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Stability under Localization
of the Phragmén-Lindelof Principle (**)

Stabilita del principio di Phragmén-Lindelf rispetto alla localizzazione

Sunto.  Si confronta il principio di Phragmén-Lindelof su un germe di varieta analitica con
quello sul cono tangente. Se ne deduce che la risolubilita analitica su un aperto convesso di un opera-
tore differenziale (omogeneo) a coefficienti costanti implica quella degli operatori ottenuti pet loca-
lizzazione del polinomio caratteristico in punti reali e si individuano alcune condizioni geometriche
imposte dalla risolubilita analitica deducendole da analoghe condizioni pet la risolubilita di operatori
degeneri.

INTRODUCTION

We consider a partial differential operator P = P(D) in R" with constant
coefficients and the canonically associated polynomial P = P({), {€C", an
open set 2 of R", and the space A(Q2) of real analytic functions on £.

Our purpose is to compare the global analytic solvability on £ of the
operator P with the solvability of the operators P obtained by localizing the
characteristic polynomial P at real points £. In the analogous problem of com-
paring the solvability of P with that of its principal part P, (which is P’s
localization at o), a positive answer is given in [3] by Hormander. In fact
he characterizes the open convex sets 2 for which PA(Q) = A(Q), as the
sets which admit a « Phragmén-Lindel6f principle » on the asymptotic variety
V(P.) ({P=(0) =0, £eC}). Under this criterion, to which we’ll always refer,
we assume without loss of generality P homogeneous (and 2 convex).

Since the cone V(P:) ({P:(l) =0, ¢ eCn)) is fairly close to V/(P)’s germ
at & we must prove a result of stability under perturbation of such a Ph. L.
principle.

First we need a definition of Ph. L. principle in neighbourhoods of £ on
(P) which is, roughly speaking, lineatly dependent on the diameter of the

(*) Istituto di Analisi dell’Universita, via Belzoni 7, 35100 Padova, Italia.
(**) Memoria presentata dall’accademico Giuseppe Scorza Dragoni il 6 Maggio 1982.
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neighbourhoods. In fact our object is a translation of estimates for functionsde-
fined on I/(P) near & into analogous estimates for functions defined on V/(7)
(and conversely) with small residues depending on the local divarication of
V' (P) from 1/ (P%); so we need to approach & more and more in order to get a
better approximation of VV(P) by means of V/(P).

Next we prove that the Ph. L. principle on /(P) in neighbouthoods of &
and that on 1/(P:) (in neighbourhoods of the origin) can be made as close
as we like provided we cotrespondingly contract the neighbourhoods. How-
ever the homogeneity of /() in the variable { —¢& and the non homogeneity
of V/(P) give asymmetrical conclusions; i.e. the Ph. L. on V/(P) at § implies
that on 1/(P) but not the converse. The last was not unexpected because it
is very easy to find operators which are not solvable on any convex open set
even if all their localizations are solvable on everyone. We believed however
that the conclusions were symmetrical when I7(P)’s germ at £ is locally hyper-
bolic i.e. when it can be normalized in order that every (finite) fiber is real if
it has real projection.

In this case indeed, much more than in general, we relate the Ph. L. on
/(P) at & to that on VV(P;). In this connection however, we have found the
following counterexemple in R* (Theorem 3.4):

(SN e A Q= {xeR': x;<0}.

We show that #he half space Q doesn’t admit the Ph. L. on V' (P) at & even if
it does on V(Py) and even if V' (P) is locally hyperbolic at & (probably the reduci-
bility of 17(P) plays an essential role here).

Summarizing up our results from the point of view of the existence of real

analytic solutions for differential equations we obtain the following statement
(Theorem 2.5)

PAR) = AQ) implies PeARQ)= A(Q) for every localization at real
points &.

Since P, has a non empty lineality (i.e. it depends only on the variables
of the space orthogonal to £), then strong geometrical conditions for £ arise
from the global solvability of P: that are, because of our theorem, conditions

for the solvability of P too. We infer when P has some second order irre-
ducible localization at non null real points and 2 has C? boundary (Theorem 2.6)

PA(Q) = A(Q) implies Q2 unbounded .

On the other hand when P (real) has irreducible regular germs at every
real non null point (and therefore localizations which are products of real
linear terms), then easily (Theorem 3.3)

PA(Q) = A(RQ) for every open convex set L.

It seems therefore senseless to look for real analytic solutions on bounded
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regular open sets unless we are concerned with (real) simply characteristic ope-
rators or with regular irreducible germs at every non null real characteristic.

Next we deal with operators which have hyperbolic localizations of degree
<2. We prove that from the solvability of P on £, precise geometrical condi-
tions for £ arise, conditions which are related to the conical (convex) supports
of the fundamental solutions of the localizations. This is a consequence, via
the previous theotem, of the following statement relative to a second otdet
irreducible degenerate hypetbolic (with respect to some direction o ») form
(Lemma 2.7)

PAQ) = A(Q) (if and) only if either x + I'*(P, )N Q=0 or x — I'*:
(P, )N Q2 =0 for every x on 2’s boundary.

We wish to thank professor M. Nacinovich who initiated us in this subject.

1. - A LOCAL VERSION OF THE PHRAGMEN-LINDELOF PRINCIPLE.

The results of this paper rely on the following criterion of analytic solva-
bility on open convex sets.

Let P, be the principal part of P; K, K’ be compact convex sets of R™.
We say that the (global) Phragmén-Lindelof principle on the variety {P(¢)=0}
(V(P.) for brevity) relative to K, K’ holds, if there is a constant ¢ s.t. for
every weakly plurisubharmonic function ¢ on V/(P,) the following implica-
tion is true:

) (&) <Hg(Im{) 4 8[| when P, ()=0,
@()<0 when P,()=0, eR"

implies

©) ¢(8) <Hp(@m¢) when P,()=0.

We say that an open convex set 2 admits the (global) Ph. L. principle on
V(P,) if for every compact convex set Kcc 2 we can find another compact
convex set K, with Kc K'c 2, and a positive constant 6 s.t. the impli-
cation (1) =>(2) holds V¢ w.p.s.h. on V(P,).

In [3] Hormander proves that PA(Q) = A(R) if and only if Q admits
the Ph. L. principle on V(P,) so proving among other things that the lower
order terms of P don’t play any role in analytic convexity; therefore P will
be homogeneous in the following. Hormander gives again in [3] a local vetsion
of the Ph. L. principle proving that the implication (1) =>(2) is equivalent to
analogous implications in neighbourhoods of every unit real zero & of P. That
which matters to us is to explain how ¢ depends on the ray r of such neigh-
bourhoods in order to exclude that 6 = o(r), » — 0. In fact we’ll deal with
better and better approximations of P by means of P, and this requires  — 0;
so we need a Ph. L. principle which filters homogeneously to &.
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LemMA 1.1, There is a (universal) constant « >0 for which the following state-
ment holds. Let be given 8, KccR", r<}, 0€C" s.t. P(0)=0, [Ref|=1, [Im6|<
<r/2; o w.p.sh. on {PE)=0, |t —0|<r} and there verifying:

9(0) <Hx(Im{) + adr,
@()<0, leR",
we can find v w.p.s.h. on {P(L) =0} there verifying:
p(0) <Hg(Im?) +8[¢],
(<0, teR",
¥(0)>9(0) -
Proor. Take y & C®(R") s.t.: suppy is contained in the unit ball with cen-

ter at the origin; x>0; 7 is even and unit in L' norm. Set ¢({) = log 1|
where % is the Laplace transform of y:

720) = J exp [—iox, £3] () dix
It follows:
pQ)<fm¢|, teC;  ¢@) 5 [Aml], teC"—{0}.
So there is 2 0 >0 s.t.:
$(@) —[Im¢|<—o, 1<ltl<$.
Consider the p.s.h. function ¢,(¢) = r¢(¢/r). Obviously:
¢, (O)<[Im¢|, ¢eC*; () —[mel<—or, r2<[f]<3r[2

whete we can suppose w.lo.g. a<1. Set & = o; if ¢ is as in the hypothesis
define:

p,(0) = 9(0) + 384,((—Reb),  PQ)=0, (eB@r)={f—0l<r}.
Clearly: /

p,(Q) <Hg(Im{) + dr<He(Im?) +8(1 —7r),  P@)=0, teB®,7), r<%.

