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On mild and strict solutions
of é 5 g

Sepauanr. — This paper deals wich mild snd sirict solutions o 4 nenfines
pofeurhed funcrions! diferentl equation, [ g ot ionted it
exiaten pris

with minimal salutions of comparivon equations s estimating

1 Ixmovvenion
“This paper investigates the nonlinear functional differential equation
(O =0+ Az =1, %)
in a Hanach space. Tn case (1) is of certain parsbolic or of hyperbolic typs

Bompiani-Walter type cxistence and uniqueness. theorem i verlfied for mild
salutions of (1). The method of succesive approximations. is used, = in [2]

for the cquation
@ (=it x)

Furtherruore, sore estinmaics are derived for solutiors of (1), with minimal
solutions. of scalar integral equations as estimators. Also strict solutions of (1)
in the parabolic cse nd mild solutions of
@ F 0+ Axl) = £t x),
where A is the infinitesimal generator of o strongly continaous semigroup in
1 Banach space, are studied.

All the solutions mentioned sbeve sutisfy an integral equation of the form

* =y + [Vl ), —=se=T,

whete ¢ max (¢, 0}, whenee most of the resubs obtaincd for these solutions
will be first decived for solutions of (4),
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2. Notatioss

e with norm 1+ and B(X) be the Banach space
of all bounded “with the nerm of uniform eperator topalogy.
Denote by C1Z) and G- () the. 3t of Al somtncous. mavping from
KRl 2 s 3 X wnd into the
Tn case 7= [a, 8] ,u = b, these oot are m-:mn. with the uniform topok
The uniform norm of %= C[—z,0], .G
J=[0,T}.T>0, and u,m

<o il w=e() forach te],

and for yeCl—=,1]
M=yl +1,

d 2] define y, e % by

-0,

La U:fo<s<t ) i
strongly continuon:
Uniform Boundedyoss

@n

~ B(X) be given ond assume that
(£, 3> U (e, ) Ia continuous for cach » ¢ X. The
e implies that the constant = given by

sup (AU [0 <

T by

i finite. Given ¢ C{JX%) we cn define a mapping F on C [~
@2 Fxil) = [ V(e s sl —rsrsT.
In view of this definition {4) Gan be written in the form

s=y+ Fa.

In (22) 1+ denotes max {1, 0], and analogous 1o that we shall denote
min (¢, 0).

3. AN GXISTENCE AN UNIQUINES THROREN

In this section U is assumed to be & mapping from {0 <s<r<T]
into 13 (X) such that U (¢, 1) is strongly continuous,  denotes the constant
defined by (2.1).

Towonase 3.1, Asume that [ € C (J5€) and for (8,9, (%) € )
@3n St Bl <gltdes—7k)

where g ¢ Co (] <R satisfying
) g(eur) i mondecreasing in r e Re fur each te];

e ——— i



Lo il
() for each ve Co(]) the integral eqation
[k} wlth=e(0+ x| glr,ni)de
i @ solution on J;
(i) bt} = 0 i the amiy sofatson of (3.2) with & (1) = 0.
Then for sach ye C ] the swrcessive appravimatione
(33) Slay b B | weN={l,

with F given by (2.2) o with wny x! 0 C[ =] ar the fint uppeoimation,
eomeerge un 1 sifarmly ro it wnique solution of (8).

Frogf. Let '€ C[— =, T] be given, Feom (3:1) one i casily deduce
that

(34 Fx, ¥l re),

whenever x, 3¢ C[

=, T}, whence for cach A €N and r€]

() ol [0l =
o "
(3:6) v () =ly—s VAL

Applying (1) onc can obtsin from (3.5) by induction that

I

where i is any. solution of (3.2) given by (1.6).

