KENTARO YANO and SUMIO SAWAKI ()

On the Weyl and Bochner curvature tensar (**)

Seuneany, — We prove two miain thetors, one o the Weyl Gttt
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§1. INTRODUCTION AND PRELIMINARIES

Let M* be an e-dimensional Riemannian manifold {x = 3) covered by a
sysuem of rxmd-rmwnughl\urhwdc {U 5 ) and denote by g, , ¥, , Kgd, Ky
and K the metric tensor, the operator of covariant differentiation with respect
10 gy, the curvatre tensor, the Ricel tensar and the scalsr curvature of M
Tespectively, whm hm and in the sequel the indices b, i, 5, k,--- run aver
the range {1,

Tt woll I(nmm (\kn-l [16]) that the Weyl conformal curvature tensor
ined by

Colt = Ko+ B Ly — B L+ L — L g

1 Y
TaohE—y e =R,

componcnts of the melsic tensor, is invariant under @

roaformal chinge £, = ;. of Ricmannian metric, s being a positive scalar
function, and that, for m = 3, C, ' vanishes identically and

13 (T

s invaciant under a conformal change of Ricmunnian meirie,

It i also wal known (Weyl [16]) that o Zaa snd suficient condition

for M, flar, that is, i that

Cuyl'=0  for n>3
Coy=0  for w=3.
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et Me be & pedimensional. Ricoannian manifold covered by 1 system of
coordinate neighborhoods [V ; TS o M* and
denote by £q , V. Kad', the metric tensor, the operator of ‘cova-
siant. differentiation with respeet 1o g, the curvature tensor, the Ricei temmar
and the sealar curvature of MP respectively, where here and in the sequel the
indices @, b, ¢, run over the range (17,27, -, p

We denote the immersion M —» M® by o pot B 2,08, where
3y = 2fiy* and denote by Cx,'u—p mutually orthogenal unit vectors normal tn
Mr where hu: and in the sequel the indices 3,
(Cp+

od isometrically

run over the range

)
11 we .wun‘ the so-called Yar der Wasrden: Bortolot sorarisnt Weriv
by

of B
04 82 = mh o (A B |a|
: e R il
|
L e M' being Christoffel's aynibols of M* and M* respectively, we

can write equations of Gauss as

(1.5 T 0 = kit CA

where by are the second fundamentil tensots of MP with respect to notmals G,
18 s known (Yano [18]) that the tensor given by
(1.6) Ma' = Fatl o

der u conforimal change of Ricmannian metric of the ambient

vanishes identically the submanifold s s1id ta be totally geadesic
and IF ‘Lv vanishes identically the submanifold s said
o curvat tensory Ko, of A

e totally umbil

The relation beiween the covari
of M is given

(1)} LR ha’ = b b

where B, =
Tn 1948, Bochner [2) (sce also Yano and Bochner [23]) proved

weoRiss A, In it compact orientable conformally flat Riemannian manifold
M 0 =4, if the Ricci furm i positice definite, them we have b, — 0
(toe 1,2y ciim 1), b, demating the t-th Betti mmmber of M.

Now let M be s seal n-dimenional Kachlerian manifod
covered by a system of comples coordina
here and in the sequel the indices @ B , v+~ run over the range

ol




s
and 7,8, - the range (I = w4 1, 2=m2,. 6 = 2m). Then the
fmeric ensor gy, has Uss compomnts

0
() wa- [ %

A
and g the compancnts

0 %
(9 =[5 ]

Tt is well known that thore cxists 8 tensor F* of type (1.1) having the nume-
rical companents

(1.10) ¥,

i ) ]
0 —f=T8

in any complex coardinate system and saisiying

(a1 FAEN=—3) | FFlga=itn
and

V,Fh=0,

1z
The. tensors Fy, = /g, and F& = g
have the componenta

) 0 o (] —
—1—ig, (= F 0
respectively.

As o formal analogae to the Weyl conformal curvature teasor, Bochner
[3] (sce alsa Yana and Bochner [23]) intraduced the curvature tensor
(M) B = m
S F 2 ’-Kc. Ky

1)(~ Fe il CEE SR

are both skew-symmetric and

] 4o e

Koz + Ky 82a)

T 3wy

which we now call the Bochner curvature tensor.

