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where T. (u°, i) satisfies similar properties as L (x*, x%). Also for T we have
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we obtain after simplification

or alternatively
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The solutions of the equations (3.16) ave normalized ns of the relation
(a.17) T(x,m) =1 g (M k=1,

The second set of normals can be defined by the solutions o7 (x", 3%) of the
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...n) which are independent of the directions
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Now multiplying equation
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which s satisfled by the tangent veetor w'd to any ourve 0 in 3
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The tensor (4 is also ealled the second fandamental tensor and in (5.2)
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generalization of the Meuniors theorem of classical differential geometry
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where DE and N are to be determined.
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If we ehoose a particular set of normals n in u way that the last term
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Multiplying equation (7.8) by nf we ob
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whiel implies

(r.0) Win = 2 Ocn 1) — = Al

o Dk Why — e By

gy with the Finsler s
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