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Analysis of a three-dimensional mathematical model
of water circulation in a basin (**)

Analisi di un modello matematico tridimensionale
relativo al moto di un liquido in un bacino

Sunto. — Si considera un modello tridimensionale relativo al moto di un fluido viscoso incom-
primibile in un bacino e si danno risultati di esistenza, unicita e dipendenza continua che provano
che il modello stesso ¢ ben posto. Il modello consta di disequazioni variazionali ottenute dalle equa-
zioni di Navier-Stokes imponendo alle grandezze considerate limitazioni di ovvio significato fisico,
in modo che il modello stesso risulti « fisicamente consistente ».

1. - INTRODUCTION AND GENERAL REMARKS ON MATHEMATICAL MODELS

A mathematical model of a physical problem consists, in general, of:

a) A system of equations (constitutive equations); these are, very often,
partial differential equations, to which are associated :

b) Initial and (or) boundary value conditions;

¢) Consistency conditions, under which equations 4) have been deduced.

For example, in the classical model of the vibrating string, #) is tepresented
by the D’Alembert equation, while ¢) imposes that the slope of the string at
any point (which is proportional to the tension) is « small ».

In the study of a mathematical model, condition ¢) is generally overlooked
and the model itself is associated only to z) and 4); consequently, the eventual
solutions of «), b) may not have any physical significance ot, as we shall say,
the model is not physically consistent. It may therefore be expected that, even
if the original physical problem is well posed, the corresponding problem 4), 4)
does not sometimes have the same property.

(*) Dipartimento di Matematica del Politecnico di Milano.
(**) Lavoro eseguito nell’ambito del Progetto Finalizzato « Oceanografia e Fondi marini» del
C.N.R. e presentato dall’accademico Luigi Amerio il 27 Luglio 1981.
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Of the many problems related to the study of mathematical models in dy-
namics, two appeat to be of special interest:

«) Whether the model is well posed and physically consistent, at least
in a neighbourhood of the initial time 7;

B) Whether the model is well posed whenever it is physically consistent.

An affirmative reply to question ) can be given provided a local existence,
uniqueness and continuous dependence theorem of the solution of ), /) is
proved and it is shown that such a solution satisfies ¢) in a sufficiently small
neighbourhood of 7.

Question f) can, on the other hand, be reformulated in the following way:

B") Is it possible to prove an existence, uniqueness and continuous depen-
dence theorem of a solution of 4), 4) in the time interval 7<#<#', where #'
is the infimum of the values of # for which ¢) does not hold?

It is obvious that, if a global existence, uniqueness and continuous depen-
dence theorem and a local regularity theorem held for the solutions of ), &),
this would imply a positive reply to questions «) and ). On the other hand,
if 4) is non linear, no such global theorem, except in special cases, is known,
the theorem itself having only a local character (for 7 <z <#", #' sufficiently
small).

A theorem of this type does not however exclude the possibility that the
solution exist also for # >#" and satisfy condition ¢); hence, while it can give
an answer to question «), no information can be obtained from it regarding ),
which must therefore be considered independently.

From a general point of view, we can say that ) deals with the intrinsic
mathematical structure of the model, assuring us that, whenever it is reason-
able to expect that the model represents a physical phenomenon, then the model
is well posed; «), on the other hand, indicates whether under appropriate
assumptions on the data the model is locally physically consistent.

2. - MOTION IN A CLOSED DOMAIN: THE INAVIER-STOKES MODEL

As an example of what has been said in §1, we shall now consider the
motion of a viscous, incompressible fluid of unit density and viscosity u in a
given domain Q, with boundary I' constituted by a material sutface.

The Navier-Stokes model cotresponding to this problem is represented by
the Navier-Stokes equations (constitutive equations).

n % pdut (e VyutVp=f,

dive=0,
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by the initial and boundary conditions

{u(x,O):ﬁ(x), oa—roanit N e i imecio)
2.2)

w0 1) =10 xel', O0<t<T
and by the consistency condition
(2.3) | <M, .

Relation (2.3) is deduced from the fact that, since the Navier-Stokes equations
are non relativistic, the velocity || of the fluid must not approach the speed
of light.

Let us now recall the following results regarding the problem considered
above.

i) If m = 2, there exists a global weak solution of (2.1), (2.2); more-
over, this solution is unique, and depends continuously on the data [1].

ii) If m = 3, there exists a weak global solution of (2.1), (2.2) [2].

iii) If m = 3, such a solution is unique and depends continuously on
the data in a sufficiently small neighbourhood of # = 0, provided f and u are
« smooth » [3]. -

iv) Under the same assumptions of iii) and, in addition, assuming that
I' is « smooth », the solution satisfies (2.3) in a sufficiently small neighbourhood
of #=0 and depends continuously on the data [4].

Hence, bearing in mind what has been said in § 1, in the 2-dimensional
case question () can, by i), be answered affirmatively and the same applies,
by iii), to «), provided f, # are «smooth». When » = 3, the reply is, by
if), iii), affirmative to f) if f, u are « smooth »; if, in addition, I" is « smooth »,
then also «) is verified, by iv).

3. - FREE SURFACE MOTION IN A BASIN: THE NAVIER-STOKES MODEL

Some mathematical models connected with the motion of a viscous, incom-
prensible fluid in a basin, lake, river, canal, etc. have been studied, from the
point of view of functional analysis, in some recent papers ([5], [6], [7], [8]).

The models considered (Liggett, Welander, Saint-Venant) were one- and
two-dimensional in the space variables, the unknown functions being the shape
of the free surface and appropriate mean velocities. It was shown that these
models are well posed whenever they are physically consistent (question f)) ;
this was done by associating to each model a system of variational inequali-
ties which take into account, in addition to the constitutive equations, the
consistency conditions and proving a global existence theorem for the solu-
tions of such inequalities and a uniqueness and continuous dependence theorem
whenever the solution satisfies ¢).
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We now want to study a three-dimensional model, in which the consti-
tutive equations are represented by the classical Navier-Stokes equations and
which we shall therefore call the Navier-Stokes model.

