On projective recurrent Finsler spaces of the first order (**) J. INTRODUCTION — In one of the recent papers R. B. Misra [1] has given a comparative study of various types of recurrent Pinnler spaces. In the present paper the matter has been decomposed in three sections. The first one is introductory and the second, and third, sections deal with \(\text{W} - recurrent and \(W (W - rec We shall consider an n-dimensional Finsler space F_n , [3] with homogeneous metric function $F(x, \hat{x})$ of degree one in \hat{x}^* is which is defined by $g_{ij}(x, \hat{x}) = \frac{1}{2} \hat{\lambda}_j \hat{\lambda}_j F^*(x, \hat{x})$. The tensor $C_{ijk}(x, \hat{x}) \stackrel{\text{def}}{=} \frac{1}{2} \hat{\lambda}_j g_{ij}(x, \hat{x})$ satisfies the identity: $$C_{im}(\mathbf{x}, \dot{\mathbf{x}}) \dot{\mathbf{x}}^{i} = C_{im}(\mathbf{x}, \dot{\mathbf{x}}) \dot{\mathbf{x}}^{i} = C_{im}(\mathbf{x}, \dot{\mathbf{x}}) \dot{\mathbf{x}}^{k} = 0,$$ Cartan. ([3] ch. Π - Π I) defined two types of covariant derivatives; for instance the two covariant derivatives for a mixed tensor $T^i_j(x,x)$ are given by $$T_{i,i,k}^{l} = \lambda_{i} T_{i}^{l} - \lambda_{i} T_{i}^{l} \lambda_{k} G^{l} + T_{i}^{h} \Gamma_{hk}^{\bullet +} - T_{h}^{l} \Gamma_{lk}^{\bullet h}$$ (2) and $$T_i^i|_{\mathfrak{p}} = F \otimes T_i^i + T_i^m A_{\mathfrak{p}\mathfrak{p}}^i - T_{\mathfrak{p}}^i A_{\mathfrak{p}\mathfrak{p}}^m$$ where $$A_{j\,k}^m \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} F \; C_{j\,k}^m$$ The commutation formulae are as follows: $$(1.4) 2 T_{1/0(k)}^{i} = K_{mhk}^{i} T_{1}^{m} - K_{lik}^{m} T_{m}^{i} - \delta_{m} T_{1}^{i} K_{rhk}^{m} \dot{x}^{r},$$ (.5) $$2 T_i^i|_{(hk)} = F_{\hat{\chi}k} T_i^i|_h + F_{\hat{\chi}h} T_i^i|_k + S_{nkh}^i T_j^m - S_{jkh}^m T_n^i$$, 6) $$(\hat{s}_h T_i^l)_{1k} - (\hat{s}_h T_{1k}^l) = \hat{s}_l T_i^l A_{hk1y}^l I^y - \hat{s}_h \Gamma_{yk}^{*+} T_i^y + \hat{s}_h \Gamma_{jk}^{*+} T_y^y$$ ^(*) Dept. of Mathematics, University of Gorakhpur, India. ^(**) Memoria presentata dall'Accademico E. BOMPIANI il 6-5-1974. (*) The notations δ_i and δ_i denote the operators δ_iδ xⁱ and δ_iδ xⁱ respectively. and $$(1.7) \qquad (\dot{\lambda}_h \mathbf{T}_j^i)|_k \rightarrow \dot{\lambda}_h \mathbf{T}_j^i|_k = -(\mathbf{F} \dot{\mathbf{x}}^h \dot{\lambda}_k \mathbf{T}_j^i + \dot{\lambda}_h \mathbf{A}_{mk}^i \mathbf{T}_j^m \\ -\dot{\lambda}_h \mathbf{A}_h^m \mathbf{T}_m^i + \mathbf{A}_{mk}^n \dot{\lambda}_m \mathbf{T}_j^i),$$ The projective curvature tensor is defined by $$\begin{aligned} \text{(1.8)} \qquad \qquad & \text{(a)} \qquad & W^{i}_{l\,h\,k}\left(x\,,\,\dot{x}\right) = \dot{\delta}_{l}\,W^{i}_{h\,k} \, = \, \frac{2}{3}\,\,\dot{\delta}_{l}\,\dot{\delta}_{l\,h}\,W^{i}_{k\,l} \\ \text{(b)} \qquad & W^{i}_{h\,k}\left(x\,,\dot{x}\right) = \, \frac{2}{2}\,\,\dot{\delta}_{l\,h}\,W^{i}_{k\,l} \quad , \quad \text{(c)} \quad & W^{i}_{h\,k} = -\,W^{i}_{k\,h} \, . \end{aligned}$$ Here the square brackets denote the skew symmetric part with respect to the indices enclosed with in them. Noting that W¹₁, is homogeneous of degree two in its directional argument, we have the following identities $$(1.9) \qquad \qquad \text{(a)} \quad W^{i}_{hk} \, \dot{x}^h = W^{i}_k \quad , \quad \text{(b)} \quad W^{i}_{hk} \, \dot{x}^i \, \dot{x}^h = W^{i}_k \quad ,$$ $$\qquad \qquad \text{(c)} \quad W^{i}_{hk} \, \dot{x}^i = W^{i}_{hk} \quad ,$$ $$(1.10) \quad (a) \quad W^i_k \; \dot{x}^k = 0 \quad , \quad (b) \quad \dot{\delta}_k \; W^i_k \; \dot{x}^k = - \; W^i_k \quad , \quad (c) \quad \dot{\delta}_l \; W^i_k = 0 \; .$$ 2. PROJECTIVE RECURRENT FINSLER SPACE WITH CARTAN'S FIRST CO-VARIANT DERIVATIVE Definition (2.1): In an n-dimensional Finsler space F_n the projective curvature tensor is called W — recurrent F_n if it satisfies the relation $$(2.1) \hspace{1cm} W^l_{i\,h\,k\,|\,l} = \lambda_l\,W^l_{i\,h\,k} \hspace{0.5cm}, \hspace{0.5cm} (\lambda_l \neq 0)$$ Transvecting (2.1) by \hat{x}^i and noting (1.9b), we find (2.2) $$W^l_{bk|l} = \lambda_l W^l_{bk}$$. Hence the tensor field W^l_{bk} is also recurrent in an W — recurrent F_o. Again reace the lensor heat W_{hk} is also recurrent in an W — recurrent F_h . Again transvecting the equation (2.2) by x^h and using the equation (1.9a), we get $$W_{k+1}^l = \lambda_l W_k^l \ . \label{eq:wk}$$ So that Wk is also recurrent in W - recurrent Fa. Theorem (2.1): An $W^i_{j\,k}$ — recurrent F_n will be W — recurrent F_n if and only if the recurrence vector λ_i satisfies $$\begin{array}{ll} (2.4) & (\delta_i \, \lambda_i) \, \, W^i_{h\,k} \, = (\delta_i \, \Gamma^{\bullet,i}_{\chi^i}) \, W^{\nu}_{h\,k} \, - (\delta_m \, W^i_{h\,k}) \, \Lambda^m_{i\,l\,j\,\nu} \, I^{\nu} \\ & + 2 \, \delta_i \, \Gamma^{\bullet,\nu}_{l\,k} \, W^j_{i\,\alpha_i\,k\,j} \, , \end{array}$$ Proof: Let us suppose that a F_n be W_{jk}^i —recurrent space. Differentiating (2.2) with respect to \vec{x}^j and applying the commutation formula (1.6), we get $$(2.5) \quad W_{1hk|1}^{l} - \lambda_{l} W_{1hk}^{l} = (\lambda_{l} \lambda_{l}) W_{hk}^{l} + \lambda_{m} W_{hk}^{l} A_{(1)_{V}}^{m} P$$ $$- \lambda_{l} \Gamma_{V}^{p_{l}^{l}} W_{hk}^{h} + \lambda_{l} \Gamma_{h}^{p_{l}^{m}} W_{vk}^{l} + \lambda_{l} \Gamma_{k}^{p_{l}^{m}} W_{hv}^{l}$$ Hence for W — recurrent space the first member of the equation (2.5) vanishes and after rearranging the terms, it gives the theorem. Theorem (2.2): In an Wik — recurrent Fn the relation $$(\hat{\lambda}_{i}) W_{hk}^{i} \hat{x}^{i} = \hat{\lambda}_{i} \Gamma_{vl}^{*i} W_{hk}^{v} \hat{x}^{i} + 2 \hat{\lambda}_{i} \Gamma_{l|h}^{*v} W_{|v|k|}^{i} \hat{x}^{i}$$ (2.6) holds good. Proof: Transvecting (2.5) by x1 and using (1.8c) and (1.9c), we get (2.7) $$W_{hk,l}^{l} = \lambda_{l} W_{hk}^{l} = (\hat{\lambda}_{l} \lambda_{l}) W_{hk}^{l} \dot{x}^{l} = \dot{x}^{l} \dot{\lambda}_{l} \Gamma_{vl}^{*l} W_{hk}^{l} + \dot{x}^{l} \dot{\lambda}_{l} \Gamma_{vl}^{*l} W_{hk}^{l} + \dot{x}^{l} \dot{\lambda}_{l} \Gamma_{kl}^{*l} W_{hk}^{l},$$ Using the relation (2.2) for W_{ik}^l — recurrent Finsler space, we get (2.6). Theorem (2.3): The necessary and sufficient condition that an W_i^l — recurrent F_n will be an W_{ik}^l — recurrent F_n is, $$(2.8) \quad W_{11}^{i} \dot{\lambda}_{h1} \dot{\lambda}_{l} + \dot{\lambda}_{m} W_{11}^{i} \Lambda_{h111}^{m} \dot{\gamma}^{l} - W_{11}^{r} \dot{\lambda}_{h1} \Gamma_{r1}^{*i} + \dot{\lambda}_{lh} \Gamma_{111}^{*r} W_{r}^{i} = 0.$$ Proof: An W¹₁ — recurrent F_n is characterised by the relation (2.3). Differentiating (2.3) with respect to \hat{x}^h and applying the commutation formula (1.6), we get $$(2.9) \qquad (\delta_h W_j^i)_{j,i} = (\delta_h \lambda_i) W_j^i = \lambda_i \delta_h W_j^i = -\delta_h \Gamma_{ij}^{\bullet i} W_j^i$$ $$+ \delta_m W_j^i A_{h1,i}^{\bullet i} I^j + \delta_h \Gamma_{ij}^{\bullet i} W_j^i.$$ Interchanging the indices h and j in (2.9) and substracting it from (2.9) and using the relation (1.8b), we get $$(2.10) \qquad \qquad W^{i}_{h\,j\,|\,i} = \lambda_{i}\,W^{i}_{h\,j} \,=\, \frac{2}{3}\,\,\{\,W^{i}_{1\,j}\,\delta_{h\,j}\,\lambda_{i} \,+\, \delta_{m}\,W^{i}_{1\,j}\,\Lambda^{m}_{h\,j\,|\,i\,\nu}\,\,l^{\nu}$$ $$= W_{i,i}^{\nu} \, \hat{\delta}_{h1} \, \Gamma_{\nu i}^{\nu \, i} \, + W_{\nu}^{i} \, \hat{\delta}_{ih} \, \Gamma_{i11}^{\nu \, \nu} \; .$$ From equation (2.2) and (2.10) we obtain the result (2.8). Theorem (2.4): In an Wi - recurrent Fn the following relation is true: $$\dot{x}^{h} W_{j}^{l} \dot{\lambda}_{h} \lambda_{l} = \dot{x}^{h} W_{j}^{v} \dot{\lambda}_{h} \Gamma_{v,l}^{*+} + W_{m}^{l} A_{j1|v}^{m} I^{v}$$ $$+ 2 W_{m}^{l} \dot{\lambda}_{h} \Gamma_{v}^{*} I^{v} \dot{x}^{h} = 0.