1 = q_2 = 1$; R(1) = 2u + 1, R(2) = u + 1, R(3) = 1; A(1) = -8u - 3, A(2) = -48u - 1, A(3) = 1.

Then $I(S_n) = \{G(\nu(2)), G(\nu(3)), G(\nu(3) - \nu(2))\}$ where

$$s(2) = (4n+1, 2, -n-1)$$

$$s(3) = (-1, 3, -1)$$

$$s(3) = (-1, 3, -1)$$

 $s(3) - s(2) = (-4u - 2, 1, u)$

$$T(C_s) = (X_s^{s+1}, X_1X_1, \{X_s^{2s+1}X_1^{s-i} i = 1...s\}, X_s^{2s+1})$$

So $\beta = n + 3$.

7.2 Let $S_n = (3n, 3n + 1, 6n - 1)$, $\Omega_n = \Omega(S_n)$. Then $q_1 = q_2 = 1$; R(i) = 3n - i; A(i) = 3i - 6n + 1:

$$I(\xi_n) = \{G(v(2n-1)), G(v(2n)), G(v(2n)-v(2n-1))\}$$

where

So $\beta = n + 2$.

$$v(2u-1) = (2, 2u-1, -u-1)$$

 $v(2u) = (-1, 2u, -u)$

$$\begin{split} r(2s) - r(2s-1) &= (-3,1,1) \\ T(\mathbb{S}_{s}) &= (X_{1}^{n+1}, X_{2}X_{1}, \{X_{1}^{n+1}X_{2}^{n-1}: i=0 \dots s-2\}, X_{2}^{2n-1} - X_{1}^{2n-1}X_{2}). \end{split}$$

- 7.3 Example 7.1 is probably «minimal» and example 7.2 «maximal», in the sense that machine computation suggests that if a curve has multiplicity not greater than 3», its tangent cone can be generated by at most »+2 elements.
- 7.4 The results of 5.5 show that the classification of carres $\Gamma_{\rm sp} = U(f_{\rm sp})$ as regards the equations of the curves and of their tangent cone, one her educed to the solutions of linear systems of inequalities in λ and μ . Such a classification on the easily performed by a computer. For educils about the algorithm see [4]. The classification of all monomial curves of multiplicity 5, performed by a RoMSC program (show 270 interactions) is given in the following the contraction of the curve and of the tangent cone, which can be found at the bottom of the table.

-	2	$(5, 5\lambda, 5\mu + 1)$			W.	
- 2	2	(5, 52, 5u + 2)				A
2	2	(3, 54, 5µ + 2)				A
		(5, 51, 8u + 3)				-
2	2	100 ma car 10 ca				A
		$(5, 5\lambda, 5\mu + 4)$				
2	2					A
		$(5, 5\lambda + 1, 5\mu)$				
2	2				- 4	B
2	2	$(5, 5\lambda + 1, 5\mu + 1)$				
		$(5, 5\lambda + 1, 5\mu + 2)$			e	B
3	3	(n) m + 1, op + 4)		1< µ<21-1		0
2	2			µ>2l	-	B
		$(5, 5\lambda + 1, 5\mu + 3)$				
3	3			1< 4<31-2	1	D
3	4			$\mu = 31 - 1$	1	B
2	2			$\mu > 31$. 2	B
3	3	$(5, 52 + 1, 5\mu + 4)$	1-2-	No. of the last of	10	160
3	3	157	$\lambda = 2r + 1$	$2r < \mu < 3r - 1$ $2r + 1 < \mu < 3r$	1 4	F
2	3		$\lambda = 2r + 1$	$\mu = 3r + 1$	1	G
3	3		λ = 2ν	3+< 4<8+-3	1	G
3	3	1<1	$\lambda = 2\nu + 1$	3v+2<µ<8v+1	1	G
3	4			41-2< µ<41-1	1	11
2	2	0.0000000		μ>42		B
2	2	$(5, 5\lambda + 2, 5\mu)$				
	*	$(5, 5\lambda + 2, 5\mu + 1)$				B
3	3	0,		1+1<4<31-1	1	D
3	4			a = 33	1	n
2	2			$\mu > 3\lambda + 1$	- 8	. 13
		$(3, 5\lambda + 2, 5\mu + 2)$				
2	2				1	. 15
3	3	$(5, 5\lambda + 2, 5\mu + 3)$	$\lambda = 2\nu$			-
3	3		$\lambda = 2\nu + 1$	$2r < \mu < 3r - 1$ $2r + 1 < \mu < 3r + 1$	1	F
2	3		$\lambda = 2r$	n = 3v	7	G
3	3		$\lambda = 2\nu$	3r+1<µ<8r-2	1	G
3.	3		$\lambda = 2r + 1$	$3r + 2 \le \mu \le 8r + 2$	1	G
3	4			41-1< µ< 41	- 1	H
2	2			$\mu > 4\lambda + 1$	- 10	B
3	3	$(5, 5\lambda + 2, 5\mu + 4)$				
2	2			λ<μ<2λ-1	4	C
	2	$(5, 5\lambda + 3, 5\mu)$		μ>2λ	*	B
2	2	(A W 4 W M)		µ>1+1		B
		$(5, 5\lambda + 3, 5\mu + 1)$		The state of the s		-
3	3			1+1<µ<21	1	C
2	2			µ>2λ+1		B
3	3	$(5, 5\lambda + 3, 5\mu + 2)$	All of the last			
3	3		$\lambda = 2\nu$	2v+1<µ<3v		P