Our aim is to prove that this model is well posed whenever it is physically
consistent, i.e. to give a positive answer to equation f8); as we shall see, it is
however not possible to reply to question «).

Let us introduce the following notations.

A = open, bounded set of the (x, y) plane, with boundary satisfying locally
a Lipschitz condition;

Qs ={(x0eA —1<z<p(x 32),0<2<T};
Qo ={(0)eA, —1<32<9(x, 3,0} ;
4; ={(x,9)eA0<t<?}, A =rAls

I =082, ,0 (% = @(x, J, t)) 5
I, =0Q, —1I

L,

In what follows, g = @(x, y, #) will represent the equation of the free sut-
face at the time #, 2, the domain in which the motion takes place (which
obviously depends on #), I} , , the free sutface, I', the bottom and sides of the
basin.

Denoting by u the velocity of the fluid, by p its pressure, by u the viscosity
and by f the external forces, the motion in Oy of the fluid (assumed to be
incompressible and of unit density) is govetned by the classical Navier-Stokes
equations

ou ; b
3.1) -67—,uAu—1—(u Viu+ Vp=f,
divue =20,

to which must be added the boundaty conditions
(3:2) . u(ce v, 2:8) =0 when (. yi2)el 0 << F

op op 0
(33) g7+ m(6 2905 30,0 5L+ (5 3905 29, ) 52—

— 3 (%, 9, (%, 9, 8),5) =0 when (x, y)eA, 0<t<T,

B4 p(x (% 9,0,8) =0 when (x, j)e A, 0<#<T,
o5 o %(:”’ 0.9 _o when (x, y)eA, 0<t<T,

where #; are the components of % and v denotes the normal to 9.A.
Relation (3.2) represents the classical « non slip » condition on the bottom
and at the sides of the basin; (3.3) is obtained by assuming (as is customary
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in hydrodynamical problems with a free boundary) that the velocity of par-
ticles on the free boundary is tangent to the free boundary itself; (3.4) imposes
that the pressure on the free boundary equals the atmospheric pressure (which
we assume = 0); finally, (3.5) expresses the condition that the drag exercised
by the atmosphere on the free surface is negligeable.

We assume, moreover, that, when #= 0, the following initial conditions
hold:

(3.6) o(x, 3,00 =@(x, ) when (x, y)e A,
3.7 u(x, 5,2, 0) =u(x, 5 3) when (x, y,%)€e Q50-

Obviously, # =0 on I, and ¢ >—1, while we shall assume that ¢ = 0
on 0A.

Relations (3.1), (3.3) represent the constitutive equations of the Navier-
Stokes model. Observe, on the other hand, that condition (3.3) can reasonably
be imposed only if the free surface is sufficiently « smooth » and maintains a
positive distance from the bottom; denoting by M, ¢ two approptiate positive
constants, we shall therefore assume that

(3 8) I‘pwm] <'Ml > I(pw| <‘Ml H [(pttl <‘Ml ’
. [(pmt|<M1’ |(Pvtl<M1: ¢>'—1+0’-

Moreover, as already pointed out at § 2, the Navier-Stokes equations have a
physical meaning provided the velocity is not too great (i.e. does not approach
the speed of light); hence, we must assume that

(3.9) lu| < M, .

Relations (3.8), (3.9) represent the consistency conditions of the Navier-Stokes
model.

OsservaTioN 3.1: For the sake of simplicity, we have assumed the bottom
of the basin to be represented by the sutrface g = — 1; such a surface could
however be substituted by any sufficiently smooth surface g = a(x,y), in
which case the last of (3.8) would become ¢ < & + o.

OsBSERVATION 3.2: From (3.2), (3.3) it follows that ¢, = 0 when (x,))€

€0A; consequently, since $ =0 on 94, @(x,, #)=0 when (x,y)€0dA,
i 7.

4. - WEAK FORMULATION OF THE CONSTITUTIVE EQUATIONS

Let h be a function € CY(Qy), with divh =0 and A =0 on I,x (0, 7).
Multiplying the first of (3.1) by h, integrating over Oy, applying Green’s for-
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mula and bearing in mind (3.4), (3.5), we obtain

SR AT
@1) .H h+—@xw+ay@+%39+(vmh —f-#yag,=o.

We now introduce a new set of variables, &, 5, £, v defined by

ok o, _R—9(x 0, %) )
(4'2) E=x, n=Jy, t—m, T=1.

Relations (4.2) transform the sets defined at § 1 in the following way:
A >A*=A4; A > A% = Ay
Qo -0 ={(¢n)eA,—1<t<0,0<r<T};

Q,, > ={¢nNeA,—-1<l<0};
Lo TF=02*n(=0); I,»>I*=0Q*—T}=T,,

the free surface being now represented by the plane ¢ = 0.
Setting o*(&, 9, ¢, 7) = o(&, 1, (1 + @) + @, ), equation (4.1) becomes,
on the other hand,
T
43) (@), B @)+ pae (@@, ¥ (@) +
0
- b (H(2), (1), B*(2)) — (f*(2), BX(0)gaiamy} d = 0

where we have set

Oy o = f w-o*(p + 1) dedn dt ,

n*

1+ C+1)2 (92 + 92)) ut-v¥ —

45 art, 0% =9f furotrupopt L

1 i 1
iil Weeinor ool <u:-zf:+ur-v:>¢,,1—q%%u’c“’*} :
(¢ + 1) dEdndr,
1
(4.6)  bo(u*, ¥, h*>‘f {u*( ,*+ M a‘gk*)}

‘h(p + 1) dédndz,

¥, j*, k* being the unit vectors of the &, 7, & axes.
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Applying (4.2) to the second of (3.1) and to (3.3) and denoting by »} the
components of o* in the new reference frame, we obtain, respectively

ouf 8u2 ou¥
4.7) 3 + + = aC

uf =divou* =0,

+ 11+

<P+ +1

2
(4.8) = — 45, 0,7)(p + 1) =0.

