SUSUMU ISHIKAWA (*)

The infinitesimal automorphisms on the tangent bundles of order 2 (**)

K. Yano and S. Eshihara [2] defined lifts of tensor fields, affine connections and pseudo-lifemannian metrics of differentiable manifolds M to the tangent bundles $\Gamma_{\rm A}(M)$ of order 2 over M and proved some properties of $T_{\rm A}(M)$. On the other hand, K. Yano and S. Kobayashi [3] and S. Tanno [1] study infinitesimal transformations in the tangent bundle $\Gamma_{\rm A}(M)$ over M. In the present paper, we shall study infinitesimal transformations of $T_{\rm A}(M)$ and prove some results analogous to those given in [3]. In § 1, we fix notations and terminodyses and results among well known results concerning lifts to $\Gamma_{\rm A}(M)$. Our assertions will be stated in Theorems A and B. These Theorems A and B. Wilbe proved in § 2 and § 3 respectively.

§ 1. Introduction

Let M be a C^n -differentiable manifold of dimension n with an affine connection V and R the real line. The tangent bundle $T_n(M)$ of order S over M is the space of equivalence classes of mappings from R into M, the equivalence relation being d. Bind as follows: two mappings P and G from R into M are equivalent to each other M is a focal coordinate neighborhood $(U_r(X^0))$ containing a point $p \in M$, they satisfy the conditions

$$(1.1) \qquad F\left(0\right) = G\left(0\right) = p \; , \\ \frac{d\;F^{i}}{d\;t}\left(0\right) = \frac{d\;G^{i}}{d\;t}\left(0\right) \; , \\ \frac{d^{2}\;F^{i}}{d\;t^{2}}\left(0\right) = \frac{d^{2}\;G^{i}}{d\;t^{2}}\left(0\right) \; , \\$$

where F(t) and G(t) are the coordinates of points F(t) and G(t) in (U, (x)) respectively, where the indices h, i, j, k, m, p, q, r, s and t run over the range (1, 2, ..., a) and the summation convention will be used with respect to these indices. We call an equivalence class containing F the 2-jet of M determined by F and denote in by $\frac{F}{K}(F)$. If we denote by F/KM, the set of all 2-jets of M, T/MM has the natural bundle structure over M, its bundle projection $\pi_{z}: T/MM \to M$ being defined by $\pi_{z}(F/M) = M$. If we take an $\pi_{z}^{2}+\pi_{z}^{2}(F) = boding$ to $\pi_{z}^{2}(V/M)$ and yut

(1.2)
$$x^{i} = F^{i}(0)$$
, $y^{i} = \frac{d F^{i}}{d t}(0)$, $z^{i} = \frac{d^{2} F^{i}}{d t^{2}}(0)$,

^(*) Dept. of Mathematics Saga University, Honyio 1 - Saga, Japan (**) Memoria presentata dall'Accademico E. BOMPIANI il 6-5-1974.

then we see that 2-jet $j_0^k(F)$ is expressed in a unique way by the set (x^i,y^i,z^j) . Thus a system of coordinates (x^i,y^i,z^j) is introduced in the open set $\pi_2^{ik}(U)$ in $T_0(M)$. We call (x^i,y^i,z^j) the induced coordinates in $\pi_2^{ik}(U)$ from $(U,(x^i))$.

Prolongations of tensor fields on M to $T_z(M)$ (cf. [2]). For any function f on M, its prolongations f^z , f^z and f^{zz} to $T_z(M)$ are functions on $T_z(M)$ and expressed by the form

$$f^{0}: f\left(x^{i}\right), \quad f^{I}: y^{c} \delta_{i} f\left(x^{i}\right),$$

$$f^{II}: z^{c} \delta_{i} f\left(x^{i}\right) + y^{c} v^{c} \delta_{i} \delta_{i} f\left(x^{i}\right)$$

$$(1.3)$$

with respect to the induced coordinate system (x^i, y^i, z^j) , where $\delta_s = \delta/\delta x^s$.