If ¢ is a point on the boundary of B(6,r) we have r[2<|l —Re0|<37/2 and
therefore ¢,(( —Ref) < [Im¢|—or. So for { near the boundary of B(0,7):

91(0) < He(Im8) + %06r 4 2|Im¢| — %07 = Hx(Im{) + §6Im{].
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We define a function on the whole I/(P) variety by setting:
p(8) = max (v,(0), Hx(Im ) + §6[Im¢)) if P)=0, teB(@®,7),
v(0) = Hx(Im{) + §6|Im | when P(()=0, {¢B(6,7).

p is clearly w.p.s.h. and has all the required properties.
In fact:

p(¢) <Hz(Im¢) + 6(1 —r) < Hx(Im{) + 8[¢] P()=0, LeB(b,7)
(and the same estimate holds for ¢ ¢ B(6, ) also).

Besides y(0) > ¢(0) since ¢,(0 —Re0) = ¢,(: Im6)>0.

Let K, K’ be compact convex sets of R" and let K’ cover the e-neigh-

bourhood K, of K for some ¢; let « be as in Lemma I

LemMA 1.2. Assume that the global Ph. L. principle on V' (P) relative to K, K',
(8) holds. Then Nr<3}, ¥9eC" P(6) =0, [Reb|=1, [Imf|<r/2:

€)) @(0) < He(Im 6)
if  is wp.sh. on {P()=0, e B(0,r)} there satisfying:

Q) <Hx(Im{) + adr ,
(2 {

() <0, teR®.

On the contrary suppose there are r<} and 8' s.t. V6 eC, P() =0, Ref| =1,
Im 6| < r/2:

(1) _ #(6) < Hx (Im6)
if  is wp.sh. on {P(C) =0, L B(0,r)} there satisfying:

p(Q) <Hx(Im{) 4 8'r,
2) [

9 <0, {eR";
then the global Ph. L. principle on V' (P) relative to K, K', (8) holds with
8 = min ($8'r, e(1 4 2/r)) .
Proor. Let ¢ w.p.s.h. on {P({)=0, ¢ € B(6, r)} verify (2). For Lemma 1.1
there exists p w.p.s.h. on {P() = 0} with y(0) <Hx(Im¢) + 8[¢]; »(¢) <O,
eR*; yp(6)>p(0). It follows:

9(0) <y(0) <Hwx(Im6) .
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Viceversa let ¢ be w.p.s.h. on {P(¢) = 0} and there verify: ¢() <Hx(Im &)+
+ d[¢|; () <0, (eR", where

6=min(%*6’r,e(l +g)'1), ol
r 2
If P(¢)=0 and [Im¢|> (7/2)[Re]| then

() <Hx(Im() 4 6 (1 -+ %) Im ¢| < Hx(Im &) + e[Im | < Hp(Im{)

(since K,c K').

If on the contrary [Im | < (r/2)|Re¢| set § = ¢[Re (| and define () =
= [Re¢[*p(Relly), neC P()=0. v is w.psh. on {P(y) = 0} and,
when 5 € B(6, r), it verifies (2') since 8 <#8'r. It follows (6) < Hx(Im 6) from
which ¢(§) < Hg(ImJ).

LemMA 1.3. Assume that the global Ph. L. principle on V (P) relative to K, K,
(8) holds; set §'= min (ad[2,¢/4). Then NO<r'<r*<} and VEER”, [El=11;
P(&) =0, we have

p@)<Ke@ml),  PQ=0, C(eB(Er)

if @ is w.p.s.h. on {PC) =0, ;€ B, r*)} there satisfying:

,7"2—'7'1
p(Q) <Hz(Iml) + 9 150
() <0, : ZeR.

On the contrary assume that NE as above there are 0 <r;< ri<% and 6¢ (%) s.t.:
9(0) <Hx(Im?), P@)=0, (CeBry

for every ¢ w.p.sh. on {PE)=0, € B(&, )} there verifying:

p(Q) <Hx(Im() + 6,73,
@()<0, teR".
If then
B=UB(,,r;)2{: PC)=0, k| =1, ¢eR"}
i=1
set

0< o =inf{[Im¢|: P() =0, Re¢|=1,,¢ B}

(*) The index & denotes the eventual dependence on §.
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and
5 =inf(( AL ) $ inf 65‘7'?‘).
i=1,...,8
It follows that the global Ph. L. on V(P) relative to K, K, (8) holds.

ProoF. () From Lemma 1.2 it follows that V¢ with [Im{|< (r/2)[Re(],
r<i:
¢(8) < Hr(Im?)

if ¢ is w.p.s.h. on {P(n) =0, ne B(, r[Rel])} there satisfying:
o(n) <Hx(Im7) +«drRel|;  ¢@)<0, neR".
In fact if @ is as before it’s enough to apply the lemma to the function:

p() = Ret[g(Relln),  P)=0, neBCRel[™, 7).
(b) Let r= (r2—rY)[(1 +7*) (cleatly r<3}); & and ¢ as in hypothesis.
Then ¢ is w.p.s.h. on {P(n) =0, ne B, rlRe )} if { e B(&, ).

If [Im¢|< (r/2)|Rel| we have ¢(0) <Hx(Im() by (a).
If on the contrary |Im¢|> (r/2)[Re(|>7/4 then

@(8) < Hx(Im ) + &' ; 1<

HK(ImC)+41+ : ]ImC]<HK(ImC)+e]ImC|<HK(Im¢)

Vice versa supposc P@)=0 and ([Re ¢|-1¢ U B(E,, r) then [Im{|>o-
-|Re ¢| and so

#O)<Helm) + o (1 + ) ] <Hamd).

Otherwise |Re&|te B(&;, rl) for some i; set () = [Re ¢[2p(IRellr),
neCm, P(n) =0. Then the function y verlﬁes on {P(n)=0, ne B, rz)}
the following estimates:

(n) < Hx(m1n) + $8,7% In| < Hx(Imn) + 8,72, ,
() <0, neR™.

Hence by hypothesis: p(¢[Re|?) <|Re([ Hx(Im{), from which:

9() <Hp(Im?).
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Setting 72 =r, r' =r[2, r<}, Lemma 1.3 can be paraphrased as follows.
The (global) Ph. L. on V(P) relative to K, K', (9), implies, for every unit
real zero & of P and for every r<}:

®) oO)<He(mt), PO=0, teB(s])
if ¢ is w.p.s.h. on {P({) =0, { € B(£, r)} there verifying:
2 9(@) <Hx(Im¢) +d'r ; 9()<0, C(eR".

where 6'= % min («d/2, ¢/4) if « is as in Lemma 1.1 and if K,c K".