Assuming now that u* =0 on I'¥Xx (0, T), u*(&, n, £, 0) = u*(&, 9, £) in Q%
@(& 7, 0) = @(&, n) in A and that (4.3) holds Yh*(z) e L2(0, T; H(2*)) with
divoh* = 0 and A* = 0 on I, X (0, T), equations (4.3), (4.7), (4.8) are equi-
valent to (3.1), ..., (3.7) and can be taken to represent the constitutive equa-
tions of the model.

It may be noted that the boundary conditions (3.4), (3.5) no longer appear
explicity, as they have already been taken into account in the weak formula-
tion of (4.3).

OBSERVATION 4.1: Assume that u, h satisfy (4.1), (3.2), (3.3); we have
then, Vz,

(4.9) [ Vyu-hd2 = — [@-V)h-udQ + [(-v)(u-h)dr .

0,¢ Qo,¢ I'0.

Hence, being, by (3.3), ¢, = (1 + ¢2 + ¢3)¥(u-v), il follows from (4.9), setting -
&=l + ¢z + o),

(4.10) f (u-v)(u-h)dl' = f gow-hdl’

Iy,o,t Tyt

and consequently

(4.11) f(wV)u-hd.Q:—f(u-V)h-udQ+fg¢u-hdF.

Q9,¢ Qg,: Ty,0,¢

Applying to (4.11) trasformation (4.2), we then obtain, by (4.6),
(4.12) bw(u* u* h) == “"qu(u* h* u*) + (g*u* h*)L’(I';) .

We may therefore substitute, where convenient, the term bq(u*, u*, h*) with
the expression — by(u*, b*, u¥) + (gFu*, A*)L 1)
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5. - SOME FUNCTIONAL SPACES

In the following paragraphs we shall, for the sake of simplicity, denote
by x,, g, ¢ (instead of &, 5, ¢, 7) the new independent variables and drop the
star symbol used in § 4 to indicate the sets and functions obtained by the
application of transformation (4.2). This will not create any confusion, since
we shall never have to revert to the original reference frame.

Let y be a function € C}(A), M = {ve C=(2): v =0 on I} and denote
by A (s integer >0) the closure of b in F*(2) and by V3 the space {v € H};
div, o = 0}; setting

(5.1) (u, v)v;,, = (U, D)gua)>

Vs are Hilbert spaces, the embedding of 173 in 1/} being moreover com-
pletely continuous.

By the usual interpolation procedure between Hilbert spaces, it is then
possible to define 177 V real 60 in such a way that

(5.2) [VE, VBly= D20-9+8 (4 $50, 0<f<1)

and 17+ is dense and has a compact embedding in 17" if o, > 0,>0. More-
over, we shall denote by 17,° the dual space of 1”7, so that (5.2) holds ¥
real a, f.

In what follows, we shall have to consider the case in which the function ¢
depends also on the parameter #; we shall therefore denote by 177; the space
cotresponding to the function y(x, y, #). For the sake of simplicity, however,
wherever there may not be any possibility of confusion, we shall set 1/, = 17},

V,=(V}) and denote, V fixed #, the duality between ¥/, and V, by the
notation {, .

6. - ASSOCIATED VARIATIONAL INEQUALITIES

As has already been pointed out, (4.3), (4.7), (4.8) represent the constitutive
equations of the Navier-Stokes model, which however have physical meaning
only if the consistency conditions (3.8), (3.9) are verified.

In order to take these last into account, we shall introduce some appro-
priate variational inequalities.

Let K, K,, K; be three closed, convex sets defined by

(6.1) K, ={oe H(Q): |o|<M, a.e. in 2},
(6.2) Ky = {pe HA(A): |poo| <My, |94| <My, 9o <M,

l'pmtl <1‘4‘19 |"/’vt| <‘]M'D ["/"ttl<M1s 1/)> el + o a.c. in A} >
(6.3) Ky ={weL*(I'x (0, 7)) : |w|<M, a.e. in I''x(0, T)},
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M, M,, o being the constants appearing in (3.8), (3.9), and consider the fol-
lowing variational inequalities, associated respectively to (4.3), (4.8)

64)  Hu() — hOIZ, — 1l — RO, + [P, w — B> + pua, (u, u—h) —

Vo blF(u, u _h: u) + (gw“; u "'_h)L’(I',)—_' <fz u _h>} d?? <O >

(6.5) 00 e, U)o ) (- DA <0
on

A

Bearing in mind the notations introduced at §5, we shall then say that
{u, ¢} is a solution in [0, T of (6.4), (6.5) satisfying the initial conditions (3.6),
B i

i) u(f)e L2(0, T'; Vo K,) and satisfies (6.4) a.e. on (0, T) Vh(£)e L*(0, T';
VenKy) N HY0, T; V,)

ii) p(r)e L2(0, T'; Hy(A)) N K,, satisfies, V1€ [0, T, (6.5) Vte K, and is
such that ¢(0) = @.

Let us now recall the following well known property of the solutions of
differential inequalities.

If {u, ¢} satisfy i), ii) and, for #€ (0, #'), do not touch the boundary of K,
and K,, then {u, ¢} are solutions, in an appropriate weak sense, of (4.3), (4.7),
(4.8).

It is therefore natural to associate system (6.4), (6.5) #o the Navier-Stokes model;
in fact, by the property recalled above, if {u, ¢} is a solution of (6.4), (6.5),
then it is also a solution of the physical problem considered, provided the
Navier-Stokes model is physically consistent.