For any vector field X on M, its prolongations X^0 , X^i and X^{ii} are vector fields on $T_s(M)$ having the following properties;

$$\begin{aligned} & X^{0}f^{0} = 0 \ , & X^{0}f^{1} = 0 \ , & X^{0}f^{1} = (Xf)^{0} \ , \end{aligned}$$

$$(1.4) & X^{1}f^{0} = 0 \ , & X^{1}f^{1} = \frac{1}{2} (Xf)^{0} \ , & X^{1}f^{1} = (Xf)^{1} \ , \\ & X^{11}f^{0} = (Xf)^{0} \ , & X^{11}f^{1} = (Xf)^{1} \ , & X^{11}f^{1} = (Xf)^{11} \end{aligned}$$

for any function f on M. Then $\mathbf{X}^0,\mathbf{X}^t$ and \mathbf{X}^H have respectively the following local expressions :

$$\mathbf{X}^{*}:\begin{pmatrix}0\\0\\\mathbf{X}\end{pmatrix}, \qquad \mathbf{X}^{I}:\begin{pmatrix}\frac{1}{2}&\mathbf{X}\\\frac{1}{2}&\mathbf{X}\end{pmatrix},$$

$$\mathbf{X}^{II}:\begin{pmatrix}\mathbf{X}^{I}\\(\mathbf{x},\mathbf{X}^{I})\mathbf{y}^{*}\end{pmatrix},$$

$$\mathbf{X}^{II}:\begin{pmatrix}\mathbf{X}^{I}\\(\mathbf{x},\mathbf{X}^{I})\mathbf{y}^{*}\end{pmatrix},$$

$$\mathbf{X}^{II}:\begin{pmatrix}\mathbf{X}^{I}\\(\mathbf{x},\mathbf{X}^{I})\mathbf{y}^{*}\end{pmatrix},$$

$$\mathbf{X}^{II}:\begin{pmatrix}\mathbf{X}^{I}\\(\mathbf{x},\mathbf{X}^{I})\mathbf{y}^{*}\end{pmatrix},$$

in (x^i,y^i,z^i) , $X=X^i \flat/\flat x^i$ being the local expressions of X in $(U,\langle x^i\rangle)$. For any 1-form ω on M, its prolongations ω^\flat , ω^\flat and ω^Π are 1-forms on $T_2(M)$ having the following properties:

$$\omega^{s}(X^{0}) = 0$$
, $\omega^{s}(X^{1}) = 0$, $\omega^{s}(X^{1}) = (\omega(X))^{s}$,
 (1.6) $\omega^{1}(X^{0}) = 0$, $\omega^{1}(X^{1}) = \frac{1}{2}(\omega(X))^{s}$, $\omega^{1}(X^{1}) = (\omega(X))^{1}$,
 $\omega^{11}(X^{0}) = (\omega(X))^{s}$. $\omega^{11}(X^{0}) = (\omega(X))^{1}$, $\omega^{11}(X^{0}) = (\omega(X))^{1}$.

for any vector field X on M. Then $\omega^0\,,\,\omega^I$ and ω^{II} have respectively local components

$$\begin{array}{lll} & \omega^0: (\omega_1\; , 0\; , 0)\; , \\ & \omega^I: ((\lambda_1\; \omega_0)\; y^a\; , \omega_1\; , 0)\; , \\ & \omega^{II}: ((\lambda_1\; \omega_0)\; x^a\; + (\lambda_1\; \lambda_1\; \omega_0)\; y^a\; y^a\; ,\; 2\; (\lambda_1\; \omega_0)\; y^a\; ,\; \omega_1) \end{array}$$

in (x^i, y^i, z^i) , $\omega = \omega_i d x^i$ being the local expressions of ω in $(U, (x^i))$. Taking any two tensor fields P and Q, we have the following laws:

1.8)
$$(P \bigcirc Q)^{g} = P^{g} \bigcirc Q^{g}$$
, $(P \bigcirc Q)^{g} = P^{g} \bigcirc Q^{g} + P^{g} \bigcirc Q^{g}$, $(P \bigcirc Q)^{ij} = P^{ij} \bigcirc Q^{g} + 2 (P^{g} \bigcirc Q^{g}) + P^{g} \bigcirc Q^{ij}$.

The prolongations P^0 , P^1 and P^{11} of P are called respectively the 0-th, the 1st and the 2nd lifts of P, P being a tensor field on M.