The unifarm_ convergence of the sequence (x) to 4 sobution af (4), and
the uniqueness of this selution can then be proved, by tho method of Waller,
s in [2] in case of the equation (2),

I

Remarks 3.1. A local cxistence and wniqueness theorer is ohtained with.
out the hypathesis (i), On thc other hand, (i) of g can
be replaced by ihe Caratheodory conditions (cfr [1], p. 665 Similaaly, instesd
of f being continious it suffices that f(r , o]
oxp €T, (e, ) i sosinly meinrsble I 27 fof cach Yo
and that for cach M > 0 there it 3 Lebesgue intogmble function  :
such that

i{ecatl = Ao
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whenever (1,50 J %6, “These hypotheses and the Dominaied
Convergence Thearem o Boskner integrale imply that the integral in (22)
[, snd that the wniform
s a sabution of (4

) =D the zero fomction a8 the only
But this

it of the successive appeoximations

If the cquation (3.2) has for o
solution when x = 1, the tame holds wivially alio when 0
i o Jonger true when x > 1 s e sce from the follawing cxample
iven % > 1, define pe C, (J¥R,) by

2t
gley==" for r=fue]:
(= ar fw Ozr<a0<isT.

It ks casy 1 show that a(f) = 0 is the only solution of (3.2) when g== 1
and £ft) =10, whereas
n()=Cr tc],

s for each Ce [0, 1] a salution of (3.2) when a = % and ¢(1) =0 (efi. [1}
P 676).

4, Dnvguavrrms

Les the mapping U e preceding section, and et x dennte the
solution of (4), with m ghven ye c[f 5

Loso 41, Lot ge CL(IR.) mtify the hypatheses () amd (i) -of
Theovem 3.1, and let v@ C, (]} be given. Then the equation (3.2) hav the minimal
solution u. I (v?) ir & sequence in C[—=,T] ruch that y* —y wiforuly on
[~ =, T] and that for each 1€ ]

(GNP AR P R N LIS

then

*2) whsu), rel.

roof. “The cxistence of the minimal solution w of (3.2) in trivially verified
by the method of successive approximations (cfr. [2), Lemma 21). By the
monotoniicity of g, the sequence (3#), satisfying (41); is hounded above by w,
15 we see by induetion.

(1) Thia wxmmple in suggestesd by D 3, Tienari.
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At a consoquence of Theorem 3.1 and Lemma 4.1 we have

Trmowess 41, Witk the hypotheses of Theorew 3.0, and for 26 C
ami ve €. (]) motisfyi
3
we have
“ ],

where. u s the mininsal sulution of (3.2)

Pronf. Let () be the sequence of the successive approsimarians, with
wt ey 4 Kz as the first approximation, converging 1o x.  Then it is casy to
verify that the conditions (4.1) are satished by y* — = — = whence (4.4)
follows from Lemma 41,

Conortary 4.1, If the hypotheses of Theoress 3.1 hold and if % asd x are
the siutions of (4) with given ¥ and 5 from C[— v ,'T], respectively, theu
*5) 1Z—sk =), ],
where w it the minimai slution of (32) with () = 1 5, — ¥y

Prosf. Choose 3= ¥ in Theorem 4.1,

“Trvonss 4.2, Avsne that the hypotheses of Theorem 3.1 hotd, and that
Jor vme 2 €[, T]
#6) 1At 2l
where g% (TR} satisfying the hypotheses (i) andd (i) given for g in Theorem 3.0.
Then

(Lip—nh). (nplelx®,

7 In—znl<wl), te].
where w is the winimal slution of

48 wif)=lly—

o fatmupde,

Proof. (%1) holds for y* e 3 — 3, ¢ =y, g =g and o (1) = | x, — =1,
L
An ecample of evahuation functions ¢ in Theorem 4.2 is

2t N =00l m) | L aglt,r),  (AETXRL,

where  is the evaluation function in Theorem 3.1 With the chaices 2 = 0
and 2y, we get estimates on the norm of x and on its distance from 3,
respectively.
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Tuwowen 43, Awwme that { depends om a parameier heionging io @ won-
caply st ¥, and sutigfes the bypotheses of Thoorems 3.1 for gices o o ¢ Y. If
anid ¥ denate the corresponding solutions of (4) with the same y ¢ C[-
then
“9) In—EL<u(), te],

wkere 1 is the minimal solution of (3.2) witk

)l de

1) o= IfG 50D —1E

Proof. Let () denote the sequence of the successive approsiinations,
F¥ 4t the fint appodimioh, cmveryng x, Thes (41)

Remarks 4.1 The vesults derived in this. section hald also under the
weaker hypotheses given. in Remarks 3.1 for f and g, For 4 the hypotheses
of 2, without (i), are sufficient.