7. - ANALYsIS OF THE NAVIER-STOKES MODEL

According to what has been shown in § 6, the Navier-Stokes model is
associated with the functions u, ¢ which satisfy conditions i), ii). In the fol-
lowing three paragraphs we shall give the proof of an existence theorem, which
we now state.

THEOREM 1: Assume that
JOeLX0, T;V,),  GeHi(A),  |ful<h,
| Byl <M, g>—1+ 0 (6>0), uekK,nV3.
Then there excist {u, ¢} satisfying i), ii).

The problem of the uniqueness of the solution and, consequently, ques-
tion B) considered in § 1, will be studied in § 11.
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Regarding question «), on the other hand, no positive answer can be given.
Observe, in fact, as is well known from the theory of Navier-Stokes equa-
tions, it is possible to prove the boundedness of weak solutions under appro-
priate smoothness assumptions on the data (for instance, boundary of class C?).
In our case, however, the boundary is constituted by the free surface and by
the sides and bottom of the basin and all the points at which the free surface
meets the sides are necessarily angle points. Hence the boundary can only be
assumed of class C°.

8. - SOME AUXILIARY LEMMAS

We shall now prove some lemmas which are preliminary to the proof of
Theorem 1.

Lemma 1: Assame that
peK,, uel?,, f(*)el¥0,T; V) (=20 L>(Iyx (0, T))) .
Then there exist a unique function
u(t)e L*0, T'; Vo) N HY(0, T; V)N C°(0, T; L3(Q))

such that w(0) = u and

(8.1) [t<w', B> + pao(u, b) + (gots, B)— (f, B5} dy = O

Vh(H)e L*(0, T; V) and Vi€ [0, T

Observe that, by applying in a straightforward way a well known existence
theorem for linear abstract differential equations (see, for instance, [9], ch. 3,
Th. 1.1), we can prove that there exists u(f)e L2(0, T’ V) satisfying rhe
equation

8.2) f{‘“ (u, hI)L’(.Q) ol ﬂﬂrp(u, h)+- (&p“: h)L‘(Fl)— fihy}dt— (1—" h(O))p(n) =0

Yh(r)e L0, T'; Vo) N HL(0, T'; LA(2)), h(T) = 0.
In fact, by (4.5) and classical embedding and trace theorems, there exist
three positive constants, 4, oty oy, such that

(8.3) %l vly,>ua,(v, 2) + (2,2, Dpay+ A olze) > %l 2]7, Wel/,.
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On the other hand, by (8.2),

44 vy
(8.4) [, 1y d = [{—pay(a, B) — (8,16, By + < S B0}
0 0

Vh()e L2(0, T; Vo) N H(0, T; L*(®2)) and

T
(8'5) I J‘{_ :uaqz(u’ h) Ty (gwu’ h)L’(I',) + <f’ h>} dt' <€"h”L'(0,T; Vo)
0
Vh(f)e L2(0, T; Vy).
Hence
T T
(8.6) f {— pa,(u, B) — (g8, B) rry + <y RO} dt = f (Bu, k) dt
0 0

with BueL2(0, T; V).

It follows therefore from (8.4) that w'= Bu in L2(0, T; V,) UH(0, T;
L2(Q)) and, consequently, u(¥)e H(0, T'; V,).

The property that u(#) € C°(0, T'; L)) can then be proved in a classical
way (see, for instance [10]).

It is then obvious, by (8.2), that w(#) satisfies (8.1).

The uniqueness of the solution can be deduced directly from (8.1) setting
h = u, —u,, with u,, u, solutions of (8.1).

LeMMA 2: Suppose that the assumptions made in Lemma 1 are verified and let P
be the operator defined by

(87) Po=v when |o|<M,, Po =M2% when [o|> M, .
There exists then, Ne> 0, a unique function
u()e L¥(0, T; Vo) N HY0, T; V,) N C°(0, T'; L¥(Q))

such that w(0) =wu and

¢

(8.8) f {<u', B B Gt W
0
+ < (u— Pu, Bar— <, h>}a’1] )

Vh(?)e LX(0, T; V) and V2€ [0, T].
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Consider, in fact, the transformation, from F*#(0, 7'; %) to itself, o —>u =
= Se,1(0), where u is the solution, given by Lemma 1 of the equation

17

(8.9) f{(u', h) + pao (u, h) + A(gou, B)pr,+

0

-{—%(v—]’v, h)L:(g)—}Kf, h>}a’17 =0 5

with %(0) = Au, 1 being a real parameter € [0, 1].
Let u be an eventual solution of u = S.:(u), i.e. such that

2

(8.10) f {(u’, R + pao(tt, ) + M(gott, B)ary -+

0

i
+ 24— P Wy —<f, h>}a'n Lo
with %(0) = Au. Setting h = u, we obtain, bearing in mind (8.3),

(8.11) l%llos(0, 7: 13023y 0 220, 73 Vo) 0 200, 75 7y < DV 5

with IV, independent of A€ [0, 1].

Denoting, moreover, by {2,} a sequence such that », — » in the weak
topology of H*(0, T'; I}), let {u,} be the sequence defined by u, = S:1(v,).
We have, analogously to (8.11),

8.12) 1%4llov(0,z: 2@ 0 2300, 7: vyn g0, 7 vy <INy (independent of 7).

Hence, it is possible to select from {u,} a subsequence (again denoted by
{u,}) such that

(8.13) limu, =u

in the weak topology of L0, T'; V,) N HY(0, T'; I,), the weak * topology
of L=(0, T'; L?(Q)) and, since the embedding of L%(0, T'; V,) N H'(0, T; Vq',)
into H*0, T'; ’},) is completely continuous, in the strong topology of
HNOS Ty e,

Writing (8.9) for the functions u,,, v, and letting # — oo, we then obtain
that the limit functions w, o satisfy (8.9); by the uniqueness theorem proved
in Lemma 1, the whole sequence {u,} must then necessarily converge to u.
It follows that S, ; is, Ve >0 and Ve [0, 1] completely continuous, while the
eventual fixed points satisfy (8.11) and, obviously, S, ,(2) = 0.