Prolongations of affine connections in M to $T_X(M)$ (CL. [2]). Let there be given an affine connection ∇^{II} in M. Then there exists a unique affine connection ∇^{II} in $T_Y(M)$ characterized by the following relation :

$$\nabla^{H}_{vH}(\mathbf{Y}^{H}) = (\nabla_{v} \mathbf{Y})^{H},$$

X and Y being arbitrary vector fields on M. The connection ∇^{Π} is called the lift of ∇ to $T_{A}M$. If we denote respectively by \widetilde{T} and \widetilde{R} (resp. \widetilde{T} and \widetilde{R}) the torsion and the curvature tensor fields of ∇ (resp. ∇^{Π}), we have $\widetilde{T} = T^{\Pi}$ and $\widetilde{R} = R^{\Pi}$. Moreover we have the following formulas:

$$\begin{split} & \nabla^{\mathsf{L}_0}_{X^0}(X^0) = 0 \ , \qquad \nabla^{\mathsf{L}}_{X^0}(X^1) = 0 \ , \qquad \nabla^{\mathsf{L}}_{X^0}(X^0) = (\nabla_X Y)^a \ , \\ & (\text{L10}) \ \nabla^{\mathsf{L}_1}_{X^1}(X^0) = 0 \ , \qquad \nabla^{\mathsf{L}}_{X^1}(Y^1) = \frac{1}{2} \ (\nabla_X Y)^a \ , \quad \nabla^{\mathsf{L}}_{X^1}(Y^1) = (\nabla_X Y)^1 \ , \\ & \nabla^{\mathsf{L}}_{Y^0}(X^0) = (\nabla_X Y)^a \ , \quad \nabla^{\mathsf{L}}_{X^0}(Y^1) = (\nabla_X Y)^i \ , \qquad \nabla^{\mathsf{L}}_{Y^0}(X^0) = (\nabla_X Y)^a \ . \end{split}$$

Let's denote by $\widetilde{\Gamma}_{1K}^{1}$ local components of ∇^{Π} , where we have put $\overrightarrow{x} = \overrightarrow{y}$, $\overrightarrow{x} = \overrightarrow{x}$. The indices I, J, K and L run over the range $\{1, \dots, n, \overline{1}, \dots, \overline{n}, \overline{1}, \dots, \overline{n}\}$ and the summation convention will be used with respect to these indices. Then we have

(I.II)
$$\widetilde{\Gamma}_{JK}^{i} = \begin{pmatrix} \Gamma_{Jk}^{i} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$\widetilde{\Gamma}_{JK}^{i} = \begin{pmatrix} Y^{2} \lambda_{i} \Gamma_{Jk}^{i} & \Gamma_{Jk}^{i} & 0 \\ \Gamma_{Jk}^{i} & 0 & 0 \end{pmatrix},$$

$$0 & 0 & 0 \end{pmatrix},$$

$$\widetilde{\Gamma}_{JK}^{i} = \begin{pmatrix} x^{2} \lambda_{i} \Gamma_{Jk}^{i} & y^{2} \lambda_{i} \lambda_{j} \Gamma_{Jk}^{i} & 2 y^{2} \lambda_{i} \Gamma_{Jk}^{i} & \Gamma_{Jk}^{i} \\ 2 y^{2} \lambda_{i} \Gamma_{Jk}^{i} & 2 \Gamma_{Jk}^{i} & 0 \end{pmatrix}$$

 Γ^i_{1k} being local components of ∇ .

Prolongations of pseudo-Riemannian metrics of M to $T_{\rm g}(M)$ (Cf. [2]). Let there be given an pseudo-Riemannian metric g in M. Then there exists a pseudo-Riemannian metric $g^{\rm cit}$ with the following components:

$$\begin{pmatrix} z^{\flat} \, \delta_{\nu} \, g_{1j} + y^{\mu} \, y^{\flat} \, \delta_{\nu} \, \delta_{j1} & 2 \, y^{\nu} \, \delta_{\nu} \, g_{1j} & g_{1j} \\ 2 \, y^{\nu} \, \delta_{\nu} \, g_{1j} & 2 \, g_{1j} & 0 \\ g_{1j} & 0 & 0 \end{pmatrix}$$

with respect to induced coordinates $(x^i, y^i, z^i), g_{ij}$ being contravariant components of g. The pseudo-Riemannian metric g^{il} has the following properties:

$$(1.13) \qquad L_{\chi 0} \ g^{II} = (L_{\chi} g)^{0} \ , \quad L_{\chi I} \ g^{II} = (L_{\chi} \ g)^{I} \ , \quad L_{\chi II} \ g^{II} = (L_{\chi} \ g)^{II}$$

for any vector field X on M, where L_X denotes the Lie derivation with respect to X. We now state two theorems, which are natural analogies to theorems proved in [3]. To do so, we define two operators ρ , and ρ , operating on type (1,1) tensor fields U in such a way that ρ_1 U and ρ_2 U are respectively vector fields on $T_0(M)$ defined by

$$(1.14) \quad \rho_1 U = U_i^i y^i \delta/\delta y^i + 2 (U_i^i y^i - \Gamma^i, U_i^i y^i y^i) \delta/\delta z^i,$$

$$(1.15) \qquad \qquad q_s U = U_s^i v^s \lambda \lambda z^i$$

where U^i_1 are components of U and $v^i = z^i + \Gamma^i_{ik} v^i v^k$.