Conversely if for every & we can find r; and J; s.t. for r <7 and for §'=4;
the implication (2) =>(1) is fulfilled, then the (global) Ph. L. on I/ (P) rela-
tive to K, K’, (8) holds with

-1
8= inf(s (1 + -(1;) 1 % inf 6;,7'5,)

i=1,...,

if the union B of the balls with center at the points &,, i=1, ..., s and of
radius 7, /2 covers the unit real part of I/(P)and if ¢ bounds «from below »
the imaginary part of every ¢ s.t. P({)=0, [Rel|=1, (¢ B.

Let then & be a unit real zero of P, and K, K’ be compact convex sets

with Kc K. It’s natural to give the following definitions.

DEerinrrioN 1.1. We say that the (local) Ph. L. principle on (the germ of ) V' (P)
at & relative to K, K' holds, if there are positive constants & and ry s.t. Nr<ry:

(1) sO<He@m),  PO=0, teB(sy)
whenever @ is w. p.s.h. on {P()=0, (eB(&,r)} there verifying:

2 () <Hx(Im{) + or ; p()<0, CeRe.

Derinrrion 1.2. We say that an open convex set Q admits the (local) Ph. L.
principle on (the germ of ) V(P) at & if VKcc 2 there are K'cc Q, 8 and ry so that
the implication (2) => (1) is fulfilled Nr<r,.

From Lemma 1.3 we infer that the global Ph. L. relative to K, K', (6)
implies the local one at every real unit zero & relative to K, K, (6', ) with
0'= % min (x8/2, ¢/4). And conversely the local Ph. L. at every & relative to
K, K', (0, Tog) implies the global one relative to K, K’, (§) with é determined
as already shown.

Obviously we could also have given an equivalent definition by putting
radius 7/m, m real > 1 instead of r/2 in (1) of Definition 1.1.
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2. - LoCALIZATION OF THE PHRAGMEN-LINDELOF PRINCIPLE.

Let F be the germ at a point & € C” of a function which is analytic in some
neighbourhood of & Denote by F; the localization of F in £ i.e. the first non
vanishing term of the expansion of F at & If » is the multiplicity of F, that
is the degree of F:, we have:

Fq)=limrmFE+1),  teCr.

We shall say that the germ F is normalized in the ¢, direction if F(& 4 (0, ...,¢,))
does not vanish identically. We shall say that the (homogeneous) polynomial
F; is normalized in the {, direction if its germ at 0 is such, or equivalently if
F¢(0,..., 1) 0 (in this hypothesis the germ' F also is normalized in the ¢,
direction).

Our aim is to show the relation between the analytic set {F() =0, {eC"}
and its tangent cone {F,(¢) =0, {eC"}.

LemMa 2.1. Assume Fy normalized in the C, direction and with degree m; denote
by T’ the variables in the orthogonal to the {, axis.

There are & and r s.t. the equation, in §,, F(E+ (¢, ¢,) =0, |I'|<r has
exactly m geros py(L") with \u,C)| < kr and for such eros we have the estimation:

| C)] < &)L|, l<r,i=1,.,m.

Proor. Since F;(0,...,1)5#0 there exists £ so that the zeros ul(’) of the
equation, in ¢,, F:({',C,) =0 verify:

@] < &E'|, T

Therefore, supposing F; monic in ¢,

m

[FeC"s )l = T | Ca—m3CEDI> EED™  if [Cal> (R +€)E7] -

1

On the other hand:
V(S 8 1 (3] R 15 ) 1S Zl<r’

merely by the definition of localization.
It follows:

|F(& + O)— Fe(0)| < (ele’Dm, <7, <49

from which:

[F2(C, L) > (el )™ > |F (& + 0 — F©)] crl<r, [al= (R +2)'.
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So by Rouché’s theorem, when [{'|<r, F(§+ (&', ¢,)) has exactly = zeros

(L") verifying |u ()| < (& + )L
We’ll always suppose in the following that the germ F(& + (¢, ¢,)) is in

the form [[; (¢, — p:(C")) because the last has the same small zeros and so the
1

same localization (apart from a multiplicative constant); therefore we’ll refer
to F(& + (¢, L)) as a Weierstrass polynomial with respect to Ze

LeMMA 2.2. For every ¢ there exists r (=r(e)) s.2. ¥ gero p3(l") of Fe(l', Cn)
of multiplicity o, there are at least a; eros py(L') of F(&+ (¢, ¢,) with

(8" — @D < elt’] s =i
Proor. Choose r so that:
|F +t)— F:0)| < (zs;z)m g, <, al<(e4 )]

(which is possible because F is a polynomial of degree 7). Take a zero u3(l’)
of Fy(¢', ¢,); if its distance from the other ones is > (¢/m)|t’| we have therefore:

B> () 1= FE+ O —FOL E1<r, ki@l =55 K.
Otherwise share the remainder into two sets {uf((")};, {#a(C")}; so that:
M) () —mE <] for some 7
Y W) — (@<, '] for some j'
@  ME)—m@OI>SE] Ve M) —m@I> el Vik.
Consider the open connected set:
8= (), 55 ) U5 (180, 25 1)
If £,€0B, |t'|<r we have:
B (k1) > ¢+ - Rl

And so in B there ate as many zeros p,(l') of F(€+ (¢, £,) as the sum of
the multiplicities of pl(¢’) and of all the uf(("). Since the diameter of B is
< ¢|¢’'|, we conclude.
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Consider the decomposition of Fy’s germ at 0 in irreducible germs i.e.
factorize F: = [[, Q¢ with O, irreducible in the local ring of analytic germs.
Every Q, being homogeneous, it is then entire and so it is a polynomial. Con-
sider the discriminant 4 of the product of the O, thought as a (monic) poly-
nomial in ¢, with ¢’ as parameters. We have

A@) =TT (ue(€) — ma€)?

i'<i”

where u%(¢') ate the different zeros of Fe((', (,); set degd = d.

LemMa 2.3. For every e there exist €' and r (= r(e)) s.t. if [AQC")| > [C']%
&'| < 7, then N gero pd(C") of multiplicity a; there are exactly o; geros u(") with:

(€ — m3C)| < elt] -

Proor. Clearly 3k st. [ul(C)| < &|¢'| Vi by which if |A(C))|>e'|¢']* it
follows
: ; A CI ! N\ad ’
@)~ = — 1 A (e G D

h <k, (h,k)#(i,5)

Therefore if | F(&+¢) — Fe(8)| < (elt')™ when [¢'| < r, [£,] < (k+e)|¢'| it follows

|F@)|> e hm> | FE + 0 — Bl |4@)|>&"1E"]*
Erl<r, La—m@)l=ell'|

since for |4(¢")| > &' |¢'|* the zeros uf(¢") have distance from eachother >2¢|¢|.
Again we conclude by Rouché’s theorem.

Let us come back to a (homogeneous) polynomial P, and consider its
germ at £ e R", |£| = 1, supposing, as always, that P: is normalized in the {,
direction. Observe that when r is small then P() =0, |¢'—¢&'|<r implies
|t — &,| < &jt'— &' and so |t —&|< (1 + A?)tr unless { is bounded away
from &; besides the number of such roots close to & is equal to 7z = degrPeds
In this situation, we can state in a (seemingly) different way the local Ph. L.
principle.