By the Leray-Schauder fixed point theorem, there exists then w* such that
u* =, ((u¥); the function w* thus determined is obviously a solution of (8.8).

The uniqueness of this solution can be proved as in Lemma 1, obsetving
that the operator 7 — P is monotone.



LemMMA 3: Let w. be the solution given by Lemma 2. Denoting by N,, N,
quantities independent of &, we have, Ve >0, s <}

(8.14) I8, 20, 7: voro (0, 7: 22(2)) < Vg 5 I, [0, 7 V;-=)<N4 :

Setting, in fact, in (8.8), ¥ =h = u., we obtain

1 e
©15) 5 Il —g [l +
, ,
1
o [ o 0 Coote, oyt Pt iy — S} = 0,
0

from which the first of (8.14) follows directly. Motreover,

T
(8.16) %f(ue—Pus,ue)L.(mdt<N5 .

0

On the other hand, by (8.16) and the definition of P,

@ - 2 f jte— Pu dQ <= f Pl o=
Q Q
vy
—2 f TRESET L TG
[
Hence, by (8.8) and the first of (8.14) and well known embedding theorems,

v
(8.18) | [<atls 1> | < Nl gpcro 7
0

and, consequently, |[u;|[H.-x(0,T;V;..)<N6, i.e. the second of (8.14).

LemMMmA 4: Assume that pe Ky, ue V2, N Ky, f(#) € L*0, T; V,). There
exists then a unique function u(f)e L2(0, T; Von K) N H*0, T; V372 (s< $)
which  satisfies, Yh(t)e L¥0, T; Von K)NHY0, T; V,), ae. on (0, T), the
inequality

12
(819)  Huu(t) — h(t)]yy — ¥t — RO s + [{<h', u—h> +
0
+ ua,(u, u—h) + (g,u, u —h)ury— fu—hd}dn<0.
The existence of the solution can be proved by a standard procedure (see,

for instance, [10], ch. 3, Th. 6.2) utilizing the results contained in Lemmas 2
and 3.
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The uniqueness is obtained by a standard procedure in the theory of para-
bolic inequalities (see, for instance [11]).

9. - SOME AUXILIARY THEOREMS

Let us prove some theorems which will be utilized in the next paragraph
for the proof of Theorem 1.

THEOREM 2: Suppose that the assumptions made in Lemma 4 are verified. There
exists then a unigue function u(¥)e L*(0, T; Vo K) N H*(0, T; V%) (s< })
(=€ H°0, T; V¥°), (6 < %)), which satisfies, a.e. in (0, T), the inequality

O) ) — O3, — 15— O], + [k, u—h> +

+ pao(u, u —h) + bo(u,u —h, u) + (g,u, u —h), ., —<f,u—hd}dn<0.

Vh(r)e L*0, T; V,n K))n HY0, T; V).
We shall divide the proof in three parts.

a) Let ve L4 Q) and G; be a smoothing operator such that Gsve
€ HY(Q), Gsv —=5> v strongly in L4 Q). We begin by proving that there
exists, V0> 0, a function

us€ L2(0, T; Von K)NH*(0, T'; 1377,

which satisfies, a.e. in (0, 7), the inequality

92)  Hueo(t) — B() [y — 1T — RO + [ (', 5 — B> + pua, (a0 ) +

+ bo(Gotts, us— h, Gotts) -+ (gotts, us—h) — { f, us—h)} dn <0

Vh(t)e L20, T; Von K)N HY0, T; V,).
Consider, in fact, Y fixed 4, the transformation o — Ss v = u from L4(Q)
to itself, where u is the solution of the inequality

93)  Hu®) —h@E — @ —hO)3 + [k, u—h +

+ pas(u, u —h) + bo(Gs v, u —h, G5 0) +(g,u,  —h)sry— < f,u—h>}dn <0,

Since

T
94) I qua(Go v,u—h, G,v)dt| <C\ |G ””%4(9) [[ee — h"L‘(O, T; Vo) >
0
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it follows from Lemma 4 that such a solution is uniquely determined; mote-
over, u(¥)e L*0, T'; Von Ky) N H*(0, T; V37%) and satisfies (9.3) Yh(z) € L2-
(0, T'; Vo K)) N HY(0, T'; V), while, since |u|<M, a.e., Ss transforms in
itself every sphere of L4(Q) with sufficiently large radius.

Let {9;} be an L*(Q)-weakly convergent sequence; then, by the defini-
tion of Go,
(9.5) lim Gsv;, = Gov

n—> oo

weakly in F/'4(Q) and strongly in L4(Q). Setting u, = 5,9,, the sequence {u;}
is, by (9.5) and Lemma 4, uniformly bounded in L2(0, T; Vo, K,) N H*-
(0, 75 7;7®); by well known interpolation, embedding and trace theorems, it
is then possible to select from {u,;} a subsequence (again denoted by {u,})
such that

(9.6) lim 2,(#) = u(?)

in the weak topology of L0, T'; VV,) N H*(0, T; 1/:~%), the weak * topology
of L7(Q) and the strong topology of H°(0, T'; V) (¢ < %), hence also

CX)) lim y,2,(7) = p1u(?)

in the strong topology of L2(0, T'; L¥(I})).

Observe moreover that, since ||, |u| <M, a.c. in O, it follows from (9.6)
that
(9.8) limu,=u

j—>00

in the strong topology of L4(Q).