Theorem A. Let ∇ be a torsion-free affine connection of M and ∇^{Π} its lift to $T_2(M)$. Given arbitrary infinitesimal affine transformations X, Y and Z and parallel, type (1,1) tensor fields U and S on M which are solutions of the following equation with unknown type (1,1) tensor field A on M:

$$(1.16) \quad A \circ R (W, W') = R (A W, W') = R (W, A W') = R (W, W') \circ A$$

for any vector fields W and W' on M, where R is the curvature tensor field of \triangledown on M. Then the vector field $\widetilde{X}=X^{11}+Y^1+Z^0+\rho_1\,U+\rho_2\,S$ is an infinitesimal affine transformation on $T_4(M)$ with respect to $\triangledown^{11}.$

Conversely, if the following condition [C] is satisfied:

[C] M adimits no nonzero parallel, typ (1,1) tensor field A satisfying
$$A\circ R(W,W')=R(AW,W')=R(W,AW')=R(W,W')\circ A=0$$
 for any vector fields W and W on M.

then any infinitesimal affine transformation \widetilde{X} of $T_z(M)$ with respect to \bigtriangledown^{II} is uniquely written as

$$\widetilde{X} = X^{11} + Y^1 + Z^0 + \rho_1\,U + \rho_2\,S\,, \label{eq:Xi}$$

where X , Y and Z are infinitesimal affine transformations on M and U , S are parallel, type (1,1) tensor fields satisfying the equation (1.16).

Theorem B. Let g be a pseudo-Riemannian metric on M and $g^{(i)}$ its lift or $T_i(M)$. Here the rector field $\widetilde{X} = X^{(i)} + V + V^2 + \gamma_i U - V_j$ is g in an infinitesimal innostry on $(\Gamma_i(M), g^{(i)})$, where X and Y are infinitesimal affine transformations of (M, g) such that $U = (U'_i) = (-\frac{1}{2}, g^{(i)} - V_i \times g)$, $S = (S_i^{(i)}) = (-\frac{g^{(i)}}{2}, F_i \times g)$ are parallel and satisfy the equation (1.16), and where Z is arbitrary infinitasimal innostry on (M, g).

Conversely, if M satisfies the condition [C] then any infinitesimal isometry \widetilde{X} of $(T_1(M), g^{II})$ uniquely written as

$$\widetilde{X} = X^{II} + Y^{I} + Z^{0} + \rho_{I} U + \rho_{0} S$$
,

where X and Y are infinitesimal affine transformations on (M, g) and $U = (U_j) = -(-\frac{1}{2}g^{im} L_X g_{jm})$, $S = (S_j) = (-g^{im} L_X g_{jm})$ are parallel, type (1,1) tensor fields satisfying the equation (1.16), and where Z is arbitrary infinitesimal isometry of (M, g),

Remark 1. — In [3], there were given some examples of manifolds with affine connection satisfying the condition [6].

Remark 2. — When a pseudo-Riemannian metric g is given in M which is not necessarily requested to satisfy the condition $(C|, S. Tamo | \Omega)$ has decomposed, in a unique way, any infinitesimal isometry of $\Gamma(R|M)$, g^{α}) into three infinitesimal isometries by using an infinitesimal isometry, an infinitesimal affine transformation and two parallel, type (1,1) tensor fields in (M, g.). In $\Gamma(R|M)$, $g^{(\alpha)}$ is might be true (that any infinitesimal [sometry in $(T_{\alpha}|M)$, $g^{(\alpha)}$) can be uniquely decomposed in a similar way as given in (1).

§ 2. PROOF OF THEOREM A

First, we prove

Proposition 2.1. If ∇ is torsion-free and M satisfies the condition $[\mathbb{C}]$ stated in Theorem Λ , then any infinitesimal affine transformation \widetilde{X} of $(\mathbb{T}(M), \nabla^m)$ is projectable into $\mathbb{T}(M)$ by $\pi_1: \mathbb{T}_1(M) \to \mathbb{T}(M)$ and the image $\pi_2(\widetilde{X})$ is an infinitesimal affine transformation of $(\mathbb{T}(M), \nabla^n)$, where $\pi_2: \mathbb{T}_2(M) \to \mathbb{T}(M)$ is the projection given by $\pi_2: \mathbb{T}_2(K) = \mathbb{T}_2(K)$ for any element $\mathbb{T}_2(K) = \mathbb{T}_2(K)$.