A3 0 thevrem which correspands to Theorem A, Bochnes [3] (see also Yano
and Bochner (23]) proved

Tukoness B, o @ compact Kaehleriant manifold M, i = 2 = 4 , in wbich
the Bochner curcature tensor vanishes and the Ricci form is positice definite, we he
By dy by = 0 (0 S 21,2041 =2m).

Tuchibana [13] gave the following temsor sxpression of the Bochner cir-
vatute tensac in a real coordinate system:

(115) By = Kugin + 8 Ly — i L o Lon s — L
- Fon M — Fa Mg £ Moy By — Mo By — 2 (0 Mo o4 My Fok
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Since then the analogy between the We tare tensors

s been studicd by Chen [5], Ishifara [24], L. atsuisroto (10], Tachi
bana [14], Takagi {15], Watanabe [15] and one of the present authars [5], [19],
[20], (24,

A vibwanifold M? jsometrically imunerscd in a Kachlerian manifold A=
id to be invaiint or analytic if the transform of the tangent space T, (M#)

v paint y of M# by the complex atructure tensor ¥, ia stll tangent to M,
that is, if we have equations of the form

B
Iy this case M2 is again n Kachlerian manifold and is minimal in M=,
A submani M? isametrically immorsed in & Kaehlerion manifold M*
i said 0 be anit-imvariant or totlly real if the tranaform of the tangeat space
", (M) at any pofit  of Mo by the complex seruerure tensor F.* is normal to Mr,
that s, if we have equations of the farms

(L1

(1.15) FA B = —f7Ch

“Totally real submanifolds of Kachlerian manifolds have been stidied by
Blsir [1], Chen (4], Houh [6), Kan [7), [25], [26], Ludden . ) Ogiuc m
Olirnuira [8], [9] and one of the prescnt authors [8], [9], [21], [2
As & theorem which shows 1 close relation between the Weyl s
curvature tensors, Blair (1] proved the following

Tusoat C. Let M, 52 4, be a réal 2 w-dimansiomal Kachierian marifo
it vanishing Hochwer curvature tensor and lot M* be an n-dimensional totally
geadesic, totally real vubmenifold of M™. Thew M is canformally flat.

Onie of the present authors [21] showed that this theorem of Blair i
also for a totally mbilical, tatally real submanifold M* of a Kachlerian manifold
M with vanishing Bochner cursature tensar.

"Fhe purpose of the present paper is to prove the followiag theurerms which
show close relations and analogics between the Weyl and the Bochner curvature
tensors, Ta state the theorems we denote the curvature tensors Koyt by

(X, Y)Z and Ky by K (X, Y, 2W) = g (K Z.W) XL Y, 2, W
being vector fiekds of the munifald.

* be am nediovensional Riswannian manifold n > 3. A
t condition for M* fa ke conformolly flat v that
B Jfor any wutually orthogonal vectors X, Y , 2 and W.
(CE Sehouten 111; o [12], p. 307).

Topommst 1. Let
ecear
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As a corollary tn Thenrem 1, we prove
Tusoms 2. Let wm a p-dimensional totally sombilical submanifold of an

¢ wdimensiomal conformally flat Riemannian mamifold M+ (3 < p < ). Then M

fe - cmfomaly ok CX. a6 CORD,

| A4 3 threoremn cortesponding 1o Theorem 1 we prove

i Turonest 3. Let M+ e @ real nedimensional Kachierian manifold sith the

g comaic gl i T B o ey v it et o B
1o b wih vasishing Rochner curcature tensor is that KX, Yo, W) = 0 for

s any anMfy arthogonal vertors X, ¥, 2, W anch that FX,FY, FZ,FW
are rtogumal o the linear 1pace spawned by X, Y , % and W.

[ Applying Theorem 3, we prove the following two. thoremms:

- Turorest 4. Let MP be a p-dimensional incariant tofally
of an Hﬁmnml Kachierian manifold % with “aan Hek i
densor (45 < m, 8 = n). Then M s with canishing Bochner curoature tenine
i (. ylmglmhi and Sata [17]).
Tueoness 5. A pedimensional tocally wmbilicai, torally real submanifold Mr
of an n-dimensional Kuehlerian manifold M= (4 = p < u,8 = n) with oo
Bockner curvature tensor s conformally flar. (CF. Blair [1] and Yano [21])

. §2. Proors or Tumones | axo 2

To prove Theorem 1, we need the following

Lo 1. 1f o Rismannian wonifold M of dimension u > 3 har the cur-
wature tensar of the form

@n K,

LisAa + 0Bt fu Cp+ 2u D+ faBac b ga Huy n
swhere A, Ty Cyy Dy Exg and 1y, are focal components of certoin tensors of
(0, 2)-types then NI is confarmally flat,

of Thearam 1. Let X¥, Y/, Z and W* be local components of any

mutually orthogonal vectors X, Y , Z and W respectively,
15 M is conformally fat, then the corvature teasor of M+ has the form

22), B = — gLy +pa Lo —Luagy + Lagu-

Hence, it is easy to see that Ky X5 Y7 Z0WD = 0, that is, K (X,Y, 2, W}~ 0.