3	3	1 <v< th=""><th>$\lambda = 2r + 1$</th><th>2r+2<µ<3v+1</th><th>k</th><th>F</th></v<>	$\lambda = 2r + 1$	2r+2<µ<3v+1	k	F
2	3		$\lambda = 2r + 1$	$\mu = 3r + 2$	1	G
3	3		$\lambda = 2r$	3r+1 <p<8r-1< td=""><td>1</td><td>G</td></p<8r-1<>	1	G
3	3		1-2+1	3r+3 <p<8r+3< td=""><td>1</td><td>G</td></p<8r+3<>	1	G
3	4			41< µ< 41+1	1.	H
2	2			µ>41+2	n	B
		$(5, 5\lambda + 3, 5\mu + 3)$				
2	2			4>2+1		B
		$(5, 5\lambda + 3, 5\mu + 4)$				
3	3			1< u< 31-1	1	D
3	4			$\mu = 32$	1	E
2	2			#>3½+1		B
		$(5, 53 + 4, 5\mu)$				
2	2			#>1+1		B
		(5, 52+4, 5a+1)				
3.0	3		2-2	2r+1 <p<3r< td=""><td>5</td><td>F</td></p<3r<>	5	F
3	3		$\lambda = 2r + 1$	$2\nu + 2 \le \mu \le 3\nu + 2$	- 6	P
2	3		1-2	$\mu = 3r + 1$	1	G
3	3		1 = 2r	3r+2<µ<8r	1	G
3	3		$\lambda = 2r + 1$	3v+3<µ<8v+4	. 1	G
3	4			42+1<µ<42+2	1	H
2	2			p>41+3		B
		$(5, 5\lambda + 4, 5\mu + 2)$				
3	3			1+1<µ<31	1	D
3	4			$\mu = 3\lambda + 1$	1	E
2	2			µ≥31+2	2	B
		$(5, 52+4, 5\mu+3)$				
3	3			1+1<4<21	- 2	C
2	2			µ>21+1		B
		$(5, 52+4, 5\mu+4)$				
2	2			µ>1+1		B

Patterns of Cartesian equations belowners of M(S) are given; values of exponents of X_1 which are not given are easy to compute for a given curve)

43 $(-r_{\rm st}, 0, 5)$ (-res. 1, 0) (-r_{st}, -1, 1) (-r₁₁, 5, 0) $(-r_{11}, -2, 1)$ (-res. 5, 0) $(-r_{11}, -1, 2)$ $(e_1, -2, -1)$ 2) $(-r_{11}, -3, 1)$ (-rm. 5, 0) A) $(-r_{11}, -2, 3)$ (-rn. 3, -2) (0, -3, 2) $(-r_m, -3, 2)$ $(-r_{21}, 4, -1)$ $(c_1, -1, -1)$

(-r11. 5, 0)

n) $(-r_{st}, -4, 1)$

Patterns of tangent cone equations (not given values of exponents of X_1 are easy to compute for a given curve)

40 X X. B) X, X_{\bullet}^{\bullet} O X2 $X_4X_5^2$ X_5^2 or $X_4^2-X_2X_3$ D) X1 $X_1^1X_2$ X1 or X1-X1X, E) X2 xix. X_1X_1 X_1^3 F) X1 X_*X_* X_*^2 or $X_*^2-X_*X_*^2$ G) X3 X_1X_2 X_2^4 or $X_2^4-X_2^2X_3$

H) X1 X1X, X1X, X1X,

REFERENCES

- C. Gazerz, Ein Pragram vor Bernchung von Invarianten einer lebeles Rings der Dimension 1, Diplomarbeit, Regenburg, 1979.
- [2] J. ERERDO, Generators and relations of Abelian tentigroups and tentigroup rings, Manuscripta Math., 3 (1970), 175-193.
 33 L. Romsteno - G. Valla, On the opaction defining tangent error, Math. Proc. Camb. Phil. Soc.
 - 1. KORSIANO G. VALLA, On the squattons defining tangent some, Math. Proc. Camb. Phil. Soc 88 (1980), 281-297.
- F. Mona, Algorithms on measural curves, Rapposti Int. Mat. Univ. Genova, 88 (1980).
 G. Valla, On determinantal ideas which are set-theretic sampless interestions, Comp. Math., 42
- [1980], 3-12.
 [6] H. BRESTENY B. RENGENCES, Burchestinung Vermuscher Prejektimiskele mit allgention Vallatile (C. 17⁻¹A, 17⁻¹A, 17), Math. Nochr., 96 (1980, 257-289.