Proof Take an infinitesimal affine transformation

$$\widetilde{X} = \xi^{\dagger} \delta / \delta x^{\dagger} + \xi^{T} \delta / \delta y^{\dagger} + \xi^{T} \delta / \delta z^{\dagger}$$
 on $(T_{s}(M), \nabla^{\Pi})$.

From the definition of infinitesimal affine transformation, \widetilde{X} satisfies the equation (2.1) $\delta_{x}\delta_{x}\xi^{+} + \xi^{+}\delta_{t}\widetilde{\Gamma}_{x}^{\dagger}v - \widetilde{\Gamma}_{x}^{\dagger}v \delta_{t}\xi^{+} + \widetilde{\Gamma}_{x}^{\dagger}v \delta_{t}\xi^{+} + \widetilde{\Gamma}_{x}^{\dagger}v \delta_{t}\xi^{+} = 0$. where $\widetilde{\Gamma}_{1,K}^{I}$ are local components of \forall^{Π} . By setting $(I, J, K) = (i, \overline{j}, \overline{k}), (i, \overline{j}, \overline{k})$, $(i, \overline{j}, \overline{k}), (i, \overline{j}, \overline{k})$ and $(i, \overline{j}, \overline{k})$ in (2.1), we have respectively

$$\delta_1^\mu \delta_{\overline{k}}^{\overline{k}} \, \xi^i = 0 \ , \quad \delta_1^\mu \delta_{\overline{k}}^{\overline{k}} \, \xi^j = 0 \ , \quad \delta_1^\mu \delta_{\overline{k}}^{\overline{k}} \, \xi^j = 2 \, \Gamma_{ik}^m \delta_{\overline{m}}^\mu \, \xi^j \ ,$$

$$\delta \tau \, \delta \overline{\epsilon} \, \overline{\epsilon}^{i} = 0$$
, and $\delta \tau \, \delta \overline{\epsilon} \, \overline{\epsilon}^{i} = - \, \Gamma^{i}_{im} \, \delta \overline{\epsilon} \, \overline{\epsilon}^{m}$.

Therefore ξ^i and $\overline{\xi}^i$ can be written as follows:

2.3)
$$\xi^{i} = A^{i}_{j} z^{j} + \Gamma^{m}_{jk} A^{i}_{m} y^{j} y^{k} + B^{i}_{j} y^{j} + X^{i}$$
,

$$(2.4) \quad \overline{\xi^{i}} = (-\Gamma_{lm}^{i} \Lambda^{m}_{\nu} v^{j} + C_{\nu}^{i}) z^{k} + D^{i},$$

where A'_1 , B'_2 , X' and G'_1 depend only on x_1, \dots, x^n and D' depends only on x_1 , \dots, x^n , y_2, \dots, y_n . Since \widetilde{X} is a vector field on $T_k[M]$, we can easily show that $A = A_k^1 \beta_0 X \circ O \ dX_1^1 B = B_k^1 \beta_0 X \circ O \ dX_2^1 C = G^1 \beta_0 X X' O \ dX_2^1$ are all type (4,1) tensor fields on M. By simply calculations (Cf. (3)) we can prove the following properties (a) and (b):

(a) A is parallel, i.e.
$$\nabla A = 0$$
.

(b)
$$A(R(Y, Z)W + \nabla_Z T(Y, W)) = R(Y, AZ)W + \nabla_{AZ} T(Y, W)$$

for all vector fields Y, Z and W, where R is the curvature tensor field of ∇ . If ∇ is torsion-free, then from (b) and the equation obtained by putting (I, J, K) = (I, J, K) in (2.1), we know that A satisfies

$$A \circ R (Y, Z) = R (A Y, Z) = R (Y, A Z) = R (Y, Z) \circ A = 0.$$

In particular, if we assume that M satisfies the condition [C] stated in Theorem A, then A = 0 holds and so, using (2.3) and (2.4), we have $\xi^{\dagger} = B^{\dagger}_{\downarrow} y^{\dagger} + X^{\dagger}$ and $\xi^{\dagger} = C^{\dagger}_{\downarrow} x^{\dagger} + D^{\dagger}_{\downarrow}$.