Conversely, if Ky XY/ % Wé = 0 for any mutually arthogonal vectons
X¢, Y/, 21 and WY, then the curvature tensor of M7 has the form (2.1). Con-
sequently, by Lemma 1, M* s conformally fat.



Y

Proof of Theorem 2. We first of all remember the cquations. of Gause (1.6).
Since M2 is totally nmbilical, we can put by = go b and then cquations of
Gauss becariic

23 Ko, o Kugn B BB B 4 (e s — bt hat .

ansvecting the both sides of (2.3) with any mutually orthogonal vectors
X4, Ve 2% and We of M#, we haw

24 Ko XEYEZD WA o K0 (BEX0) (B V) (B, 20) (B W)

e of the assumption that M* is canformally fat, the right hand side
i hus, from (2.4), we

Ko X4 Ve 20 W

for any wutoally arthogonal vectors X4, Y¢, Z* and We.
“Thearem 1, M? is conformally fla.

‘ansaquently. by

§3. Puoor of Losua ©

To prove Lemma 1, we need the following

Provosrios 1. 1f a Riemannion wonifold M~ har the curcature tensor. of
tie form (2.1), then the follarcing selotions hold,

M A+Beb o BhChD+Ewmi;
BN () Ag=An ;M= oLHg
@) BumBot LO-Bg . Cim—Bk LGB,

- 1
Dy = —Ec+ 4 D+ By
where A = g Ay B = p¥ By, ctc,

Proof of Lemwa 1, Substituting (3.1) (i) and (i) into (2.1) and making
s of (1.1) (i), we have

¢ 1 ( a 1
(42 Kuiw= s gt ) (it cog)
1 \ 1
f( Bt L0 Bi) babut L Hean
80 R S
=B+ Ea B —Eugy + Eagn+ A+ W) gu

1 1
+ x((‘-\ D+ 2B fugn + = (B—E)gusn

A ] 1
= —gar Byt g Bac = Bugiot Baga— - (B—E) (gagyi—fuga)




Ligm By 5 (BBl
we have from (32)

(3.3 K g L o L Lo+ s -
Transvecting (3.3) with g, we have
Ryp = —nLy; -+ Ly — L -+ Ly

34
= in—2) Ly — Ly,

where L= gf Ly, Morcover transvesting (3.4) with g, whe have
K= —2(a—1L
and therefare (3.4) becomes
" 1 ’.
Ky — (0 =2 Ly b ey Rew

Ljj=— ..iz K,

=062
Consequently, (3.3) shows that M? is conformally fiat.
Proof of Proposition 1. From (2.1), we ¢usily have the following cqualitics:
(1) M Ky 0= A+ B+ Oy D -+ By 4 gy
(020 PV By = 0= Agyy o+ By + Gy B Bk nbey
(@) M Kya= K= A&+ By 4 Gy + Dgy b B -8,
() P K= — Ky Ay - B+ G D+ A By
(85 K= Kiom At By Cpioct aDyk By i My,
(88) Ky = Ry Ay mBY Gy Dy B Hig
From (a1}, (w2}, (a3); (a4), (a.5) and. (3.6), we have
#A] = [B] — (€] [D]— [} = 0.
—[B) (] (D] & [B] 4 =[] = 0,
—[A] -+ [B] + n [C] + [E] — [H
—[A] (€] + [D] 4 n (8] + [
A1+ (8] 4 # D} + (] + (8] = 0.
1AL+ 8] [€] + (D) — (1) = 0




— 3

respectively, where [A] = - (A — Au) ; [B) = 4-(B — B) etc, Regarding

the st of these 6 equations a5 a systen of simultancous equations with respect

w0 [A, (], [C], (D) . (] M} we have ;',
a5 TAY = [8] = (€] = D] = [B] = 1] = 0,
that ;A By Oyt Dyt B andd B acw byminciric tennbts, backnsiof 3
.t
0 - - ¥
—t 1 .0 ~ - 4
S ko (n— 3+ 2740, s
e
1. = g1 i

Tiking account of (3.5), we have, forming (4.3) + (54) ,

(36) 24,

gy o+ (1) G+ Dy o+ Dy f (ot 1) By

2H, =0,

Transwecting (3.6) and (a.1) with g, we have

37) A LH) L (4 BG4 DA E) =0,
38 AAFH B LC LD L E=)
respectively.