Writing (9.3) for u,;, v, letting j — co and bearing in mind (9.5), (9.6),
(9.7), (9.8), it follows then, by the semicontinuity of the weak limit, that
u(?), o(#) satisfy (9.3). Since however, by Lemma 4, the solution u(#) is unique,
we conclude that the whole sequence {u,} converges to u; hence Ss is, Y6 > 0,
completely continuous from Z4(Q) to itself.

By the Tychonov fixed point theorem, there exists then us such that us =
= Sous; this function is obviously a solution of (9.2).

b) We now prove that, when 6 — 0, the sequence {us} defined in ) con-
vetges to a solution of (9.1).

By the same procedure followed in ) (bearing in mind that |us| < M, a.e.)
it can be shown that the sequence {us(#)} is uniformly bounded in Z2(0, T';
VonK)Nn HO, T; V;~%); hence (cfr. (9.6), (9.8))

(9.9) lim uo(£) = u(?)
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in the weak topology of L2(0, T'; I/,) N H*(0, T'; 17;~?%), the weak * topology
of L®(Q) and the strong topology of H°(0, T; V}*°) (¢ < ¥5) and of L4(Q);

moreover

(9.10) lim yyua0(2) = 7,0(2)
—0

in the strong topology of L2(0, T'; L3(IY)).

Letting 6 — 0 in (9.2) we obtain then, by (9.9), (9.10) and the semicon-
tinuity of the weak limit, relation (9.1). The existence of a solution is there-
fore proved.

¢) The uniqueness of the solution can be proved by exactly the same
procedure mentinoed in Lemma 4

THEOREM 3: Let {@,} be a sequence of functions € K, and such that ¢, — @
strongly in CY(A) and let {w,} be the sequence of the corresponding solutions of (9.1),
whose existence and uniqueness has been proved in Theorem 2. Then, denoting by w the
solution corresponding to @ (which obviously € K,).

9.11) lim e, (#) = u(?)
in the weak topology of L2(0, T'; HY(Q)), the weak* fopology of L>(Q) and the
strong topology of H°(0, T; H¥**(Q)) (0 < 7%) and of L4 Q).

Observe, to begin with, that, by Theorem 2 and the assumption that
Pn € K2: v

(9'12) ”un ”L°°(o, T; L®(2))n L*0,T; Vo,) N HY0,T: V%;?) < ]Va

with IV, independent of #. Hence, since 1/, c H*(L2), and
(9.13)  L2(0, T} V& JvER(0;: T Vs e Ho(os By H@)(o <)

with embedding constants independent of #, (9.11) is, following the proof
given in Theorem 2, satisfied for an appropriate subsequence of {,}. More-
ovet, by the assumptions made on {g,},

(9.14) lim dive, u, = divou weakly in L2(Q),

n—> 00

so that u(#)e L2(0, T'; Vo K)).
We must now show that %(#) is a solution of (9.1).
Setting K, = {ve HY(Q): |o| < M, a.e.}, let h(¢) be an arbitrary function



e L*0, T; VoN K;) and {h,(#)} a sequence such that
(@a5) " h, (He L0, T'; Vo,n K)nHYO, T; V), limh,(#) = h(2)
in the strong topology of L2(0, T'; H(2)) (V).
The functions u, satisfy, by definition, the inequality
¢
(916) %”un(t) —hn(t) “ %’;_%”a_hn(o) ll%’:,_'_f{(h;’ un_hn> +/'mrp,.(un’ u, _hn) =h
0

T qu,.(un Uy, _hn H un) + (g:p,,un > Uy — hn)L’(l",)_ <f’ u,— hn>} d’? <0 9

Obsetve now that, by the assumptions made, g, —g, strongly in C%);
moreover

917) 4, (uw,,u,—h,)—a(uw,u—h)=aq, (u,, u,—h,)—

o= ﬂw(um u,— hn) + ”qz(un’ u,— hn) e ‘lq;(u’ u— h)

and consequently, by (9.11) and the semicontinuity of the weak limit (since
a9(9, v) is equivalent, Yoe A}, to |]%q)

t t
(9.18) lim (g, (2,, u,—h,)dy< f ao(u, u—h)dy.
SRR 0 0

On the other hand, by (4.12), (9.11),

3
(919)  lim [b,(at,, u,—h,, 1) dy =
f—> 00 0

[
= lim j{_ b%(un, hn’ un) 3l (g%un’ un)L‘(Tx)} d”] ==
N> oo 0

|1 i
= [ bo(at, B, ) + (gott, whcr} iy = [bo(at, u—, ).
0 0

() h, can, for instance, be defined in the following way. Let

8 =10 Ned, —1<z< swp "’"_"}
et 1@
and /; be an extension of & to 2 X (0, T) such that f(¢) € (04T Hl(ﬁ)), with || < M,, divg =0,
h=0 on I',x (0, T); this extension is obviously possible (being |h|< M,) for n sufficiently large,
since @, — @ uniformly. We can then set

= 1+o, L
hu(x, 3,%.0) =h (x’ il t)

1+¢ " 1+<p’
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Letting now 7 — oo in (9.16) we have, by (9.11), (9.15), (9.18), (9.19),

(9.20)  #|u(®) — R[5, — 315 — RO} + [{H, u—h) +

+ pao(u, u —h) —bo(u, u —h, u)+ (gu, u —h),ry—f,u—h>} dn<0

a.e. in (0, T), Vh()e L*0, T; Vo K)) n HY0, T; ).

Since the space of such functions is dense in ZL2(0, T; Vpn K))N
N HY0, T; V,) we conclude that u is the unique solution of (9.1) correspon-
ding to ¢. Hence, (9.12) holds for the whole sequence {u,} and the theorem
is proved.