Next, from equations obtained by putting $(I, J, K) = (\overline{i}, \overline{j}, \overline{k})$ and $(\overline{i}, \overline{j}, \overline{k})$ in (2.1), we can put

$$(2.5) \quad \overline{\xi}^{l} = - (\Gamma^{i}_{mk} B^{m}_{j} + 2 \Gamma^{i}_{lm} C^{m}_{k}) y^{j} z^{k} + Q^{i}_{k} z^{k} + F^{i},$$

where Q_k^i depends only on x^1, \dots, x^n and F^i depends only on $x^1, \dots, x^n, y^1, \dots, y^n$. Comparing coefficients of x^i in the equations obtained by putting (I, J, K) = = (i, j, k) in (2.1), we have

$$(2.6) 2 C_{s}^{m} R_{kmj}^{i} = B_{k}^{m} R_{mjs}^{i},$$

which is equivalent to

$$(2.7) 2 R (Y, CZ) = R (Y, Z) \circ B$$

for all vector fields Y and Z on M. On the other hand, as was proved in [3], we have $B \circ R(Y, Z) = R(BY, Z) = R(Y, BZ) = R(Y, Z) \circ B = 0$ because $(B_j^i y^j +$

 $+X')\delta \delta x'$ is an infinitesimal affine transformation of $(T(M), \nabla^{\zeta})$. This shows that B=0 and R(Y, CZ)=0 hold if M satisfies the condition [C]. Moreover, putting $(I,J,K)=(\overline{I},j,\overline{K})$ and (i,j,k) in (2.1), we see that C is parallel and satisfies

$$C \circ R (Y, Z) = R (C Y, Z) = R (Y, C Z) = R (Y, Z) \circ C$$

Therefore, we have the following statements that if ∇ is torsion-free and M satisfies the condition (C), then B = C = 0 holds. And so, any infinitesimal affine transformation \hat{X} of $(T_i(M), \nabla^{n})$ is projectable to T(M) by π_{12} . It is easy to show that $\pi_{11}(\hat{X}) = X(\hat{X}) \otimes \hat{X}' + D(\hat{X}) \otimes \hat{Y}'$ is an infinitesimal affine transformation of (T(M), X).

I hope that you leave space beturen lines By means of Theorem 1 proved in [3], we can write uniquely as

 $\pi_{12}\widetilde{X} = X^c + \frac{1}{a} Y^V + \iota U,$

where X and Y are infinitesimal affine transformations of
$$(M, \nabla)$$
 and U is a parallel, type $(1,1)$ tensor field on M satisfying $U \circ R(Y,Z) = R(UY,Z) = R(Y,UZ) = R(Y,UZ)$

= R (Y, Z) · U for all vector fields Y and Z on M.
On the other hand, we have the following properties (Cf. [2]):

(e) For the vector fields X and Y on M, we have

$$\pi_{ii}\left(X^{II}\right) = X^{c} \ \ and \ \ \pi_{ii}\left(2 \ Y^{I}\right) = Y^{V} \ .$$

(d) If X is an infinitesimal affine transformation of (M, ∇), then X^{II}, X^I and X^e are also infinitesimal affine transformations of (T_I(M), ∇^{II}).

Because of (o), (d) and (2.8), it is sufficient for our present purpose to determine a projectable infinitesimal affine transformation \widetilde{Y} of $(T_x(M), \nabla^{\Pi})$ satisfying $\pi_{M}\widetilde{Y}) = rU$. To do so, we put

(2.9)
$$\widetilde{\mathbf{Y}} = \mathbf{i} \mathbf{U} + \mathbf{z}^{\mathsf{T}} \delta / \delta \mathbf{z}^{\mathsf{I}} = \mathbf{U}^{\mathsf{I}} \mathbf{y}^{\mathsf{T}} \delta / \delta \mathbf{y}^{\mathsf{I}} + \mathbf{z}^{\mathsf{T}} \delta / \delta \mathbf{z}^{\mathsf{I}},$$

where $\widetilde{\eta}^{*}$ will be determined. Since \widetilde{Y} is an infinitesimal affine transformation of (TLMM), ∇^{ij}), \widetilde{Y} satisfies the equation (2.1).

Putting $(I, J, K) = (\overline{i}, \overline{j}, \overline{k})$ and $(\overline{i}, \overline{j}, \overline{k})$ in (2.1), we have respectively

$$\delta_{\overline{1}} \, \delta_{\overline{k}} \, \eta^{\overline{l}} = 0$$
 , $\delta_{\overline{1}} \, \delta_{\overline{k}} \, \eta^{\overline{l}} = 0$.