From (3.7) and (3.8), (3.1) (i) follow

3.9) A4B=0, BHCE

Torming (1) — (2], we have

nAy— Mg 4 Hey, —mbj=0
ar
(3.1) P .;.(‘\— Hy g0
Similatly, forining (1.6) — (14 and (5.5) — (a4}, e have
@y Py : B =) e,
; B
(3.12) Dyt —(C—D) gy

respectively. (3.11) is the first equation of (3.1) i)
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Substituting (310}, (1.11) and (3.12) into (x1), we have
i L

2= — 2By —rif -»%{n e
(n F B
+ LI L0

(c FB 4+ ;A.u)n..

or making use of (3.9)
T L
and therefore (3.12) becomes

AW Gy Lt

Substitating (3.10); (£11), (3.13) and (3.14) into (3.6) wnd using (3.9),
we easily have (3.1) s

Hy= - Hey

we have

A L gy

and therefore from (3.

Making 1se of Hyg = - Hey, from (3:13) and (3.14), we obusin the last two
O )

equations of (3.1) aDE

§4. Proors or Timomes 3, 4 wvd §

T prove thesc theorems, we need the following

Leania 2. If a Kaohierian manifold M wf real dimension u = 4 ot the cur-
vature tensar of the form
(1) K= gty s+ s Bia + gan Coe + 250 Doa 4 £ Bai + g Hyg

+ Fyy P+ Fig Qs+ Fua Ry + FyoSua + Fn Tai + Fua Vs
wlere Ay By Cus D B By Poas Qs R B, ol ¥y, e Joval
componmis of cartain tenses o {0, 2 types Hhew. the. Boche éurcaiune temor
of M* vamishes,

Proof of Thearem 3. Let X¥, Y1, ZF and WA be respectively local compo-
neats of any mutually orthogonsl veetars X, Y , % and W such that FX , FY,
F7 and FW are orthoganal to the linear space spanncd by and W.

1i the Hochner curvature tensar vanishes, then we have

(42) Kija=—u Ls - £ Ti— L g o+ Lnis
Fu My B Mug—Mua Fyet Mo Py 2(My Fiy

FuyDu).

Hence, it is cany o see that Ky X2 Y9 26 WH a0, that i

(XY Z Wm0



— 40—

W

Canverscly, 0 for any mutually orthagonsl vectars
X0, VY, 2 and W Y1, ' 2 and B, W+ are orthogonal to
the lincar space spanned by X1, ¥/, % and WA, then the curvature tensar has
the form (4.1

Cansequently, by Lenma 2. the Hochner eurvature tensor vinishes.

inee M* is an analytic submanifold, we have (1.17)
F.a. Applying ¥, t the both sides of thia cquality
and making use of the assumption that M ia totally geodesic, wé have

0= VyFa,
which shows that Me is 4 Kachleriun manifold.
On the other hand, from equations of Gauss, we have
Ko = Ko BB BERS,
because M s totally geodesic.
Transyecting the both sides of the last cqua
gonalvectors X4, Y<, Z* and W* such that FJX*
he lincar space spanned by Xe, ¥
K XUV 25 W o Ry (B X9 (B W) (B¢ 24 (S Wy
But, since FIX, FBY , FBZ and FBW arc sl arthogonal ta the linear space

spanncd by BX., BY , BZ and BW and M* has the vanishing Bochoer curvature
tensar, the right hand side vanishes. Thus e have

Ko XEYZEWe = 0

 matually ortho-
are

n with

and
and “" « we have

* and We such that

foc sng sty ksl secory X, ¥
o W ear space spanned by X

are arthogonal o th

WYY,

w.

Consequen

tensor,
Proof uf Thearem 5. By ¢quations of Gases, we have (2.3),

the both sides of (2.3) with any mutually arthogonsl vectors X4 ,

we have

(43) Ko XA Y 2 W = Ky (B X (B, ¥ (8,1 2 (B2 W) .