$$ (2.11) Proof: Multiplying (2.10) by \hat{x}^h and using (1.10a) and $A^i_{0,l|\nu}\,\hat{x}^h=0$, we get (2.11) in view of W^i_l —recurrent F_n . Theorem (2.5): The recurrence vector λ in W_j^i — recurrent F_n , satisfies the relation 2.12) $$2 \lambda_{[1|m]} W_1^i = W_1^p k_{plm}^i - W_p^i K_{plm}^i - \delta_p W_1^i K_{nlm}^p \dot{x}^p$$. Proof: Differentiating (2.3) co-variantly with respect to x^m, we get $$W_{1/1m}^{i} = (\lambda_{1/m} + \lambda_{1} \lambda_{m}) W_{1}^{i},$$ Interchanging the indices l and m in (2.13) and substracting it from (2.13) and applying the commutation formula (1.4), we get the required result. ## 3. PROJECTIVE RECURRENT FINSLER SPACE WITH CARTAN'S SECOND CO-VARIANT DERIVATIVE Definition (3.1): An n-dimensional Finsler space F_n is said to be an W* returnent F_n if the Cartan's second co-variant derivative of the projective curvature tensor satisfies the relation: $$(3.1) W_{1hk}^{j}|_{1} = V_{1}W_{1hk}^{j}, (V_{1} \neq 0)$$ Transvecting the relation (3.1) by xi and xb, we get (i.2) $$W_{hk}^{j}|_{1} = V_{1}W_{hk}^{j}$$, if $i \neq 1$ and $$(3.3) W_k^i|_i = V_i W_k^i , \text{ if } h \neq 1$$ Hence the tensor fields W_{1k}^{\dagger} and W_{k}^{\dagger} are also recurrent in an W^{\bullet} — recurrent F_{n} and known as $W_{1k}^{\bullet\dagger}$ — recurrent and $W_{1k}^{\bullet\dagger}$ — recurrent Finsler space respectively. Theorem (3.1): An $W_{1k}^{\bullet\dagger}$ — recurrent F_{n} will be an W^{\bullet} — recurrent F_{n} if and only if it satisfies the relation: (3.4) $$(\delta_i V_l) W_{hk}^l = F_{\chi l} W_{hk}^l + \delta_l A_{ml}^l W_{hk}^m = 2 \delta_l A_{1|h}^m W_{|m|kl}^l + A_{ll}^m W_{mhk}^l$$. Proof: Differentiating (3.2) with respect to \dot{x}^i and applying the commutation formula (1.7), we get $$\begin{split} W^{i}_{l\,h\,k}|_{l} &= V_{l}\,W^{i}_{l\,h\,k} = (\dot{\delta}_{l}\,V_{l})\,W^{i}_{h\,k} = \{\,F_{\tilde{k}^{l}}\,W^{i}_{l\,h\,k} + \dot{\delta}_{l}\,A^{l}_{m\,l}\,W^{m}_{h\,k} \\ &- \dot{\delta}_{l}\,A^{m}_{l\,l}\,W^{i}_{m\,k} - \dot{\delta}_{l}\,A^{m}_{l\,l}\,W^{i}_{h\,m} \, + A^{m}_{l\,l}\,\,\dot{\delta}_{m}\,W^{j}_{l\,k}\,\}\,\,. \end{split}$$ For W* — recurrent space we get the theorem from (3.5) by using the relation (3.1) Theorem (3.2): In an W_{jk}^{*+} — recurrent F_n the following condition holds good: $(\dot{\delta}_{l} \, V_{l}) \, W_{b\,k}^{j} \, \dot{x}^{l} = F \, W_{l\,h\,k}^{j} \, + \dot{\delta}_{l} \, A_{m\,l}^{l} \, W_{h\,k}^{m} \, \dot{x}^{l} - 2 \, \dot{\delta}_{l} \, A_{l\,l\,h}^{m} \, W_{(m\,l\,k\,l)}^{j} \, \dot{x}^{l}$ Proof: Multiplying (3.5) by x^h and using relations (1.9c) and (1.1) we get the result (3.6) in view of the equation (3.2), Theorem (3.3): An $W_k^{*,i}$ — recurrent F_n becomes $W_{j,k}^{*,i}$ — recurrent F_n if it satisfies the following relation $$(3.7) W_{1k}^{j} \dot{\delta}_{h1} V_{1} = \dot{\delta}_{1} W_{1k}^{j} \dot{\delta}_{h1} F + W_{1k}^{m} \dot{\delta}_{h1} A_{m1}^{j} - \dot{\delta}_{1h} A_{k11}^{m} W_{m}^{j}$$ Proof: An $W_1^{\bullet i}$ — recurrent F_n is characterised by (3.3). Differentiating (3.3) with respect to x^h and applying the commutation formula (1.7), we get $$(3.8) \qquad (\delta_h W_k^i)|_i - (\delta_h W_k^i) V_i - (\delta_h V_i) W_k^i = - \{\delta_h F \delta_i W_k^i\}$$ $$+ \hat{\delta}_h A_{m1}^J W_k^m - \hat{\delta}_h A_{k1}^m W_m^J + A_{h1}^m \hat{\delta}_m W_k^J \}$$. Now interchanging the indices h and k in (3.8) and substracting it from (3.8) and applying the relation (1.8b), we obtain (3.9) $$W_{hk}^{l}|_{1} = V_{l}W_{hk}^{l} = \frac{2}{2}W_{lk}^{l}\delta_{hl}V_{l} = \frac{2}{2}(\delta_{l}W_{lk}^{l}\delta_{hl})F$$ $$+\,\delta_{\{h}\,A^{j}_{\,[m1]}\,W^{m}_{k1} - \delta_{\{h}\,A^{m}_{k11}\,W^{j}_{m}\,+\,\delta_{m}\,W^{j}_{\{k}\,A^{m}_{h11}\}\,.$$ But for $W_{1k}^{\bullet,1}$ — recurrent F_n the left hand side of (3.9) vanishes and then we get (3.7). Theorem (3.4): In an W_i^{*+} — recurrent Finsler space, we have $$(3.10) \hspace{1cm} W_k^i \, \dot{x}^h \, (\dot{a}_h \, V_i) = F \, \dot{a}_i \, W_k^i + F_{\dot{x}^k} \, W_i^j + W_k^m \, \dot{a}_h \, A_{m1}^j \, \dot{x}^h$$ $$-2 \hat{b}_{1h} A_{k11}^{m} W_{ln}^{ln} x^{h} + W_{ln}^{ln} A_{k1}^{ln}.$$ Proof: Multiplying (3.9) by \hat{x}^{h} and using equations (1.10a), (1.10b) and (1.1) we get (3.10) in view of the relation (3.3). Theorem (3.5): The recurrence vector of W₁^{*1} — recurrent F₂ satisfies the 3.11) $$2 V_{i1}|_{m_i} W_i^i = F_{x^{m_i}} W_i^i|_1 + F_{x^{1}} W_i^i|_m + S_{v_{m,1}}^i W_i^v - S_{j_{m,1}}^v W_v^i$$ Proof: Differentiating (3.3) co-variantly with respect to xm, we get $$(3.12) W_j^i|_{1m} = (V_i|_m + V_i V_m) W_j^i.$$ Interchanging I and m in (3.12) and substracting it from (3.12) and applying the commutation formula (1.5) we easily get the result (3.11). ## REFERENCES - [1] R. B. Misna, On a recurrent Finsler space, Rev. Roum. Math. Pures et Appl. (5), 18, 701-712 (1973). - [2] R. B. Misra and F. M. Minuer, Projective motion in an RNP-Finder space, Tensor, N. S., (1), 22, 117-120 (1971). - [3] H. Runo, The differential geometry of Finsler spaces, Springer-Verlag (1959). - [4] R. N. Sen, Finsler spaces of recurrent curvature, Tensor, N. S., (3), 19, 291-199 (1968). - [5] H. D. PANDE and T. A. KHAN, Recurrent Finsler spaces with Cartan's first Curvature tensor field S¹_{ILE}, Atti della Acad. Naz. Lincei, Rend., (3-4), LV (1973). - [6] R. S. Mishra and H. D. Pande, Recurrent Finsler space, J. Ind. Math. Soc., (1-2), 32, 17-22 (1968).