DerNrrioN 2.1. The (Jocal) Ph. L. principle on (the germ of ) V' (P) at & rela-
tive to K, K', holds if there are & and ry s.t. Nr<ry:

) e@)<He@m?), PO=0, |t'—&|<s, [ta—E&]<klt'—&

whenever @ is w.p.sh. on {PQ)=0, |t'—&|<r, [L,—&|<RIL'—&'[} there veri-
Jying
@) @) <Hx(Im{) + ér ; p()<0, (CeR*.
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LemMA 2.4. Definitions 2.1 and 1.1 are equivalent in the sense that the (globai)
Ph. L. on V(P) relative to K, K' holds if and only if for every real unit gero £, P; is
normalized in some direction (e.g. the L, direction) so that the implication (2) = (1)
Jor the same K, K' is fulfilled.

Proor. Let ¢ be defined on the r-neighbourhood of & on 1/(P) there
verifying :

o) <HxIm¢) + 6'r; p(t)<0, CeR~.

Then @ is defined on {P({)=0, ['—¢&'|<r/(1 + &%, £, —&,|< £’ —¢&[} also.
Setting r'=r[(1 4 £2)}, then ¢ verifies the inequalities (2) if ¢’ is taken so that
0'(1 4 &)t < 4. It follows:

o) <He(m?), PEL)=0, |c—s|<2(l+,€2)*
where obviously 7 is so small that P(() =0, [Cn—fn]>/é]§"~—§’| implies
|, —&,] >7'[2. Then we conclude by observing that in Definition 1.1 we
could have put balls of radius 7/m, m real > 1, instead of balls of radius 7/2.

The converse is just a repetition of Lemmas 1.1, 1.2, 1.3 (omitted for
brevity).

Observe that we again obtain an equivalent definition by putting 7/,
m real >1, instead of r/2 in (1).

Suppose now that the Ph. L. on I/(P) at & (in the form of Definition 2.1)
relative to K, K, (6, r,) holds. Set d= deg 4 and define:

Ce(r)={¢: P({) =0, |l'—¢&'|< 1, neat &,, |[A('—&")| > &}, it

LemMmA 2.5. There exists a constant M which doesn’t depend on & and r s.t.:

) #(0) < Hy(Im ) + 412814 €= il e, ()

if @ is a w.p.s.h. function on C(r) verifying:
@ e@Q)<HxIml)+o6r;  ¢(¢)<0, C(eR".

Proor. If b >0, set:

v = max () + 5105 XEZ N, o) cecupn,
¥(¢) =0, P =0, [I'=¢&|<r, |A¢ —8&)| <er.
Let r be so small that P(& + () =0, [¢'|<7, ¢, small, implies |¢,|< £[¢'|

(Lemma 2.1). If then Mis a constant s.t. Hy(Im¢) + 6<M, [¢'|<1, [C.]<k
it follows: He(Im{) + dr<Mr, P(E+¢) =0, |¢'|<r. In order that v be
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w.p.s.h. it is enough to take & such that bloge < — Mr. It is not restrictive
to assume |4(¢")| <1, Y|¢’|=1; it follows & log |4(¢"—&'||r*<0 when |'—&'|<7r
from which v also satisfies the estimations (2). By the local Ph. L. (as stated
in Definition 2.1) we have:

#(6) < K (1m) — b log 1€ 80!

> e Cer" (%)

provided that — &< Mr[loge. Thus, with M’ arbitrarily close to M:

log [’ —£)|jr*

o) <Hp(Iml) + M’ b

> CGCN"(%)-

ReMARK. Obviously we have analogous conclusions for functions which
ate w.p.s.h. on {¢: Py(£)=0, |¢'|<r, |4(L")| > &r%} in the case when the Ph. L.
on VV(P:) at 0 holds.

Let, as always, & e R%, |£| = 1, P(£) = 0 and assume that P; be normalized
in the ¢, direction.

THEOREM 2.1. Suppose that the Ph. L. on V(P) at & relative to K, K', (6, 1)
holds. For every bounded C and for every e there is ro (= ro(€)) 5.2 Nr<ry we have:

(1) PO <He@md)+er,  P)=0, [|<z
if  is w.p.s.h. on {Pe(0) =0, |L'|<r}, r<ry there verifying:
@ Q) <Hime)+3r5  p@<Clime].

Proor. Clearly 7, has been chosen so that for |{'| < r, there are exactly
deg P zeros of P(& 4+ (¢',¢,)) which are <A|('|, whereas the other ones are
> kry.

Fix ¢ and let ¢’ and r, (<r,) be the numbers which correspond to ¢ as in
Lemma 2.3. If |A(¢)] >¢&'|C']% |¢'| <7, then for every small zeto u,(() of
P(& 4 (¢, ¢,)) there exists one and only one zero u{(¢’) of Py((’,{,) with:

|H3(€") — ED] < e’ -
It is unique because |4(Z)| > ¢’ |¢'|* implies |ud(C")— p(C)|>2elC’], j# 2.
It exists because when |¢'| < 7o, the small zeros u, with corresponding mul-
tiplicities, are as many as the zetos uf; use then Lemma 2.3.

Let ¢ w.p.s.h. on {Ps(£)=0, |¢'| < r}, r<r, be as in hypothesis and define
on {P(§+0) =0, [AE)| > [C')% [']<r}:

w(&+ ¢ m@)) = o, KE)

if §O(¢") is the only zero of Py({’,¢,) for which |ul(C") —p(C")|<ell'|-
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We claim that y is w.p.s.h.; in fact when the discriminant of the product
of the irreducible factors of P’s germ at & doesn’t vanish on &'+ ¢’ then y is
obviously w.p.s.h. near & + {; otherwise use the Riemann extension theorem
(see Lemma 4.4 of [3]).

Let ¢ be the radius of a ball which covers K (and K’ also). We have:

v(& 4 (¢, mi(€)) < He(Im (&', p3(C))) + gr<Hx(lm (&', wi(2))) + cer + —g r<
Hy(Im (Z', i) + or, 14| >&'|L'|® (e small), [¢'|<r.

Besides:
(& + € m()) <Clim @, w@) | + Cer,  |AEN>e' L2, Jt/| <7
Application of Lemma 2.5 to the function y — Cer gives:

log |A(C'—§')l/’d,.’ e (f) ;
log ¢’ 2

p()<Hg(Im{) + Cer + M

Thus metrely by the definition of y:

log [4¢)|jr*

o) <Hg(Iml) 4+ (¢4 Cler + M 5G]

PO)=0, M@ >er, <],

Let P:(0) =0, |¢'|< r/4; let y >0 and |4|< T on the boundary of the polydisc
{neCr1: |n,—C|<yr,i=1,...,s—1}. Cauchy’s inequalities give:

> 4% < Cs where 4% = D*4 .

s B

lal=d (yr)?

Thus there are 2, (depending only on the coefficients of 4) and |6,| = y7 s.t.
|4@E"+ 61)|> a1 (yr)° .

Furthermore by Lemma 3.1.6 of [2] we can find 0 <A <d s.t. setting 6 = (&/d)0,
we have

G Wl a0r)

where a depends only on 4, and on 4.