. by Theorem 3, Mr has the vanishing Bochncr curvatire

‘ransvecting
, ZPand W,

But, since submanifold M> is torally real, FBX , FBY, FBZ and FBW ure ortho-
gonal 1o the linear space spanncd by Z and BW and the Bochner
curvature tensor of M vanishes, the right hand side of (4.3) vanishes. Henee,
we have

Koo XA Y228 We =

for any mutully orthagonal vectors X7, ¥*, 2% and W+, Consequently, by
Theorem [

1, M* ia confo




§5. Puoor or Levas 2

To prove Lemuma 2, we need the following

Provostriox 2. If a Koederiom manifold M® of comples dimension m = 3
s the curvature tesisor of the form (4.1), then the folloing relations hoid in a com-
plex coordinate system.

@ A= Aigee : Higs .

@t Bdne, Dt Ba= L0 B,

LTU 0 S S T P

B H o g B rte, Gy gl Cp Ry= e Ry, and
d E, 5 run wer the ranges {1, m nd

Proof of Lemma 2. Tn our complex coordinate system, (£.1) can be
written a8 ¥
(32) Koz =t Mz £, Cy +05 D+ M
P R — S e Vs
where i = 1.
From Proposition 2, we have
1 : b
A=A s Cum =By LGk By
1 1
Do=—Eib (Dt EBdge « He=_Hig,
1
Pom Vet o Bi=Yre ., =- R+ Suis
and thus substituting these cquations into (32), we have
(53 K= o O 4 Hy 4P Vg

G 2Rk D R+ Sy — (R B B

— e b B il Vi + £ Vo)




Ky, from

2 Kugpa = Koo + Kaai
we have

1 » : ’
(5:8) 2R Sk Cark 2B E Dy b M (P Rat S, Ve e

SR —Vilgutn
— g (B i B — iV — g (Bl 478, —iV)
g (B -1V — g (B P8 —iNQ) -
1f we put
A -,:t-*- + Gyt 2B 4 Dyt Hys i (Fy + Ry 4 80— V),

1 Wi . e
— Mt B hi 8 —iVg),
then (5.4) becomes
G e 20l 205 bt 28 L+ 25 L = 0.

Transyectiog (5.5) with g%, we have

By b 2o bg 4 2 L+ 2L 4 2L =0
ar

(5.6) Ko+ 2L, +2(m £ 2 L=

where Ly = g Ly .

Moreoner, transvecting (5.6) with 7%, we huve

2l 2w 2L

37




==
Thus, substituting (5.7) inte (5.5), we have
K ey e Ry 0 K

— 2] Kl ral) = 0,

which shows that the Hochner curvature tensar vanishes.
Proof of Proponition 2. From (4.1), we have the foliowing equalities:
B K= K, $ By - 2w G Dy Byt Hy
—F/ By T Qo+ O+ BFy -+ Fif Tt
B 2 K= K= Ayt By - gyt 2Dy 4 By 1 H,
+ R Pt Ff O+ REy+ 0—FTji—
b3 Ky = — K= A, jo+ Cpi - Bt Bey + Hig
S
() P K = — K= Ay b Dy 2w Eyj-+ Hy
B By ok QF 4 B Ry — P By 4 0 4 Ff V0
(B5) g Ky 0 = 2m Ay 4 By + Cyy b Dy 4 By o Hey
0 —F Qu — Fi Ry — B/ 8, — BTy £ VEyy,
(b6)  pM Ky = 0= Agy + By +Cyy + Dy
4 PFi ok B/ Qi & F/ Bo 4 T,
where A v g Ay B = g By, ctc
In u Kachlerian manifold, the following relations are valid:
4 Ky = Fyy K ~—2F,
Heisce, again from (4.1) we have the following cqualities:
BT B Ky = Fy K= A BB 4 0 4 Dy — B — By
- Py 4 Qo+ 2m Ry - SFy+ T+ Vo,