The = [0.°T) can be replaced in this and in preceding
section By [0, T) 0 < T < oo, provided thar U is assumed 1o be bounded
i {0 1=t <T). The convergence of the ruecesive approximations x* is
then uniform on each compact subset uF[— T).In particulr, if the hypi-
theses of Theorem 4.2 hold with J = [0, T), and if the minimal solution
of ux) is bounded for boundad € C [~ =, T], thei also the solution  of (4)
3 and & have Hmit from the left 25 1 tends to
Rl i i 2

To o that the boundedness of the minimal selution of (£8) is 3 weaker
condition than the boundedness of the eorresponding mavimal solution, define

w,.)r:e' for 0r<2(l—e"), r=0;

r—2({l—e9) forrz2(—s") cab

gir.o) =

This ¢ has the properties required in Theorem 4.2, and the integral equation

48 i) =1 fhox | gls, win) de

has a bounded minimal solution
w, (= 2{1—¢),
but an unbounded masimal solution

. f [
& =20 =)+



5. Ox aiin sOLUTIONS
Let (A1) [£c]} bes family of cosed finear operators from a demse
subset of X into X. Assume that

and € = 0-such that (3] 4 A{O] exists, belongs

there exin 0 (2,

w0 B(X), and ([31 A (0] <y “51 whenever ¢ and % is @
complex. number for which [argh | < 0 (1 denotes the identity opé-

rator of X).

The operstors — A (1) form then o parabolic family in the sense that
— A(t) i for cach €] the infinitesimal gencrator of an analytic semigroup
(cf. [31 Remrk 3.1.1),

Assume further that

fea AGYAQ) T i for cach rC] a uniformly Holder continuous
mapping from ) intn B(X); the Holder constant and exponent being
independent of ¢ J.

“The hypatheses above exsure (see [3], Theoren 32.1) that the evolution

ecquation
(18] Y+ Ay =0
' ‘r-,.nm and that for

bas ||qu|!L Fundamental salitior U
of (1) wi

cach

the wll\r ™ m I'= tes us 0 mll hht mapping y« C[— I'],
definad by
G FO=V@, 0 ait) for —z<1<T,

the solution of (1') with the given 5 ¢ % a the initial mapping.
By o wrld solution of the functional differential equation

(U1} X (1) + A () =1t %)

with the given gy €% s the initial mapping, we mean  solution of the integral

cquation

62 s = U ale) 4 | U s b, st

Fram (3.1) and (5.2) it follows that the study of mild solutions of (1) is
reduced 1o, the study of (4). Furthermore, the fundamental solution U (t )
of {1') is strongly continuons (cfr. [3], Lemma 3.4.3), whence

all the reswits devived in sections 3 and 4 for solutions of (%) hold alsw
for- mild solutions of (1), when 3 i (4) s considered as the swlution of (V') with
w gicen initial mapping, and U as the fusdamentol solutiom of (1)




Particularly we have

Assume fe C(J<8) and for (¢,5).(t,7)e Jx&
e =fi el =gl le—3ll

where g C(J:4R.) £(1,7) it nondecreasing in v R, for sach 1 J, the initial
vaine probiem

B wi=sn) . wO)—r., wthxgiven by (21,

s for each 7y =0 w solution an J, and w(t) = 0 is the anty whition of (5.3)
with ry 0. Then for ench gy € 6 the functional diffevential eqation (1) has a
wnique mild solution x om [—z.,T] with 7, as the iitial mapping. Moreoer,
* depends continssinly an 5.

Let g, @ be given. Tt is easy to sce that the hypotheses of
"Theorem 3.1 hold for f (cfr. (2], Lemma 2.1). This proves the existence und
uniquencss of the mild salution x of (1) with 7, s the initial mapping.

Tt 5, be another initial fmapping from % and 7 be the corrcaponding
mild solution of (1). 1f y and ¥ denate the salutions of (1) with g, and 5, a1
mappiogs, tespectively, then it follows from (5.1) that for each fe ]

o 8 e — Fela £ 290 (0) — Fal0)
4.1, implies that

esuly sull); rel,
ion of (5.3) with

“This, together with Corofl

54) I

whete u is the

o5k + 2l (0) —F O}

-Gy in %, then ry =00 and, since the zer Fanction i the anly
(5.3) with r, = 0, then

W) =0 a Fooe
. [7) Theorem ILSNTID.  Hencs, &
=, T] a8 5y = in &

omn Theorem 4.3 we obtain

5.4), ®{t) > x (1) uniformiy on

ouEn S2. Let Y be @ metric spoce and wme that [ C (J€5Y)
auid f sutisfe for nach fised we ¥ the ,i,pw,m, of Theorem 5.0;  Then the
mild salution of (1), witk the given imitial mapping, depends comimuouly on the
parameter .