By Lemma 4.5 of [3] all branches of the curve defined by the equation
Pf(C/" + (z()r), t)) =0 (in the indeterminates 7 and #) passing through the
origin satisfy the inequality:

[fl<dAyim,  y<1
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with A4 depending only on the coefficients of P;. More, such estimate holds
on the connected component of the origin in the curve

fefl)-o e

Thus there exists an analytic function 7+ (7, #(7)), V|r| <1 in a Riemann surface
which parametrizes the connected component of the origin in Pe(¢ + (<6, £)) =0,
|r|<1 and which satisfies the conditions:
0e#(0) ; [#@)| < Ay¥™r, |r|<1.
Then define the subharmonic function:
supp(C + (e6,9),  [t]<1.
tet(z) .

If ay?>¢', y< {, this function can be estimated when |z| =1 by:

He(Im&) + (y + Ap'myor + (6 + C)er + M_loli é“sy,d) r

So by the maximum principle for subharmonic functions:

1 d
¢(8) <He(Im?) + [f(y + Aylm) 4 (¢ 4 C)e + M%Zg,—)] r

provided that

1
P@)=0, i<z, ert>e,  y<g.
Choosing #y? = —1[loge’ we can conclude by obsetving that the expression

between brackets is infinitesimal for ¢ -0 (and so &' 0).

Note now that P is independent of the variable on the straight line parallel
to & (i.e. Pi(C + #£) = Pg(l) V¢ and V¢); so the (global) Ph. L. on T/(FP%)
implies that on I/(P,)’s germ at &, and therefore that on V(P)’s germ at 0.
Then we can prove, just repeating the previous demonstration and recal-
ling the remark at the end of Lemma 2.5

THEOREM 2.2. Assume that the Ph. L. on V' (Ps) at O relative fo K, K', (8, r)

(or the global one with exactly alike compact sets (and new constant 8')) holds. For
every bounded C and for every € there is ry (= ro(e)) s.2. Nr<ry we have:

() <Hp(m () + er, PO =0, |t'—&|<Z, t.—&, smal
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whensver @ is w.p.s.h. on {P() =0, ['—&|<r, {,—&, small} there verifying
0
<p(C)<HK(ImC)+§r; () <ClIm¢|.

Thus we infer from the two previous theorems that the Ph. L. on I/(P)
at & implies that on /(P) at 0, and conversely, apart from a residue &7 where
¢ can be made as small as we like provided that 7 0. We dedicate the fol-
lowing to showing that in the first case the homogeneity of P; at 0 enables
us to avoid the contraction of r (for ¢ tending to 0) and allows us to conclude

that the Ph. L. on V/(P) at £ implies the (global) Ph. L. on V(Z).
LEMMA 2.6. Suppose that for every (bounded) C and for every e there is 1o
(= ro(e)) s.2. Nr<ry the implication (2) = (1) of Theorem 2.1 is fulfilled when ¢

is w.p.sh. on {Pg¢) =0, |t'|<r}. Let E be an arbitrary positive number. Then
every @ w.p.s.b. on V(Ps) which verifies there:

1) pQ<HLm)+ oy gmbls 9@ <Clime|+ Bl
verifies also:
@) p(8) < Hao(m?) + 4(1 + BB
Proor. C and E being fixed, let ¢ 0. Let Py(¢) =0, {&C"; define:

r

o Zl’aqa(‘”“n), Py =0, r<ro@-

Obviously v is w.p.s.h. on V(P:) and there verifies (1'). Remembering that
(1 4 &%)t is a constant for which Pe() =0 implies || < (1 + &%) |n'|it follows:

v <He@mn)+5r,  Pm=0, Il<r,
p)<Cllmy| + (1 +&NEr,  P)=0, [n|<r.
Thus applying Theorem 2.1 to the function y — (1 + EET:
v <He(mn) + (1 + BB Er+er,  Pl)=0, [nl<z:
Using the last inequality for = (r/4[¢[) £ (%) we have:

r

L L . 2)%

(® Tt is clear that (1) of Theorem 2.1 is true even if |n| = /4.
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from which:

¢(0) <He(ImE) + 4(1 + AL E[| + 4et| .

Letting ¢ — 0 the lemma follows.

Summarizing up we proved that the Ph. L. on V(P) at & relative to
K, K', (9) implies for a new constant ¢’ the following statement: VC, E, if ®
is a w.p.s.h. function on VV(P) which verifies there:

9(¢) <Hx(me) + 6" [¢] 5 9(6) <Cllm¢| + E|Z|

in consequence it also verifies:
P(0) <Hw(Iml) + 4(1 + £ E|Z|.

This statement can be rephrased, via the «fundamental principle » of
Ehrenpreis, in the following way. Set

A ={x+{:xeK,leC [f|<51 + £)E},
Ay={x+(:xeK, feC, [t]< '},
Ay, ={x+{: xeR", |x|<C,leC |t|< E}.

Then every bounded (complex) analytic solution of the equation Pix = 0
on A can be written as a sum #, + #, with #; analytic solution of the same
homogeneous equation on A, and with

sup sup |#;| <¢(C, E) sup |4].
i=1,2 4, 4
If then we suppose to be concerned with an open convex set 2 and to refer

to K, K’ as subsets of 2 (Kc K'c 2) we have the following conclusions just
repeating step by step the demonstrations of Theorems 1.2, 1.3 of [3].

THEOREM 2.3. Suppose that the Ph. L. on V(P) at the real point & relative
to K, K’ holds. Then for every fe A(Q) there exists ne C*(Q), analytic on K,
resolving the equation Peu = f (%) in Q.

THEOREM 2.4. If Q admits the Ph. L. on V(P) at the real point & then
P: A(Q) = A(Q).

THEOREM 2.5. If PA(Q) = A(Q) then PeA(Q) = A(RQ) for every real & (%).

Naturally the converse of Theorem 2.5 (supposing & non null) doesn’t
hold as happens for the polynomial in three variables: P(f) = (&2 + £2)® +
+ 40185. Here the localizations P; (&5 0) ate either constants or multiples

(%) Hete we mean differential operators instead of associated polynomials.
(%) Observe that if £ is not a zero of P then Ps is a constant; if £% 0 is not unit then Pr=cPg e ;
and if £ =0 then P; = P (since P is homogeneous).
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of ¢%. Therefore P;A(RQ)= A(R2) V& and VQ (see the first part of the de-
monstration of Lemma 2.7) although for no (convex) 2, PA(L2)=A(2). In
fact the real characteristic variety {{€R®: P({) = 0} is a straight line and so
its codimension disagrees with Theorem 6.3 of [3].

The matter is that even if P has hyperbolic localizations, nevertheless it
is not locally hyperbolic which is the necessary and sufficient condition to get
PA(RS) = A(R®) and so the necessary condition to get PA(LQ) = A(%2),
QcR3. So in Section 3 we’ll only be concerned with locally hyperbolic opera-
tors and we’ll see under what conditions, Theorem 2.5 admits inversion. Before
doing so we want to deduce from Theorem 2.5 necessary conditions for ana-
lytic P-convexity of open convex regions.

THEOREM 2.6. Let P have some second order irreducible localization at non null
real points and Q be an open convex set with C* boundary.
If PA(Q) = A(Q) then Q is unbounded.