(BB FM K= Fy Kyl = Ff A —F/ By + O + 0+ BB, — B Hy,




(b9) | P Ryem — 2 F, K = 04 Ff By 4
£ 2mPy 4 Qut R, — S,
610 F4 K= — 2T,

F/Dy—F/E, ¢ fig,

Ty+ ¥y,

f FCi 4B D, FE 0
Qu+ Ry — 84 Ty o 2wV,

Fi Ay 40 4 Fi Gy — KDy & By —FL M,

Pyt 2m Qe Ry 804 TF,

(5:12) F* K = —Fjp K = FjA, 4 flgy —Fi €,

Piy+ QF5 Ry 4 8y 4 2 T,

D11 PRy, =
7

Fib, 4 0 —F H,,

where A — F A B= F¥ B, ctc.
Forming (1) + (b2) + (b.3) 4- (b} -+ (b.5) + (), we have
(58 ((@m 4 2) A+ 2A0) + (a4 3 By + By
(2 Dy (R By B - (2m

Qs 4 Ru + Ro) —F(Ty + 0y
D Ef Hjg,+ (B0 £R+

(@m 1 2) G+ 2€,)
) Byt 2H)

Ry + Ry)

S+ T 4 V) By =0

HAE B

Transvecting (3.8) with g%, we have
59) A+BECE DSR4 Hat
and therefore taking accoust of (5.9), we-have, from (5:),
(5.10) Ay + Byy

+ Cyor+ Dya 4 By + Hyg = 0,
where Ay = - (A5 A, ete

Transvecting (b1}, (b.3) with g and (B.7), (b.11) with ¥, we have
G K= (A H) 4 (BB 2m(C D)= (B £ F)— (@ 4 T,
G12) —K (A4 H) - 2m (B4 B)+ (C D)4 (Bt 0 — (R4 8);
(5.13) K= (A4 H) —(B+B) —(F 4 ) +2m (R 1+ 8 £ (0
(514 K (AL M)+ (€ D) (P V) (Rt 8 —2m(Q+ 1)

respectively. Fotming (5.11) — (5.13) and (5.12) & (5.13), we have
2(B4E)+2m(C 4 D) —2m(R+5)—2(0 4 T
{5.16) =2mB4E)+2(C+ D) 2(R+ 8 —2m(Q+T)

(515 0




respectively and consequently forming (5.15)xm — (5.16), we see that
(517 C+DmR+8 . BLE=Q+T.

Forming (5:11) + (5:12), we have

O=2(A+ H)+ (2mf DE+EHCHD)—(Q+ R+-5+T)

ar making use of (3.9)
(5:18) 0 (1 —2my(A+H) —(Q+ R4 84T
and from (5.9) and (3.17); we have
(519 ~(A+H)=0+ R +84+T.

Thus, from (5.18) and {5.19), we have

(2-—2m) A+ Hy =0,
from which

(5:20) At H=0.
Camséquently, from (5.9) and (5.18), we have
(5.21) B+E+C =0 |, Q+R5+BrT=0.

Next, transvecting  (B.1), (b:2), (b3), {b4) . (b3) and (b.6) with

we have
—AAV LB T+ 2m(C 8 A E L QTP =0,
(A+Y) &0+ Ty -+ 2m(D 4 B - (B4 Q4 (F 4 R =0,
B4 V) +2mB+ T+ E+ 8+ D+ R — @+ H=0,
— (R V) CES) (DR 2 B+ Q)+ (A +P) =0,
2mA VI F BT —(C+8) + D+ N—(E+Q =

— (B4 T)—(C+ 8+ (B+ R + (B Q)+ 2m (4 Py O

respestively.
Hepioilg i o thme £ Spiom i i, af sinwuliancous equitions
with respect ta A4V, B4 T,C+5,0+R,E4 Q.4 P, wohave

(52) A+V=B4T=C4+5=DfR=E4+Q=A+P=0,




because of

= G (m Y £ =0,

0
Uoam

Now, in our comples eoordinate system, (b1} can be written as

(523) Ry = Ag 4 B, 4 2wy o+ Deg, + P —iQy

i —

(24, K= A+ Bk 2m G b Dgye o B + PPy 400
+isg Ty —i
Formiong (5.23) + (5.24) and {
fel) K= (A) + (B) +2m(C) + Dge + (E) -+ (H) + 4 [F) + #[Q]
+F[T] V)L
fel)y O [A]— B —2m[C] — (] b (B £ 40 — (@) — 7 Sp
—i(T) V)

respectively, where

W5 Bt ha) o Bl= A o

Similacly, from (b:2) . (b3) -+ (812), we have the following relations.