Therefore we can put

(2.10)

$$\eta^{\overline{l}} = N^i{}_j z^j + L^i\,,$$

where $X^i{}_j$ depends only on $x^1,\ldots,x^n,$ and where L^j depends only on $x^1,\ldots,x^n,$ $y^1,\ldots,y^n.$ Also putting $(I\,,J\,,K)=(\hat{I}\,,\hat{J}\,,\hat{K})$ in (2.1) we have

$$3 - 3 - U^{i} - 2 \Gamma_{ik}^{m} N_{im}^{i} + 2 \Gamma_{im}^{i} U_{ik}^{m} + 2 \Gamma_{km}^{i} U_{ij}^{m} = 0$$

and so we can put

$$(2.12) \qquad L^{i} = (\Gamma^{m}_{ik} N^{i}_{m} - \Gamma^{i}_{lm} U^{m}_{k} - \Gamma^{i}_{km} U^{m}_{j}) y^{i} y^{k} + S^{i}_{k} y^{k} + Z^{i},$$

where S_k , Z' depend only on x^1, \dots, x^n . Now $N = N^1_j \partial_j x^i \ominus d x^j$, $S = S^1_j \partial_j x^i \ominus d x^j$ and $Z = Z' \partial_j x'$ are well-defined tensor fields on M. If we put $(I, J, K) = (\bar{i}, j, \bar{k})$, (\bar{i}, j, \bar{k}) and (\bar{i}, j, k) in (2.1) for \widetilde{Y} , we can show that the following properties (e), (f) and (g) hold:

- (e) N and S satisfy (a) and (b)
- (f) N = 2 U
- (g) Z is the infinitesimal affine transformation of (M, ∇).

Now, using (e), we have

$$\widetilde{\mathbf{Y}} = \mathbf{U}_{1}^{i} \mathbf{y}^{j} \delta \beta \mathbf{y}^{i} + 2 \left[\mathbf{U}_{1}^{i} \mathbf{z}^{j} + (\Gamma_{jk}^{ik} \mathbf{U}_{m}^{i} - \Gamma_{jm}^{i} \mathbf{U}_{k}^{m}) \mathbf{y}^{j} \mathbf{y}^{k} \right] \delta \beta \mathbf{z}^{i}$$

$$+ 8 \left[\mathbf{y}^{k} \delta \beta \mathbf{z}^{j} + \mathbf{Z}^{k} \beta \beta \mathbf{z}^{j} \right]$$

If we put ϱ_i $U = U^i_{\ j} \ y^i \otimes \delta \ y^i + 2 \ (U^i_{\ j} \ v^j - \Gamma^i_{\ m} \ U^m_{\ k} \ y^i \ y^b) \delta \delta \ z^i, \ \varrho_i \ S = S^i_{\ j} \ y^i \otimes \delta \ where \ v^i = z^i + \Gamma^i_{\ k} \ y^i \ y^b_{\ k}, \ we see that \ \varrho_i \ U \ and \ \varrho_i \ S \ are the vector fields on \ T_i(M)$ and that \widetilde{Y} can be written as

(2.14)
$$\widetilde{Y} = Z^0 + \rho_1 U + \rho_2 S$$
.

Therefore, when the condition [C] is satisfied, we have determined the form of all infinitesimal affine transformations \widetilde{X} on $T_g(M)$. That is, for any infinitesimal affine transformation \widetilde{X} , we have

$$\widetilde{X} = X^{11} + Y^{1} + Z^{0} + \rho_{1} U + \rho_{2} S,$$
(2.15)

§ 3. — PROOF OF THEOREM B

Take any infinitesimal isometry \widetilde{X} of $(T_x(M), g^{ij})$. Since \widetilde{X} is the infinitesimal affirmation of $(T_x(M), g^{ij})$, ∇_i^{ij} being the lift to $T_x(M)$ of Riemannian connection V_x of g_x , as a consequence of Theorem A_x , we can uniquely write as

(3.1)
$$\widetilde{X} = X^{11} + Y^{1} + Z^{0} + \rho_{1} U + \rho_{2} S$$
,

where X , Y and Z are infinitesimal affine transformations of (M , ∇_{θ}) and U, S are parallel, type (1,1) tensor fields satisfying $A \circ R(W, W') = R(AW, W') = R(W, W') \circ A$ with unknown type (1,1) tensor field A on M. We have by (1,13)