Factorize P in the product []; (P,)* of irreducible (homogeneous) poly-
nomials. If P, is hyperbolic with respect to »(,7) it is well known how the
cones I';= I'(P,;, v(§,i)) and I'f;= I'*(Py;, v(§,7)) are defined; the first
is the component of »(§,7) in the set {n e R": P, () # 0} the second is its
dual cone namely {xeR": {x,7>>0, VpeI',;}. Suppose to be concerned with
a polynomial P s.t. V& 0 every irreducible factor P,; is a hyperbolic form
of degree <2; in particular we can consider locally hyperbolic operators with
multiplicities <2 (everywhere in R"—{0}) since they have, as known, hyper-
bolic localizations.

THEOREM 2.7. Let P be as above and Q be convex. If PA(Q)=A(L) then V0
and Ni the following condition holds:

either x + I'5N2=20,

or every x €02
f 2 or x—IfFNnQ=90.

ProoF oOF TuEOREMs 2.6, 2.7. We know that PA(Q)=A(L2) implies
P: A(Q) = A(Q). For the first observe then that Pe, £+ 0, is independent
of the variable on the &-line. So for some &, P is an irreducible degenerate
quadratic form. By Theorem 6.6 of [3] P: must be real indefinite; then
apply Theorem 6.7 again of [3].

For the second theorem note that if P, is linear, being even real, then
the corresponding I'¥; is a bicharacteristic ray; so the condition of Theorem 2.7
is trivially fulfilled because of 2°s convexity. Otherwise the theotem ensues
from the following lemma which again arises from Theorem 6.7 of [3].

LemMA 2.7. Let P be a second order irreducible degenerate hyperbolic (with
respect to v) form; set I'* = I'*(P,v). Then PA(R) = A(R) if and only if

either x +T*NQ2 =40,

or every x €082
f D [0r x—I*NR=29.
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Proor. The sufficiency holds in more general hypotheses. We could sup-
pose that P has principal part /E with I hyperbolic and E elliptic and that
£ is a generic (even non convex) open set.' If then Vx e 0 either x 4 I™*-
(DN 2=0 ot x—I'*(I)n 2 = 0 it follows that PA(RQ) = A(R). This is
precisely our result in [5], even though there we make use of it only for poly-
nomials in two variables. Y

Conversely suppose P in Sylvester’s canonical form P({)= (2 — >, (2 where

k

k<n—2, otherwise P is reducible, and £>2, otherwise it is non degenerate.
If x € 02 the tangent half space to 2 at x has been defined in [1] where also
it has been proven that PA(Q) = A(RQ) implies PAX) = A(ZX) for every
tangent half space 2. Suppose by translation of the coordinate system, that 02
is homogeneous (with normal N = (ny, ..., #,)).

(@) It is not restrictive to assume IV parallel to the plane of the xy, ..., x,
variables. Otherwise consider the projection NV of IV on such plane. If N=0
then I'* is tangent to X'; or else let, e.g., #,#0.

Setting £'= {x: {x, V) < 0} consider the mappings:

k-1
= X7,
. . 77
G: X2, G: x—>(...xk-1,xk+ > TTRY ,xk+1,...,xn)
%

1
and

G*: A(E) - A(Z), G*: f1>foG.

G* is a surjective ismorphism which commutes with P (since P is indepen-
dent of the first £—1 variables). Thus PA(X) = A(X) if and only if PA(L) =
= A(%) and, being I'* in the x, ..., x, plane, XN + I™* = ¢ if and only if
EntI*=y.

(b) Consider the symmetry of R* with the plane of the first # — 1 vari-
ables as fixed plane: §: x> (..., x,_,, —,); set ¥ =5(X).

The mapping S*: A(2) - A(Z) is again a surjective isomorphism which
commutes with P and so again PA(X) = A(2) if and only if PA(X) = A(2).
Besides since the (Mayer Vietoris) sequence:

0->ACEUE) > AC)® AZ) > AENZ) >0

is exact, then every fe A(Z'N Z) can be written as a sum f; + £, with f& A(Z)
and f,€ A(X). As we can find global solutions # € A(X) and #,e A(X) of
every equation Py, =f;, i=1,2, it follows: PA(ZN X)) = A(Zn 2).

(¢) Let xe0X, x, >0 (otherwise IV is parallel to the axis of the last
coordinate) and suppose that the intetior of the segment x i S(x) is con-
tained in XN X' (or else consider the segment — x = 5(—x)). Let K be a
compact interval in the interior of such se: ment; so Kcc 2N X and K is
parallel to the x, axis. Since PA(ZN X)= A(ZN %) it follows by Theo-
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rem 6.7 of [3] that XN X must contain a compact set K' whose projection
on the xy, ..., %, ; plane contains the ball B of diameter equal to the length
of K and with center at the projection of K. Calling = such projection we have:

BcaK'cZnZXcX since m projects 2N X into itself.

That obviously implies XN 4 I'™* = @; then the theorem follows from the
arbitrariness of the tangent half space Z.

(d) It remains to be proven that we can assume without loss of generality
that P be in Sylvestet’s canonical form. Let B be the matrix of the real linear
coordinate change for which P'= PoB* is in canonical form; let »'= B*-1(»)
and Q'= B(Q). If PA(RQ)= A(R) then P'A(Q")= A(2') and so Yx'ec oL’
X'+ I*(P, v )N Q=9 or else x'— I'*(P',v')N Q'= 0. Since I'*(P', ") =
= B(I'*(P, v)) the theorem follows.

3. - LOCALLY HYPERBOLIC OPERATORS.

In this section we’ll deal only with locally hyperbolic operators trying to
give some inversion of Theorem 2.5.

DernrTioN 3.1. P’s germ at £ € R™ is said to be Jocally hyperbolic if its Joca-
lization can be normalized in the {, direction in order that:

PC,C)=0, (—&small, 'eR*™ implies (,eR
where we denote by L' the first n — 1 variables.

DEeFINITION 3.2. P is said to be locally hyperbolic if every germ of P at real non
null points is such.

With every locally hyperbolic operator P we can associate (continuous)
vector fields £ > 4 »(¢) from R"— {0} into R*— {0} homogeneous of degree 0
mapping £ into the opposite versors of the directions in which P’s germ at &
is locally hyperbolic.

We were persuaded that in the locally hyperbolic case, the Ph. L. on /(P)
at & and the Ph. L. on V/(P:) at 0 (and so the global on I/(P) by subsequent
Lemma 3.1) were equivalent (apart from arbitrarily small dilatation of the
compact set K’ which appears in (1) of Definition 1.1); namely we believed
that an open convex set 2 admits the local Ph. L. on V/(P) at & if and only
if it admits the global one on /(). When Q = R" this is trivially true; in
fact in our subsequent Lemma 3.2 we prove (following an observation of
Hoérmander) that R* admits the Ph. L. on I/(P) at & whenever P’s germ at &
is locally hyperbolic (and so PA(R") = A(R") if P is locally hyperbolic at
every non null real zero). However we’ll see that this is true only in the
case 2 =R".
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First observe that, P being independent of the variable on the &-line,
the Ph. L. on 1/(P) at & is the same as that at 0. More

Lemma 3.1. The global Ph. L. on V' (Py) relative to K, K' is equivalent to the
local one on V' (Ps) at O relative to the same K, K' (and with a new constant dé").

Proor: Naturally the only interesting case is when & is zeto of P; we can
also suppose & unit. By Lemma 1.3 the global Ph. L. relative to K, K', ©)
implies the local one at & relative to K, K', (¢', %) and so the local one at 0
by the observation preceding the lemma.