(€2 Kg= (A) 4 (8) +Cry + 2m (D) + (E) + (H) + i [P]
P[Q)+ éIT) + ¢ 1V],
2 O —[A] (B2 m (D] — [B] — [H] — i (F) — 4 (Q)

R — i) —i (V)
+ 200 (B) o+ (C) F (D) + B b (H) — i (€] 4 4 1K)
+iE =iV,
(B — [C] — (D) + [H] + # (1) =i (R) — i (8)
=#(V),

(e3)

@3, 0=—IA)

—t7e




(CU]]

(=4

[CUH

(Eo 8

(6

(e8)e

(CoR

(7

fe8)

{e8)s

(&9

€9

(e10),

(e10),

g
g (A) B ()4 (D) 4 2m () () — i [P+ AR
+i (81 —iV],
0= [A]—[C]— (D) —2m [E] — [H] — () — § Qg — i (B)
— I8 + iV,
0 = 2m (&) + (B) + (C) + (D) + (E) + Mg — i [Q]—i[R]
i A E
0= —2m[A]— (B + [€] = [1) + [E] - i{Q) — i (R) -+ £(8)
=i (1) —i Vg
0= Mg+ (B) +(C) + (D) + (B) +2m (H) —i{Q] —[R}
) — i1,
0= 3] 4 (€ — [D]— [ —2m [H]— i Py — i (Q) — 1 (R)
L) T
Ko = (A) — (B) — (B) () 4 7 [F] —#[Q) — 2mé [R] + Spsc
—i[T] + V],
0= (A 4 (B 4§ D o+ (B) o+ [H] + §(F) - $(Q) + 2mi (R)
£ () + (V)
Koo (A) — (B — () & (1) £ 7 [#] - ¥[Q) + Rp— Zwi (5]
— (1] +4(V),
0= — (A  (B] -+ ¢ T [E] — (1) — 7 (F) 4 7(Q) -+ 2mi (5)
(M) —i(Y),
—2 K= (B) —(©) — (D} + (B) —2mi [F) —i[Q) + { (K] 4 £[8]
=[]+ Vg
0= —(B]— (€] 4 (D] + [E] + iflpys -~ 2mi (7) + §(Q) + i (R)
—i(8)—i(T),
— 2Ky — (B) —(C) — () 4-(B) | Pry—4[Q] + 7[R +4[8]
—4T]—2m{V]}
O = g+ [B]—[€] + [D] — [B] —#{(Q) + I (R)—i(5)
HiT) + 2mi (V)




{e11); — Ky = (A)—(C) — (D) + (H) —# [F] — 2w [Q) ¢ [R] — 7 [S]

e — VI,

(1) =[]+ €] + D) +
+i(8)—i V),

(12} — Ky = (A)—(C) — (D) (1) — [P] + Qe [R] i8]

Zmi (1] —i[V],

(€12); 0= [A] 4§ gy - (€] [D)— (1] — i () 4 ¢ (R) £ 1 (8)

2l (T) 4§ (V)

By -+ [H] 4 (F) 4 2 mi (@) 4 7 (R)

respectively.
Next; forming (c.5); — (¢.6),, we have

0= 2m{A)— Agy—2m(H) 4 Hgy

(A)— Z!"

1
Mgy () 4 5L Mg =0,
that is,
@) eI, (c8); = {A)—

rly, we have

(2 (3 —(edh = (B — o

@ (el — e - =)
@ E (10~ 1) Pra— (V= V) <0,

@9 (ol — (eI~ (@ — e Qr— ([1‘1—3’;‘17:,;) L

@ i — 8k R (91—
@D (€9 et~ Bl A (=5 u,)

@8) (e +eiBy— B— e Bra—i (M) g;Tz,,]

W ey e - o O ()




@) (62), e O] g B () — 5 Re) 0.

(A1) (ed)y + (11} [E] T'w igﬁff[(ulf 11_.0;,,) =05

1) e e = ) o P (= oL v <0

“Thus, making use of (5,22), from (4.7) , (48], (4.11) wnd (12) we have,
PRy i i
LR & R T R ey B U R )

- L e

"
reapectively.
Substituting these. equations and § = — G into (1), we have

(525 (M- £ B) (11— o )

) {10 5% ee) =
Putting
(A=A~ Bty () =] — 5 Py
we can write (5.25) as
(AY— (B} —m {C} — (E) + {H) =D
Sinitarly from (2 (e 4)g s (c8); and (c8),, we have
1) () D) 5 (B) + (1) = 0,
{A} 4 m (B +(C) + (D) —{H) =0,
{8} — {C} — (D} —m (B} —{H} = 0.,
(4] (B) €1 + (D}~ (B =0,
(B} + (€} — (D} — (B} — m 11} = 0