Froof. et x and & denste the mild soutions: of (1) cormespording 1o

c et W 10 ) i compact
: i, e can abow by clemén-
vary analysis (cfr. m. P ) that v, given by (10}, tends 1o sern uniformly
on J a5 i tends to s in V. The conclusion follows. the from (49).




As 2 consequence of Theorem 3.1 we get

Comorwany 5.1 The conclusions of Thewem 51 huld if fe CUJ % %) and
if for all {¢,5). EJ' e jxE
(5:6) A3 — S0 BN (0 bl —F 1)

where pe C. ()}, o C (R, § & mondecreasing, and the integrals

Proof, "The hypathescs of Theorem 5.1 hold with
)= p( Ll for (1, J¥R,.

The most impartant special case of Corollary 5.0 3¢ obtained when & i
the identity mapping on R, in which cass the Osgood condition (5.6) is
reduced 10 the Lipschitz cond

By Remarks 3.1 it suffices i '§ i (5:8) -8 Lebesiue fategrable furiction
from J into R,

6. ON STHIOT SOLUTHING

By  striet solution of (1) with the given intial mapping g, € ¥ we mean
@ mapping x& C [ =, T] which equals {0 g o0 [— =, 0] and which is strongly
continuously differentiable and satisfies (1) o (0, 'T].

Tusomoe 61 Let (A ()| te 1} be a family of operators in B(X) satisy-
ing. the hypotieses 1) and 2) (p. 7) and leing wniformiy bounded over 1e ).
LAsnme further that | sutifies the hypatheses of Theoeem 5.1, Then for cach
S ¥ the equation (1) has o [ =, T] a unigue strict solution with 5, as the

mapping.

Fmitiad

Proof. By Theorem 5.1, (1) has a unique mild solution v with the given
In view of Lemmas 351 and 352 of [3], with
it ), one can deduce that x i also a strict.sabition
“The uniquencss follows from Theorem 5.1, becase for any strict
sofution v of (1) the mapping £:-=/(f, %) i continous, whence s als o
mild ..1..m.. of (1) (efr. {4}, Vl. I1, . 250).
the operators A {{) are not asumed 1o be bounded we hive

Tunmanﬁ! Lot A1), 26 b clused Enear operatars from @ dense wibet
Doof X into X catiafying. the hypetheses i) and 2) and

5 lim sl A0 a(dl <o for 22C(). Tm=CD.
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Asnome ]wfhr tht f i 0 mapping from 3% into X amd for all (1, 5),
(r. e

(6.1) [l o) =S D= ls—e| Hlle—Fl)

whae 4eCog

b is mondecreasing, the intrgrals | “"’, and ’IJH{;) |
J i 2y it

divege, and the intrgral | ") dr corverper,  Then to sack Lipsckits on- 1

Hwos initind mapping T 0] -+ X ke equatioms (1) has on [—<,T]

a uniue and Lipuchits confinitons strict sohution,

Proof. Let gl v M =X be a Lipschitz comtimom auppic

Fruan (€1 i follpwa. the  iacontinuous and. satifce. the Crgood. sond

tion (5.6) with p(n) =~ 1. "Thus !., Carollary 5.1 the equation (1) has a unique

the oitial mappineg.