THEOREM 4: Assume that ve L*(Iyx (0, T)), §e Hy(A),
I¢mml<Ml’ |¢wl<M1, p>—140 (0'>0)

Thhere exists then a unigue function ¢(#) e L2(0, T'; Hy(A)) N K, such that ¢(0) = ¢
and satisfying, Nl€ K, and t€ [0, T, the inequality

9.21) [~ 1o + 1) (0 =Dt <0.

¢t

Consider, at first, Ye > 0, the inequality

9.22) [ (B~ v =t 2w+ ) (o~ da<0.

A

It is well known (see, for instance, [11], ch. 6, Th. 6.2) that (9.22) admits,
Ve> 0, a solution ¢(#) e L2(0, T'; Hy(A)) N K,, V/e K, and z€ [0, T], such
that @¢(0) = @.

Letting ¢ — 0 it is then obviously possible, since @.e K,, to select from
{pe} a subsequence which converges to a solution of (9.21).

The uniqueness of this solution can easily be proved by setting, in (9.21)
»=¢1, /=¢, and ¢ = @,, /= ¢, and adding.

TrEOREM 5: Let {v,} be a sequence of functions € Ky such that v, — v strongly
in L*(I'yx (0, T)) and let {p,} be the sequence of the corresponding solutions of (9.21),
whose existence and uniqueness has been proved in Theorem 4. Then, denoting by @ the
solution corresponding to v
(9.23) limg, =¢

n—> oo

in the strong topology of C(A).

Observe that since, by Theorem 4, ¢, € K,, (9.23) certainly holds for an
appropriate subsequence of {g,}.
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On the other hand

(9.24] [ (aa%—va,,,(m ) wa—hda<0

A

and, letting # — oo, it is obvious that ¢ satisfies (9.21). Since, however, the
solution is unique, the whole sequence must tend to ¢. This proves our
theorem.

10. - Proor or THEOREM 1

Let us introduce three transformations S, ; (=1, 2,3, 1 real parameter
€ [0, 1]) defined in the following way.

a)) 2 =2, ;,(v) = Py,(Av), where P, y, are respectively the operators
« projection on Ky» and «trace on Iy X (0, ) »;

a3) @ = 8;,,(2), with ¢ satisfying condition ii) of § 6, having substituted,
in (6.5), 2(x, y,%) to u(x,y,0,#) and the initial condition ¢(0) = ¢ with
¢(0) = i¢;

a3) u =S, ,(p), with u satisfying condition i) of § 6, having substituted
J, u respectively with Af, lu.

Observe now that S, ; is, by well known trace and embedding theorems,
completely continuous from (0, T'; H¥*(Q)) (o < %), to K;, with 5, o(2)=0.

On the other hand, by Theotems 2 and 3, S, is a transformation from
K, to X0, T'; V,n Ky)) N H°(0, T'; H¥*°(Q2)), and is continuous from C(A)
to H°(0, T'; H¥*(Q)), with S, o(p) = 0 (by the uniqueness theorem).

Finally, by Theorems 4 and 5, S, ; transforms Kj into L2(0, T'; Hy(A)) N
N K; and is continuous from L2(I'yx (0, T)) to CY(A) with §,4(2) = 0 (by the
uniqueness theorem).

We can then conclude that the transformation S;= [] S;, is completely
i=1,2,8

continuous from H°(0, T; H*(Q)) (o < ) to itself YAe [0, 1] and is such that
S0(2)=0 Yoe H°(0, T; H**(2))(s < %)

Assume now that we have fixed the data f, u, ¢; by Theotem 2 we have,
V(P € K2 >

(10.1) %] e0, 2: mt+o(y) < M

and, consequently, all functions u=JS(v) satisfy (10.1) Yoe H°(0, T; H***(Q))
with M, independent of A€ 0, 1].

It follows thetrefore, by the Leray-Schauder fixed point theorem, that there
exists u* such that w*=S5,(u*), i.e. by the definitions given, such that (cfr.
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(6.4), (6.5)

Hur() — RO, — 1 — hO) 3, + [(h', u*—h) +

+ pag(u*, w* —h) — bo(u*, w¥ — h, u*) 4
+ (gou*, u* — )y — (f, w* — h)} dn <0,
f (%‘,—’7’ _ Pu(x, 3,0, m)(p + 1)) (p—1)dd <0,

A

(10.2)

Vh()e L*(0, T; Vo N Ky) N HY0, T; V7)), [€ Ky, ae. in (0, T), with
wk () e LX0, T; V, N K) N H'0, T; V22 0 Ho0, T; Vi) (s< }, o< 34),
e(Nel(0, T; H(A)NK,, ¢0)=g¢.

Since, however |u*|<M, a.e., it follows that |y,u*|<M, and, conse-
quently, Pu*(x,y,0, ) = u*(x, 5,0, ).

Hence, {u*, ¢} satisfy conditions i), ii) of § 6 and the existence theorem is
proved.

11. - THE PROBLEM OF UNIQUENESS

We now assume that the solution given in Theorem 1 satisfies (3.8) a.c.
in O'=02x(0,#) and is such that

(11.1) lu|<Mj< M, ae in O .

It can then easily by proved (see, for instance, [12]) that {u, ¢} satisfy a.e.
in (0,#'), the equations

t
(112 [(', B> + pan(u, B) + bo(t, u, B) + <f, B} dp = 0,
0

(11.3) 9 o+ 1) =0,

Yh(r)e L2(0,2'; V).

Bearing in mind what was said in § 1, in order to be able to give a positive
reply to question ), we should prove a uniqueness and continuous depen-
dence theorem for the solution of (11.2), (11.3), with u(0) = u, ¢(0) = @.

Unfortunately, however, such a theorem is not known, so that question f)
remains, for the Navier-Stokes model, open.

Uniqueness and continuous dependence theorems can, on the other hand,
be given if equation (11.3) is modified slightly. More precisely, let G be a con-
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tinuous « smoothing » operator from L%(A) to FH?(A) (for example a double
average on X, y or Green’s operator relative to the Laplace operator in A)
and substitute (11.3) by

(11.4) % (Grm)p+1)=0.