0=

Regarding the set of these 6 equations a3 1 system of simultancous cquations
with respect to (A}, (B}, (€], (D], {E] and {H], we bave

)= (B = {Ch = (1) = (B = {1} =~ 0

because of
fr=1 —= 0=1. 1]
Py’ g
R = = S
P el S Pt e € L
e 1= v=r 0
B e )

or

G26) A —3 B oL SRS AR e

D= g Bra= 0, (= B0, ] — o Fga 0
Thus, frac (47) , (d8) , (9] , (410}, (d.11) and {d.12), we have respec

dvely

G2 M— z".;“’-i’“ F rr)-z‘_-r.,,ﬁu =

R e Rea=0 o (@)= 5L Qa0 )

On the other hund, forming (.5), +

(c.6), , we have
(5.28) 0w (GA) -+ (D) 4 (B) (€] - (D) + (B) ; (A 4 Hig,
— (1) +[R] 4 (8] + [T
and making use of (5.10) and (5.200;
(5.29) (A) ++ (B) 4 {C) + (D) + (E) - (H) = 0, A+H=0.
We ean reduce (3.25) 1o
G3) 0= (m—1)((A) + (H)) =i Q] + [R] + [8] + [T
Similarly forming (c.7), + (8}, + (.11}, + (€12}, we have
0 = 2 ((A) ++ (1) — ((B) + (C) + (D) -+ (E}) + ; @+ R+ 8+ Toge
— i {m - D{[Q) + [R) + [8] + (1))




it

and making uso of (5.10) and (521}, we can reduce the last equation

G31) 0= 3((A) 4 (H) — o 1) Q)+ () + (8] £ (7).
Forming (m -+ 1) 3¢ (530} —(3.31), we have

0= (m* —4) {(A) + (H))

or
(5:32) (A)+ (H) =0,
Hence, from (5.29) and (5.30), we have sespectively
(535)  (B)+ (©) -+ D) + (By=0, {Q 4 [R] 8] 4 [T] = 0.
uenty, making wse of (A) + (H)= 0 and A4 H =0, webave

Commen
from (d.1)

B3 N M0 L )= Hp =0

Making use of () + (€)= — () —(E) and B+ Cwm —D—F, we have
from (.2 and (d.3)

G35 OB EOg . O B L OB
From (c.1), -+ (e:4}, we bave
0= 2((8) 4 (H)) + () + (C) + (D) + (E) + 2m ((C) + (BN}
(0 4+ D) e+ 00001+ 1] 18]+ (7D
ot making use of (3.32) and (533),
2o ((C) 4 (B) b (B4 Dy =0,
that s,
©+E)=— ;- (B Digs
or sitke B4 D= —C—E,
536 (€4 (B) = o (€4 Bhaee
Now, from (5.26) we bLave

Aa—Au— £ Aga =0




BB, = = a4 i A, = —i(A, A,
the last. cyuation beconies

(537)

s — Ay —

L
On the other hand, from (5.34), we have

539) At A= L (A 4 N gz = 0.

Henee, forming (5.37) -+ (5.38), we have (5.1) (), that is,

1

T A

and similacly
H, = ,'n i
Next from (5.26), taking account of i€ = C, —C, and ¢E ~ E,— E,,
we have
1 :
. w B —Elr

and thercfore
(39 €

By 4 Edie

and by (5.36)

540 G o (G G+,

+Ed -
Hence forming (540) — (5.39), we have (5.1){1i), that is,
(5.41)

S
w G F R
Similardy from (5.26) and (5.33), we have

1

(43 Du—Diy+ By —Ey = 2 (D,— Dy 4+ B —Bd g

(543  Dgt+DytEatBy

« Dy + DaF

Ed s e




o
cespectively and comsequenty forming (5:42) + (5.43), we have
1
Dyt By o (D0 B gar
Finally, for (5.1) (i), from (d4) and (527), we have

G4 B

(V)= L =PV Vs

GA8 Pact Py— (artVed = b (B Pa— Vi— Vit
respectively and consequently. farming (544 - (345), we have
3 1 4
PV o Pi— Y.
Similarly, feom (d.6) and {5.27), we have

(B4 Ry Ry — (i —5g)

1
LRSS

A Bt Ry St S5 = o (R + R
reapectively and conscquently forming (5.47) —{5.46), we have

1
LRt S

Ry + 8
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