(3.2)
$$\mathbf{L}_{X}^{\mathbf{r}} \mathbf{g}^{\Pi} = \mathbf{L}_{X}^{\mathbf{H}} \mathbf{g}^{\Pi} + \mathbf{L}_{V^{\mathbf{I}}} \mathbf{g}^{\Pi} + \mathbf{L}_{g^{\mathbf{I}}} \mathbf{g}^{\Pi} + \mathbf{L}_{g_{\mathbf{I}}^{\mathbf{r}}} \mathbf{g}^{\Pi} = \mathbf{0}.$$

Also, if we put locally $L_X g = H_{ij} d x^i d x^j$, $L_Y g = K_{ij} d x^j d x^j$ and $L_Z g = L_{ij} d x^j d x^j$, then we have their local expressions respectively (Cf. [2])

$$(I_{X} g)^{II} = \begin{pmatrix} z^{s} \, \delta_{s} \, H_{ij} + y^{s} \, y^{t} \, \delta_{s} \, \delta_{t} \, H_{ij} & 2 \, y^{s} \, \delta_{s} \, H_{ij} & H_{ij} \\ 2 \, y^{s} \, \delta_{s} \, H_{ij} & 2 \, H_{ij} & 0 \\ H_{ii} & 0 & 0 \end{pmatrix},$$

$$(\mathbf{L}_{Y} \mathbf{g})^{I} = \begin{pmatrix} \mathbf{y}^{a} \lambda_{c} \mathbf{K}_{11} & \mathbf{K}_{11} & \mathbf{0} \\ \mathbf{K}_{11} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

and
$$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$$
.
 (3.5) $(L_Z g)^0 = \begin{pmatrix} L_{ij} & 0 & 0 \\ 0 & 0 & 0 \\ \end{pmatrix}$.

Next we can easily calculate components of L_{2_1U} $g^{(i)}$ and L_{2_2S} $g^{(i)}$, which are given respectively by

$$\begin{aligned} & (3.6) \quad & L_{p_1U}\,g^{11} = 2 \begin{pmatrix} z^a\,\delta_{\nu}\,U_{ij} + y^a\,y^i\,\delta_{\nu}\,\delta_{\nu}\,U_{ij} & 2\,y^a\,\delta_{\nu}\,U_{ij} & U_{ij} \\ 2\,y^a\,\delta_{\nu}\,U_{ij} & g_{mi}\,U^{m}_{j} + g_{mj}\,U^{m}_{i} & 0 \\ & U_{ij} & 0 & 0 \end{pmatrix} \\ & \text{and} \end{aligned}$$

$$(3.7) \qquad \qquad \mathbf{L}_{\mathbf{p}_{1}U} \mathbf{g}^{\mathbf{i}1} = \begin{pmatrix} \mathbf{y}^{\mathbf{i}} \, \mathbf{b}_{i} \, \mathbf{S}_{i_{1}} & \mathbf{g}_{m_{1}} \, \mathbf{S}^{\mathbf{w}}_{i_{1}} & \mathbf{0} \\ \mathbf{g}_{m_{1}} \, \mathbf{S}^{\mathbf{w}}_{i_{1}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

where $U_{ij}=g_{jm}\,U^m_{i}$ and $S_{ij}=g_{jm}\,S^m_{i}\,.$ From (3.2) \sim (3.7) we have

$$H_{ij} = -2 U_{ij} = -2 g_{jm} U^{m}_{ij},$$

 $K_{ii} = -S_{ij} = -g_{jm} S^{m}_{ij}, L_{ij} = 0$

which prove the 2nd half of Theorem B.

The 1st half of Theorem B is easily proved by reversing the above reason. Therefore the proof of Theorem B is complete.

Remark 3. — In Theorem B, $X^{II}+\rho_1\,U$ and $Y^I+\rho_2\,S$ are infinitesimal isometries of $(T_g(M)$, $g^{II})$.

REFERENCES

- S. Tanno, Infinitesimal isometries on the tangent bundles with complete lift metric, tensor, Vol. 28 (1974) 139-144.
- [2] K. Yano and S. Ishihara, Differential geometry of tangent bundles of order 2, Kodai Math. Sem. Reports, 20 (1968) 318-354.
- [3] K. Yano and S. Kobayashi, Prolongations of tensor fields and connections to tangent bundles I, II. J. Math. Soc. Japan Vol. 18 (1966) 194-210, 236-246.