Conversely let the Ph. L. at 0 relative to K, K, (4, 7o) hold. Take ¢ w.p.s.h.
on V/(FP) there verifying:

9(O) <Hx(Iml) + d8|¢] ; p(l)<0, CLeR".
If Py(f) =0 set:

r

w(n)=ﬁcl¢(“""n), i e

and consider the restriction of v to {Ps(n) =0, e B(0, r)}.
It verifies there:

v(n) < Hx(Imn) + or ; p()<0, neR"

and so also:
va)<He@mn),  7eB(03).
Using the last estimation for # = (r/4|¢[) ¢ we then conclude:
9(0) <Hp(Im{).

If P’s localization at & is normalized in the ¢, direction then for small 7:
P@l) =0, |t'—¢&|<r, {,—¢&, small, implies |¢,—&,|< AL’ —&'| for some
constant £ (Lemma 2.1).

Lemva 3.2. Let P’s germ at & be locally hyperbolic with respect to the ¢, direc-
tion (and so with localization normalized in such direction). If @ is w.p.s.h. on a neigh-
bourhood of & on V' (P) and verifies the estimates:

p@)<Cr, P)=0, ['—¢&|<r, [t,—&,| small;

p(¢)<0, P@)=0, |[t'—¢&|<r, t,—E&, small, LecR"



— 108 —
it consequently also verifies:
p()<C'[Im{’|, P)=0, [t'—&|<r', {,—&, small
where C'= (8|m)(n—1)C, r'=r[2(n— D) if n is the dimension of R™.
Proor. Define:

w(¢") = sup (@, ¢): P50 =0, [L.—Ea| < AIL'—E')

SleCrliy |bi—tti<ere
This function is p.s.h. for |{'—§&'| < r because the number of the zeros ¢, of
P, ¢, with [I'—¢&| <7, |, — &l < R|L"—&'| doesn’t depend on ¢’ (it is

everywhere equal to deg F%).
Supposing & real (otherwise the lemma is trivially fulfilled) we have:

W(CI)QCT, ICI—“E’]<7'; "/’(CI)QO, IC/_EII<,.’ C'GR"_l

where the second inequality arises from the local hyperbolicity of P at &.
So for the classical Ph. L. principle on C*1:

8
@) <o (= DCme| = C'Ime],  |'—¥|< —2(”—’_1)—*= r

from which the lemma follows considering how the function 3 has been
defined.

By the previous lemma and using Theotems 2.1, 2.2, we have in the case
when P is locally hyperbolic at the real (non null) zero & with respect to the
¢, direction: j

TuEOREM 3.1. Assume that the Ph. L. on V' (P) at & relative to K, K', (9, )
holds. For every ¢ there exists r(g) s.t. Nr<r(e):

Q) <Hx@mO+er,  |'l<g
if @ is w.p.s.h. on {Pe(()=0, |L'|<r} there verifying:
PO <HiImD+3r;  p@)<0, CeR".

Comversely if the Ph. L. on V (Pe) at O relative to K, K', (8, o) holds then for every &
there is r(g) s.t. Vr<r(e):

p() <Hx(Iml) + er, PO=0, | =E<25 Gor Exssmall



— 109 —

if ¢ is w.p.sh. on {P(Q)=0, |{'—&|\<r, {,—E&, small} there verifying:
PO <HmO)+3r;  pl)<0, leRe.

Because of Lemma 3.1 we can draw from the previous theorem (letting
& — 0) the following statement which is a better version, in the locally hypet-
bolic case, of Lemma 2.6.

CorOLLARY 3.1. The Ph. L. on V' (P) at & relative to K, K' implies the (global)
Ph. L. on V' (P:) with the same K, K'.

The corollary doesn’t admit invetsion since for ¢ — 0 then also r — 0
(r = radius of the neighbourhood of & on which we have the Ph. L. estima-
tions) ; so the conic neighbourhood in C* of the ray through & over which the
local estimations can be extended by homogeneity consequently decteases
(see Lemma 1.3). Clearly that doesn’t happen in the case of a neighbourhood
of the origin.

First of all let us consider a polynomial P with real coefficients and with
regular germ at a real non null zero & (i.e. grad P(£)+ 0). If then the germ
has localization normalized in the {, direction (namely if (2P/ox,)(£)=0),
since: P(& + ¢) = <{grad P(£), {> + o(|¢]) it then follows

P48 =0, small, (' real implies ¢, teal.

Thus every real polynomial is locally hyperbolic at all real simple characte-
ristics. In this regular case the Ph. L. on T/(P) at £ and that on T/(P) at 0
are equivalent (apart from an arbitrarily small expansion of K'). Let & be a
real non null zero of P, Kc K’ be compact convex sets; K” be an arbitrary
compact convex neighbourhood of K'.

THEOREM 3.2. Assume that P is real and simply characteristic at &. The global
Ph. L. on V(Ps) relative to K, K' implies the local one on V' (P) relative to K, K"
and conversely the local Ph. L. with K, K' implies the global one with K, K.

Proor. Suppose (0P/ox,)(¢)# 0; by Lemma 1.1 there is a constant £ s.t.
just one zero u(Z') of P(&+ (¢, ¢,)) is < £|¢’| while the other ones are bounded
away from O when {’ is small. Thus g is an analytic function of ¢’ on a neigh-
bourhood of 0. Denoting by w°((’) the unique zeto of P:(',¢,) then by
Lemma 2.3

@) —p@<ele’l,  [l<r (=)
Define the following p.s.h. function:

7(¢") = [Im (u(¢") — )15 <7
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We have for |¢'|<7:-
wlH=elts TR0 e R

where the second inequality is consequence of P’s local hyperbolicity at &
and of Pg’s hyperbolicity. Thus from the classical Ph. L. principle:

7

: 8
() <e' [Im¢’|  if |¢'|<r' where 6'=7—t(ﬂ-—1)€, r’=m.

Assume that the Ph. L. on I/(#) relative to K, K', (6) holds; so the local
at 0 with the same K, K’, and with a new constants ¢’ also holds (Lemma 3.1).
Let ¢ be the radius of a ball which covers K and K'. Let ¢ be w.p.s.h. on
{P@)=0, [¢'—¢&|<7 (r small), {,—&, small} there verifying:

PO<HmY+375  p0)<0, CeRe.
Define the following map on {Pi(() =0, [¢'|<r}:

P, °C)) =ol&+ ¢ u(?)).
We have:

v(&', u°(C")) < Hx(Im (&', p°(L"))) + cer + §r<HK(Im (A () B

if & is small and if r<r(e).
Besides: y(C', u%(l")) <0 if (', u%(¢")) is real since then (¢', u(¢")) also is
because of local hyperbolicity. It follows

v 1C)) <He(lm (0, 0@),  [2']<3-
So by the definition of y:

r

P&+ E u@) <Hee(lm (¢, pE)) + e’ [Im 8| < He(Im (21, p€))) s [ <5

if ¢’ is so small that K;,,c K" (and if 7<r(¢)). The vice versa is at all analo-
gous.