Observe that, from a physical point of view, this substitution seems acceptable.
In fact, as explained in § 3, (11.3) imposes the condition that the velocity of
the fluid particles on the free surface is tangent to the surface itself; such a
condition excludes therefore the existence of superficial turbulence and may
not be strictly applicable to practical cases. Formulation (11.4) obviously avoids
this difficulty by substituting « avarage» values of the velocity on the free
surface to local ones.

One further physical advantage of (11.4) over (11.3) is that its solutions
@(x, 9, ) do not necessarily vanish when (x, y) € 9.4 ; this condition, as indi-
cated in Observation 3.2, is on the other hand necessary for the solutions
of (11.3) and is not generally verified in practical cases.

It can be easily seen that all the results obtained in the preceding §§ with
regard to the Navier-Stokes model, associated to inequalities (6.4), (6.5), can
be repeated without change to the « modified » Navier-Stokes model, associated
to (6.4) and the inequality, corresponding to (11.4),

(11.5) [ (82— Gux 20,10 + D) (2 Dty <0.

A

In patticular, it is possible to prove that zhe inequalities (6.4), (11.5) admit a
Global solution, in the sense indicated in § 6. :

Let us now prove the following uniqueness and continuous dependence
theorem.

THEOREM 6: Assume that {u, @} is a solution of (11.2), (11.4) satisfying (3.8),
(11.1), with u(0) = u, ¢(0) = ¢.

Then {w, @} is unique and depends continsously on the data.

Assume, in fact, that there exist two solutions, {w, ¢} and {v, y} satisfying
(3.8), (11.1) and the same initial and boundary conditions and set w = u — 9,
1=9¢—9.

Let us consider the function k¥ = w — 6, oV being defined by

o =0 =0,

@G%%—%+ Yo(? —¥) HA£+
—1

(11.6) vy+1  (p+D+D

e ey

-1



g

A direct calculation shows that

@
00§

(11.7) divee® = ¢ on —diveo =divyo —diveo
and, consequently,
(11.8) divy BV ; = divou — divpo — divee™ =0 .

In an analogous way, setting

0P =¢@=0,
2z

(,(32)2(%—%+ Yo(P —¥) )fuldCJr

(11.9) Vb b OGRS
Yy — @y V(P — ) )f
e i
we have
(11.10) div, B® = 0.

Let us now write (11.2), (11.4) for {u,¢} and {o, y} setting respectively
h = kY and h = k® and considering the scalar product, in H2(A), of (11.3)
with .

Adding then the corresponding equations, we obtain

13
18547
[15 2 10— <0, 09 +-01, ) lao, ) — o, o)+
0
+ a0(v, W) — ay(v, W) + au(v, )] + bo(u, u, w) — bo(u, u, W) —
(11.11) —by(v, v, W) + by(, v, 6?@) + (gots, W)1rry — (got, 6Dy —
— (g, Wrrary+ (800, 6Py + (f, 6V — ) }4’77 =0,

(%—’,-‘ — (Gri#) 1 — (Graws)(y + 1), x) =0

H*(4)
On the other hand
(11.12) —<u, 60 + (v, 6@ = — U/, 6V — @) — (', 6@

and, by the assumptions made,

£ A
(11.13) , f<“" ol — o) dy| < u’ ”L’(O,t: v5) |6t — o 230, Vo) <
0

<alx "L’(o,t; H(4)) 2]z, 7o) »
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(114 | f @', o di| <|((8), (1) | + | f e, 0 di <
0 0

< Jw(®) e | o2(2) ”L‘(.Q) i ”w"L'(O,t; Vo) ot ”L’(O,l: Vo) S

<Ca|lw(®)llzscay 12() | m2eay + ¢ W a0, Vo) ot lzsco, e Vo)

Observe however that, by (3.8), (11.1) and bearing in mind that ¢, y satisfy
(1.3)

(11.15) 19" zago,: 7 <all ' Iza0,6: 2oy T ol 2Nz o, 1 w0 cay) 128 o, s v <

<l %20, 2y T Grll % “L‘(O,t; HY(A) *

Hence,

1
(11.16) | [{— <, ) + <o/, 6} | <63l a0 moean 1@ honco vr+
0

+ o llw(?) ||z oy l2(® lercay + 1200280, Vo) ("s"X”Ll(o,t; )t "9||X"L-(o,t:m(4)))-

Treating the other terms that appear in the first of (11.13) in a similar way,
we obtain, by a straightforward calculation,

(A117) 3 ()lay+ #[ay(ew, )y <
<620 e 1) iy + a0 [ 1201, 12k i -

On the other hand, from the second of (11.11) it follows that

(11.18) 3 2(2) |I121'(A) < f (‘n lx ]|z21-(A) + ol 2lmsay 20| V,,) dy .

Multiplying (11.18) by an appropriately large number ¢ > 0 and adding it to
(11.17), we obtain then, bearing in mind (8.2)

(1119) @i+ 120 e + [ I0]3, dr <

13
<[@olwlia+ clzliw)d  (@>0),
0

and, consequently, = y =0.
The uniqueness theorem is therefore proved.
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In a similar way it can be shown that the solution depends continuously

on the initial data u, § and the known term f. Hence, we can conclude that
the « modified » Navier-Stokes model, associated to inequalities (6.4), (11.5),
is well posed whenever it is physically consistent, i.e. question f) has a positive
answer. As already pointed out in § 3, no reply can, on the other hand, be
given to question o). This is due to the fact that the only smoothness assump-
tion that can be made on I is that it satisfies a Lipschitz condition (since the
points at which the free surface meets the sides of the basin are obviously angle
points); this assumption is not however sufficient to guarantee that the solu-
tion u satisfies (3.9).
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