The addiionst hypothicsa 3), the contimaorss difecatinblity of the ski-
of (1) an he Lipschitz contitnity of g the houndedoess of U

ity of £ee f(t,x;) imply that x i Lipachiee cont

In- particular, there s k =0 such that

L—nbskis—t, 0<

m the proof of Theorem 3.2.2 in [3] one can deduce that & i

(%)
'

1A, x ds comverges

# wrict solution of (1) i the integrl |

on holds, since m {6:1) and (6:2) &
S o)l S+ 1) s —11)
B 8 Ti—i

for 15).
Lt

Ma=i

and since. the integnal | "f”- de converges. Thus the mld solution %

of {1} i wlso o sirict solution. The uniqueness cn be verificd a5 in
Theoterm 6.1 |

Kemark 6.1, The hypotheses of heorern 6.2 for £ hold particularly if £

is Lipachitz cantinuous in both its arguments, Le. if (6,1) Holds with

=M (M) h
The same hypotheses are. valid aka when & in (6.1) i given by |
GO =05 f()=Mrir e i
Yy = Mr TT g, ( l—J Vexp, () <7 < Haxps (1) neN |

4 Iiog () L 1jesp, L (1), ;

_
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where log, and c)q!. denote wefold iterated logarithm and exponential funce
| {ionas. respectivily This oae be verificd by chonichtary mnalysie,
A (Mfr—ﬂnvlf The hypotheses wiven for & in Corallary 5.1 do not

imply the  convergence, of the integral ! EL) e T e i it e
sequences: (i) and. (b,) by
aep b and by Vg b, AN

T i easy 10 see that lim o, = 0 and that

i

for each me¢N,

ST

B =rrs;

Gl =tapar <y S, FENG
i) = b o G <r<en, (eN,
k define 3 continurus and nondecreasing (and aba subadditive)  function
4 +Re far which

R e
0] e}

0 s
v
Thuss the proaf of Theotem 6.2 fails if / is only Osgood continuous in | <4,

7. Fuknme coxssqueces

Lot A{f),t¢] be closed linear operators from a d
into X. Assume ¢ 1) 1161} in 0 hyperbolic fumily
cach of it members is the infinitesimal generator of a contraction semigroup,
and that ¢o» A (1) (A(0)) " I8 continuously differentiable mappisg from |
inin B(X). The evolution equation (17 has also in this case 1 unique funda-
mental solution U : (0 < ¢ } = B(X) (cfr. (4], 12.5). Hence
all the venlts devived above for the mild voiution of (1) in the parabolic
cutse hold in the hyperbolic case i yuestion,
Let now {E(f) [ €J) be a stiongly continuous semigroup in X, and
Jet —A be its infinitesimal generator. M f¢ C(]x%) and if the cquation

@ X (04 Ax(0) =/t =)




has a strict solution ¥ with the given initial mapping g 4 €, then ¥ satiafies
also the equation

B st + [ Bt —f, ) de,

fe) (1 ==

(cfr. [6]). A solution of (7.1) is therefore called n mifd (or generalized) solutian
af (3]

Comparing (7.1) with (4) and (5.2) we deduce that
all the recuits derised wbose for solutions of (#) amd for midd soutions of (1)
can be rertated for mild solutions of (3) by the choices

2 Y0 =Er) g (). —rst
and
[c5) U A =Eft—3. r=esT,

From the defining propertios of {E (1)} it namely follaws that y ¢ C[— <, T]
and that U(r,s) is swongly continusus. In particular, Theorem 2.
follows a3 u consequenc of Corallary 5.1. By Remarks 4.1 the ir
J=1[0,T] ean be replaced by [0,00) if £~+E() is bounded, for ex. if
{E(#)},#2=0, is a contraction semigroup.

In the special case E(f) = | = the identity operatos of
tions above are reduced to the considerations of solutions

< the considera-

4 )= () o | £l x) e

of the functional differential cquation

@) ¥ () =fle,x)
Rerrrinces

U1 €. Convrulonony (1448) - Vorlamgr. e ol Futinen Chalocs P, Ca

(& a Pl (1976) - On she mched of « bt fr unctiona
s of rotardhd 13 Pl AL, N ok L Vol
1) G Laonyand ¥. Lmsmaasioa (§972) = Diffreatiod e A
Acadenic Fress, New York.
14 V. Lamsisasmionss and 8. Lasra (1969) ~ Differential and ln:q.,( Twoqalitics,
Appiications, Vols. | andl 11, Acadermic Press, New.
(516 Lo (1969 = Aropus 17, Moo, Wenep, Rebsing Mot
16 R 1. Thowvok (1960 - O seme ool sfeeni quatios: Etnce of sl
ifference approsimations, SIAM 1. Nuzer, A,
(710, Wiarem (1970 = g ond il e, s Vg o
Hiidelberg-New YVork.

—ﬁ