We can paraphrase the theotem saying that if P (real) is simply charac-
teristic at the real non null zero & then an open convex set {2 admits the local
Ph. L. on V/(P) at ¢& if and only if it admits the global one on I/(P). And so
if P is simply characteristic (at every real zero & 0) then P.A(RQ) = A(Q)
if and only if P, A(2) = A(R) for every & It follows

TueorEM 3.3. Let P be real simply characteristic. Then PA(Q) = A(R)
Jor every open convex: set Q.
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Proor. It is enough to prove that P:A(Q) = A(R), V. Now for every &
P is a real linear form and so the cone I'f = I'*(P%, grad P(£)) is the bichar-
acteristic ray through grad P(£). Since 2 is convex then for evety xeoQ
either x + I™*N Q2 =@ or x — I'*N Q = @; so we conclude by the result of [5].

We want to explain how it is possible to reduce to the hypotheses of the
previous theorem, all polynomials in R", #<3 which are analytically solvable
on the whole of R"”. Thus analytic solvability on open convex subsets of R",
7<3 becomes equivalent to solvability on R™ (which is in any way fulfilled
when 7 = 2). First let » = 2; then P is a product of linear terms which can
be proportional to real or complex forms. Therefore these factors are hyper-
bolic or elliptic according to the two cases listed above.

Finally any convex set admits the Ph.L. principle on the complex lines of
the zeros of the previous forms, in the first case because e.g. of the argument
used in Theorem 3.3 (or better directly because of the classical Ph.L. on C)
and in the second case trivially because of the ellipticity of the form. (This
remark was already made in [1]).

For the case # =3 we observe, by repeating the proof of Proposition 6.2
of [3], that 2 admits the Ph.L. principle on a germ of analytic set if and only
if it admits the Ph.L. on each irreducible component. Then we claim that in
the hypothesis PA(R%) = A(R?), any germ of IV(P) at real non null characte-
. ristics £, decomposes into the union of locally hyperbolic (°) non singular
irreducible components or equivalently that any germ of P factorizes into the
product of real simply characteristic irreducible factors (apart from analytic
factors non vanishing at &). This would allow us to achieve the proof by the
same use of Theorem 3.2 as in Theorem 3.3. In fact observe that the hypothesis
PA(R?) = A(R?®) assures that any irreducible component of the germ of 1/ (P)
at & is the complexification of its real part (see the proof of Theorem 6.3 of [3]);
this obviously implies that any local non unit factor of P at & can be chosen
real. If now & is not a regular characteristic point of an irreducible component
then all points on the homogeneous straight line through & are not regular,
due to the homogeneity of P. This disagrees with the fact that the real sin-
gular parts of the irreducible components of the germ of IV(P) at & must
have real codimension greater or equal 3 (Proposition 27, Section 17 of [1]).
We note the conclusion as a corollary.

CoRrOLLARY 3.2. If n =2 then for any P and any convex open set 2 in R? we
have PA(Q) = A(Q).

If n=23 and PA(R®) = A(R3) then PA(Q) = A(L) for any open convex sui-
sez Q of R3.

All previous statements hinge on Theorem 3.2 which only holds under the

essential assumption that F has regular irreducible germs. In general indeed
if P’s germ at £ is not regular, even if locally hyperbolic, we can’t affirm that

(®) It is clear from Definition 3.1 that local hyperbolicity is a geomettic property of germs of
analytic sets rather than of analytic functions.



— 112 —

an open convex set admits the Ph. L. on V/(P) at & if it admits the Ph. L.
on V(P). In fact consider the polynomial in four variables (already presen-
ted in Introduction):

PQ) =000

P’s germ at the real zero & = (0, ..., 1) is obviously locally hyperbolic
with respect to the x; axis. In the following theorem we prove that when K
is the unit ball of the x, axis then the Ph. L. on /(P) at &° relative to K, K'
imposes strong estimates «from below » for K.

THEOREM 3.4. Let P, £° K be as above. Let the Ph. L. on V' (P) at &° rela-
tive to K, K', (6, ry) hold. Then K' satisfies the following conditions:

(i) The range of the projection K' 3 x v> x, contains the sphere with center at
the origin and of radins ¢ for some & depending on & and ry.

(ii) The range of the projection K' 3 x > x; contains the unit sphere.
Proor. Consider the mapping:

g3

3
qo(c)=|1m(c%+c—2) . reB(E,ry)
4

which is obviously p.s.h. on B(&°, 7).
If P(¢)=0, (e B(£° r,) we have:

9(¢) = [Im &| = Hx(Im{) .
From the continuity it follows:
9 + & <Hx(Im?) + 0y ; e +£<0, (eR

if P(¢)=0, LeB(&%ry), EER™, [§|<e & e(8ry)).
From the hypothesis we then get, changing ¢ with &%+ (:

) @@+ +8<He@me), PE+5=0, «:eB(o,%), El<e.

(a) Let Im¢, be an arbitrary number and set {, =7Im{,; let &y be
solution of the equation 2 + {3 = 0 namely {; = 4 i(Im{p)?. Set:

é.t:(lzé‘l’ tcza 0: 0): §= (O, &, 0, 0)
From (1) we must have:

PE - Ly &) < #H (Im (24,65, 0, 0)
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if # is so small that |¢,|<7o/2. Observe then that:

P+ &+ &) = |Im (2§12 + (8o + €)Y =
= |Im (e* + i4#* Im §, — 6262 Im (% — i4#3¢ Im (3)}] =
4#3Im¢,
84

+o(f) = 2#|Im Ly + 0(2),  £—0.

g 1
= |&?sin 5 arctg

So the following inequality must hold:

2te|lm &o| + o(#) < #Hy (Im %) ; t—0.

Dividing by # and passing to the limit for # — 0
2e|Im &,| < Hx(0,Im¢,, 0, 0) which proves (i).

(6) Let Im ¢, be arbitrary and set {; =7Im{;; let £, = + [Im¢, |t from
which ¢} + 3 =0. Set ¢, = (#2¢,, #,,0,0), &= (¢, 0,0, 0). Then we have

P(E°+ &+ &) = [Im (28, + &) + #L43)} =
— [Im (&2 + 272 Im)¥| = 2|Im &y | + o(2),  #—0.

Thus by (1) the following inequality is fulfilled:

ﬂllmcll+o(t2><t2HKr(Imf—;), £>0,

Again dividing by #2 and at the limit for # >0 (also remembering that ¢, is
real) we have:

Im ¢ | <Hep(@m¢,, 0,0, 0),

which obviously implies (ii).
From the previous theorem we can draw the following conclusions.

(I) The compact set K’ must have a non null « depth » in the direction
of the x, axis. Consider then the real half space 2 = {xe R*: x,<0}. If
Kcc @ is parallel to the x, axis, of unit length, and K — 9%, then in order
to find K'cc Q for which the Ph. L. implication holds we must let ér, — 0.
We’ll make use of this observation in proving that the half space 2 admits
the Ph. L. principle on I/(P) at £° (see [6]).

(A1) The main consequence, however, is that the real half space Q= {xe R*:
%y< 0} doesn’t admit the Ph. L. on V' (P) at &. In fact if K is a segment of
length 1 parallel to the x, axis and contained in £ then 2 would contain a K’
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whose projection on the x; axis contains the segment of length 1 at with centet
at the projection of K. This is obviously impossible when K — 94.

On the other hand every open comvex set, and consequently the half space 2 also,
admits the global Ph. L. on the variety {Pp(l) (= {5 —(5)=0}; in fact Py is the
product of two real linear forms and so use Theorem 3.3. This phenomenon
seems to depend on the fact that P, is reducible without P’s germ at £° being so.
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