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1. INTRODUCTION
Let I, be an n-dime © associated with a coor-
| dinate system x' (i = Ly, 1) and g5 ( nsor.
| We denote the ensional different oo of class C of
y represented parametieally by the equations
(L) emxdud (=1, g Ma=1, ..., mmn
Thie matrix with intities
Bl =, ()
rank m.
The metric
(1.3)
There exist (n — m) veetors N; %) (e=om 1,0, n) eilled the n
vectors to Ty, satistying the conditions
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Further, we have the relation [1]

(1.3) Ix , y) =g, v) Bl B! z
¥ oo m 1
where g (x re the contravariant components of the metric

tensors of F, and Fy, respectively

2. The induced covariant derivative [1,2] of B, heing denoted by T, ,, is

ven by

B, — B TS+ Ih B BE

where T are cients of the embedding space and 5 are induced

comnection coefl defined by

(2:2) Bf (B,
82 i -
where BE and ‘B g5
&B T duTaub v 8ij
Since the derivative (2.1) is normal to ¥, , we may write
(2.3) i b} U, ) Ny
w d

where O 2B (u,
The vector field

(24) K} |F

This is called the mean enrvature veotor of F, immersed

) By b=0, F, s call

a minimal snbspace of F, .

Furthermore, we consider an l-dimensional differentinble subspace F, of ol
€ of F, represented paramotically by the cquations
= _ gt By A
RTINS (o )ir<man.
UL TS L ey

The projection factors T} are defined by

= 2 u® (3)
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The metrie tensors of Fy and are elated by

B2+ 8 —gug (0 ) BIRG.

Since the rank of the matrix IIﬁ is 1, there exist (m —1) nor vectors
N, 8, (=1 ,m) which sa the fallowing conditions
= g (D A=141,

(28) o (u, i) B \-w = B, W) NG, NS

Thus we have
¥, vy =g BE B 4

»

A% are the contravariant components of the metrie tensor of Fy.

where g
The covariant. derivative of BY of the type (2.1) will be given hy

10) T34 = 83 By = Bfo —BET3{ - T42 B B

and it is normal o Fy, where I § are the mdueed connection coefficients of Fy de-
fined by

(211 8§ — B (8, + I3EBE BY)
o . -
where By —— and B =g

The vector field
SR

of B, is nonmal to ¥, and this i ealld the mean curvature veetor of B in ¥,
RS (F) Pr)
The fubspace Fy of T, Pinsler space F,

and it can be expressed parainet!
F o (), (G \ = n)
and consequently

(211 B, Bj.
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The fundamental tensors of ¥y, F, and F, respectively

£,p (0, W) B BY =g (x , X) B,

]
where X, s t4
dorivative of B} will he

s tangent to F,

i S ks el phopk
Thq = 5p By = Byg — By I3 + Th By By

and ix nonmal to ¥y, where TEE (= , #) ave defined by equation (2.11)

The mean eurvature vector of ¥, in F, is given by
(2.18)

and. is' normal to Bl It Kl ¢

space |

3. RELATION BETWEEN MEAX CURVATURE VECTORS
The covariant derivative of the type (2.1) of the squation (2.11) gives us

(3.1) Ty =T BY 1. 15 BY .
1 om

Ou wultiplying (3.1) by - ¢

1 we get

1 e A ox i T pi Y
n A (L gy o (bt s ),

Defining
(3.3) B R T ( : Pad u:,) Ty
a5 the relative mean curvature vector of Fy with respect to F,, and F,, we obta
from (2.12), (2.18) and (3.2)

(84 K 5 (P, ST




The veetor field d

With the lelp of

Thie equation {3.1) yields the following the

TuporEn 3.1 - The mea

wrcature eector of @ Finsier subspace Fy in Fiusler

space ., is the sum of ithe wmean cu

ature. veclor of

and the relative mean

cetar of By with vespect to P, and P,
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it order that Fy is minimal iu ¥

of ¥y

o it i neveasiiry and muil

ciont thal the mean eiral i B, be normal 1o F

Tueonky 3.3 - In ords

that the subspace Fy be minimal in Ninslor space F,

it is necessary and sufficient that P,

s winimal in ¥, and the relatice mean curvature

wectar of By with vespect to B, and B, canizhes.

§. CONCURILENT VECTOR TIELD

Lot V' he o ve

or field of Finsler spaco

, and concurrent along ¥, , that
s, we huve

(41)

L 0@ g0 w0
& 9 %

equations (3.4)

R L T

(4:3) K

we get the following theo-

i % 3 V' s nomal to the space
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Tugon 41 - Suppose that there erists a veclor fild V' in a Finsler space
¥, and conourrent along Fy. In order that Fy be minimal in ¥, it i necessary and

sufcient that+ 4 84 3 V' is wormal ta F,

Tn particular, let ¥, — F, . In this case the cquation (4-3) yields

TaroREM 4.2 - Suppose thal Hiere evists a vector field V= of B and convurront
along Fy. In order that Fy be ninimal in F_, it iz necessary and sufiicient that

O3 8 7=

5. SUBSPACES UMBILICAL T0 A NORMAL

Let us consider & unit vector field 2 of Finsler spice F,, and normal o ¥y, .
Also, let ¥ be umbilieal with mean eurvature B with respeet to this unit veetor
field in ¥, Now we choose s as the first normal N[, to F,, then we have
equations of Iy in F, :

i i s i gl :
B1) Iy = AT I“(wam Nigy T B &g Nmt 1y +2min) 8P Ny pg +

0 DN,

(m3) T sons o O 00 NG,

B3y
By oD B are seeond fu

where fl, 005 Bigog s Dy gy 00, By
¥

" St b i i
dnmental forms with respect to Ny, No o N Mg
respectively.

Multiplying (5.1) by — g and using (2.18), we obtain

i : 1 » Ry
K‘! ; i:“‘l Ty = — e 1ﬂmﬂ‘l N[n) + BI\L”H 1 +

1 1] i
1T 5 2 T, BO N

Let A be the mean curvature of Fy in the Finder space F, and A* < B® then
we find A = B! and

(5.3) 0,00 =0, %0,

Thus the subspiee F s minimal in F, and F) is minimal in F, i B
This gives the following theorem :
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THEOREN i

5l.- Suppose fhat 3 is @ unit vector field of the Finsler space F

s mbilical with mean curcature B with respect to

and normal to £, and alsa

the wnit vector field 3'. I the mean enreature A of Fy in F is such that A% = B2,

theu Fy is minimal in F, and is minimal in ¥, iff B =0,
Aguin, et F, e wmbilieal in the Finsler spac Ay be & veotor field
in normal N, of Then we have [3]

(s

From equations (2.4), (

oo we have

tROREN Suppase that F, is wmbilical in the Finsler space . Then

the mean curcatuse veclor of F,, in F, voincides with velalive mean curcature vector

and F,

of ¥y with respert f
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